4,288 research outputs found

    HPC Accelerators with 3D Memory

    Get PDF
    ArtĂ­culo invitado, publicado en las actas del congreso por IEEE Society Press. PĂĄginas 320 a 328. ISBN: 978-1-5090-3593-9.DOI 10.1109/CSE-EUC-DCABES-2016.203After a decade evolving in the High Performance Computing arena, GPU-equipped supercomputers have con- quered the top500 and green500 lists, providing us unprecedented levels of computational power and memory bandwidth. This year, major vendors have introduced new accelerators based on 3D memory, like Xeon Phi Knights Landing by Intel and Pascal architecture by Nvidia. This paper reviews hardware features of those new HPC accelerators and unveils potential performance for scientific applications, with an emphasis on Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM) used by commercial products according to roadmaps already announced.Universidad de MĂĄlaga. Campus de Excelencia Internacional Andalucia Tec

    A multiprocessor based packet-switch: performance analysis of the communication infrastructure

    Get PDF
    The intra-chip communication infrastructures are receiving always more attention since they are becoming a crucial part in the development of current SoCs. Due to the high availability of pre-characterized hard-IP, the complexity of the design is moving toward global interconnections which are introducing always more constraints at each technology node. Power consumption, timing closure, bandwidth requirements, time to market, are some of the factors that are leading to the proposal of new solutions for next generation multi-million SoCs. The need of high programmable systems and the high gate-count availability is moving always more attention on multiprocessors systems (MP-SoC) and so an adequate solution must be found for the communication infrastructure. One of the most promising technologies is the Network-On-Chip (NoC) architecture, which seems to better fit with the new demanding complexity of such systems. Before starting to develop new solutions, it is crucial to fully understand if and when current bus architectures introduce strong limitations in the development of high speed systems. This article describes a case study of a multiprocessor based ethernet packet-switch application with a shared-bus communication infrastructure. This system aims to depict all the bottlenecks which a shared-bus introduces under heavy load. What emerges from this analysis is that, as expected, a shared-bus is not scalable and it strongly limits whole system performances. These results strengthen the hypothesis that new communication architectures (like the NoC) must be found

    Scalability of broadcast performance in wireless network-on-chip

    Get PDF
    Networks-on-Chip (NoCs) are currently the paradigm of choice to interconnect the cores of a chip multiprocessor. However, conventional NoCs may not suffice to fulfill the on-chip communication requirements of processors with hundreds or thousands of cores. The main reason is that the performance of such networks drops as the number of cores grows, especially in the presence of multicast and broadcast traffic. This not only limits the scalability of current multiprocessor architectures, but also sets a performance wall that prevents the development of architectures that generate moderate-to-high levels of multicast. In this paper, a Wireless Network-on-Chip (WNoC) where all cores share a single broadband channel is presented. Such design is conceived to provide low latency and ordered delivery for multicast/broadcast traffic, in an attempt to complement a wireline NoC that will transport the rest of communication flows. To assess the feasibility of this approach, the network performance of WNoC is analyzed as a function of the system size and the channel capacity, and then compared to that of wireline NoCs with embedded multicast support. Based on this evaluation, preliminary results on the potential performance of the proposed hybrid scheme are provided, together with guidelines for the design of MAC protocols for WNoC.Peer ReviewedPostprint (published version

    Temperature Regulation in Multicore Processors Using Adjustable-Gain Integral Controllers

    Full text link
    This paper considers the problem of temperature regulation in multicore processors by dynamic voltage-frequency scaling. We propose a feedback law that is based on an integral controller with adjustable gain, designed for fast tracking convergence in the face of model uncertainties, time-varying plants, and tight computing-timing constraints. Moreover, unlike prior works we consider a nonlinear, time-varying plant model that trades off precision for simple and efficient on-line computations. Cycle-level, full system simulator implementation and evaluation illustrates fast and accurate tracking of given temperature reference values, and compares favorably with fixed-gain controllers.Comment: 8 pages, 6 figures, IEEE Conference on Control Applications 2015, Accepted Versio

    An exploration of CUDA and CBEA for a gravitational wave data-analysis application (Einstein@Home)

    Full text link
    We present a detailed approach for making use of two new computer hardware architectures -- CBEA and CUDA -- for accelerating a scientific data-analysis application (Einstein@Home). Our results suggest that both the architectures suit the application quite well and the achievable performance in the same software developmental time-frame, is nearly identical.Comment: Accepted for publication in International Conference on Parallel Processing and Applied Mathematics (PPAM 2009
    • 

    corecore