6,925 research outputs found

    Small Class Vehicle Architecture Overview

    Get PDF
    From the beginning of spaceflight, NASA has been at the forefront of technology development to send payloads and astronauts into space Because of the cost to develop and maintain rockets, flight hardware, and launch sites spaceflight could only be achieved through government funding From Mercury through Shuttle, and soon SLS, the Kennedy Space Center has been the iconic symbol of spacefligh

    Exploration Medical System Technical Architecture Overview

    Get PDF
    The Exploration Medical Capability (ExMC) Element Systems Engineering (SE) goals include defining the technical system needed to support medical capabilities for a Mars exploration mission. A draft medical system architecture was developed based on stakeholder needs, system goals, and system behaviors, as captured in an ExMC concept of operations document and a system model. This talk will discuss a high-level view of the medical system, as part of a larger crew health and performance system, both of which will support crew during Deep Space Transport missions. Other mission components, such as the flight system, ground system, caregiver, and patient, will be discussed as aspects of the context because the medical system will have important interactions with each. Additionally, important interactions with other aspects of the crew health and performance system are anticipated, such as health & wellness, mission task performance support, and environmental protection. This talk will highlight areas in which we are working with other disciplines to understand these interactions

    Towards a pervasive data mining engine: architecture overview

    Get PDF
    Current data mining engines are difficult to use, requiring optimizations by data mining experts in order to provide optimal results. To solve this problem a new concept was devised, by maintaining the functionality of current data mining tools and adding pervasive characteristics such as invisibility and ubiquity which focus on their users, providing better ease of use and usefulness, by providing autonomous and intelligent data mining processes. This article introduces an architecture to implement a data mining engine, composed by four major components: database; Middleware (control); Middleware (processing); and interface. These components are interlinked but provide independent scaling, allowing for a system that adapts to the user’s needs. A prototype has been developed in order to test the architecture. The results are very promising and showed their functionality and the need for further improvements.FCT -Fundação para a Ciência e a Tecnologia(PTDC/EEI-SII/1302/2012

    Clouder: a flexible large scale decentralized object store - architecture overview

    Get PDF
    The current exponential growth of data calls for massive scale capabilities of storage and processing. Such large volumes of data tend to disallow their centralized storage and processing making extensive and flexible data partitioning unavoidable. This is being acknowledged by several major Internet players embracing the Cloud computing model and offering first generation remote storage services with simple processing capabilities. In this position paper we present preliminary ideas for the architecture of a flexible, efficient and dependable fully decentralized object store able to manage very large sets of variable size objects and to coordinate in place processing. Our target are local area large computing facilities composed of tens of thousands of nodes under the same administrative domain. The system should be capable of leveraging massive replication of data to balance read scalability and fault tolerance.(undefined

    Advanced information processing system: The Army fault tolerant architecture conceptual study. Volume 1: Army fault tolerant architecture overview

    Get PDF
    Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation

    Multi-camera and Multi-modal Sensor Fusion, an Architecture Overview

    Get PDF
    Proceedings of: Forth International Workshop on User-Centric Technologies and applications (CONTEXTS 2010). Valencia, 07-10 September , 2010.This paper outlines an architecture formulti-camera andmulti-modal sensor fusion.We define a high-level architecture in which image sensors like standard color, thermal, and time of flight cameras can be fused with high accuracy location systems based on UWB, Wifi, Bluetooth or RFID technologies. This architecture is specially well-suited for indoor environments, where such heterogeneous sensors usually coexists. The main advantage of such a system is that a combined nonredundant output is provided for all the detected targets. The fused output includes in its simplest form the location of each target, including additional features depending of the sensors involved in the target detection, e.g., location plus thermal information. This way, a surveillance or context-aware system obtains more accurate and complete information than only using one kind of technologyThis work was supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB, CAM CONTEXTS S2009/TIC-1485 and DPS2008-07029-C02-02Publicad

    Service modularity and architecture – an overview and research agenda

    Get PDF
    Purpose Services are highly important in a world economy which has increasingly become service driven. There is a growing need to better understand the possibilities for, and requirements of, designing modular service architectures. The purpose of this paper is to elaborate on the roots of the emerging research stream on service modularity, provide a concise overview of existing work on the subject, and outline an agenda for future research on service modularity and architecture. The articles in the special issue offer four diverse sets of research on service modularity and architecture. Design/methodology/approach The paper is built on a literature review mapping the current body of literature on the topic and developing future research directions in service modularity and architecture. Findings The growing focus on services has triggered needs to investigate the suitability and implementation of physical-product-focused modularity principles and theories in service contexts, and to search for principles/theories that enhance services. The expanding research stream has explored various aspects of service modularity in empirical contexts. Future research should focus on service-specific modularity theories and principles, platform-based and mass-customized service business models, comparative research designs, customer perspectives and service experience, performance in context of modular services, empirical evidence of benefits and challenges, architectural innovation in services, modularization in multi-provider contexts, and modularity in hybrid offerings combining service and tangible product modules. Originality/value Nine areas are recommended for further research on service modularity and architecture. The introductory piece also discusses the roots of service modularity and provides an overview of current contributions

    Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview

    Get PDF
    Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for an MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV), and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Super Sonic Retro Propulsion (SSRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars. The MAV uses a storable liquid bi-propellant propulsion system to deliver the ERV to a Mars phasing orbit. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Upon arrival at Earth, the ERV performs Earth and lunar swing-bys and is placed into a lunar trailing circular orbit - an Earth orbit, at lunar distance. A later mission, using Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of pristine martian materials into the Earth's biosphere. The analysis methods employed standard and specialized aerospace engineering tools. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships (MERs). The architecture was iterated until overall mission convergence was achieved on at least one path. Subsystems analyzed in this study include support structures, power system, nose fairing, thermal insulation, actuation devices, MAV exhaust venting, and GN&C. Best practice application of loads, mass growth contingencies, and resource margins were used. For Falcon Heavy capabilities and Dragon subsystems we utilized publically available data from SpaceX, published analyses from other sources, as well as our own engineering and aerodynamic estimates. Earth Launch mass is under 11 mt, which is within the estimated capability of a Falcon Heavy, with margin. Total entry masses between 7 and 10 mt were considered with closure occurring between 9 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the effect of the entry conditions on the thermal protection system (TPS), currently in use for Dragon missions, shows no significant stressors. A useful payload mass of 2.0 mt is provided and includes mass growth allowances for the MAV, the ERV, and mission unique equipment. We also report options for the MAV and ERV, including propulsion systems, crewed versus robotic retrieval mission, as well as direct Earth entry. International planetary protection policies as well as verifiable means of compliance will have a large impact on any MSR mission design. We identify areas within our architecture where such impacts occur. We also describe preliminary compliance measures that will be the subject of future work. This work shows that emerging commercial capabilities as well as new methodologies can be used to efficiently support an important planetary science objective. The work also has applications for human exploration missions that use propulsive EDL technique
    corecore