
HPC Accelerators with 3D Memory

Manuel Ujaldón
Computer Architecture Department

University of Málaga

Málaga (Spain)

Email: ujaldon@uma.es

Abstract—After a decade evolving in the High Performance
Computing arena, GPU-equipped supercomputers have con-
quered the top500 and green500 lists, providing us unprecedented
levels of computational power and memory bandwidth. This year,
major vendors have introduced new accelerators based on 3D
memory, like Xeon Phi Knights Landing by Intel and Pascal
architecture by Nvidia. This paper reviews hardware features of
those new HPC accelerators and unveils potential performance
for scientific applications, with an emphasis on Hybrid Memory
Cube (HMC) and High Bandwidth Memory (HBM) used by
commercial products according to roadmaps already announced.

I. BACKGROUND: PROCESSORS

The icon for processors over the last 50 years has been
Moore’s law, but doubling the number of transistors every 18
months was often confused with doubling performance. Mainly
because it was not hard to convert the number of functional
units into GFLOPS, particularly on those early years when
pipelining in the 80’s and superscalar designs in the 90’s were
driving commercial models. Last decade, the pillar was multi-
core, but once again, the idea turned out not to be scalable for
a CPU design. In the meantime, we realize that scalability is
possible on GPUs, and that is, in essence, its contribution along
last decade, and the primary reason for the rapid transition to
many-core GPUs that we are witnessing lately.

Nowadays, disruptive technologies such as heterogeneous
multi-cores and GPUs offer excellent performance/cost ratios
for scientific applications, and an increasing number of de-
velopers have learnt to program them to take full advantage
of that emerging power. GPUs have moved closer to CPUs
in terms of functionality and programmability, and CPUs have
also acquired features that are GPU alike. Two good exponents
of this stronger CPU-GPU coupling are the Fusion project led
by AMD to integrate a CPU and GPU on a single chip, and the
Larrabee project led by Intel to develop a many-core hybrid
platform using x86 CPUs. The Intel movement continued
with Knights Ferry, Knights Corner and Knights Landing to
establish the MIC (Many Integrated Core) Architecture [4]
and finally release the Xeon Phi family of accelerators [5]. In
2016, the last generation of Xeon Phi was released to include
memory controllers for 3D DRAM, allowing programmers to
use the x86 instruction set architecture and choose where they
allocate DRAM memory, either using typical DDR modules
or novel 3D cubes [6].

In parallel with the CPU evolution, the GPU started its
own way towards high performance computing fifteen years
ago. Graphics programming experienced a revolution with
the advent of shaders, methods to program vertex and pixel

processors to leverage creativity in visual effects. First, HLSL
(High Level Shading Language, 2001) led by Microsoft for
its Direct3D pipeline, and right after GLSL (OpenGL Shading
Language, 2002), the OpenGL counterpart, became popular at
that time, followed by Cg (C for Graphics, 2003), developed
by Nvidia with Microsoft as partner. In 2005, Nvidia unified
vertex and pixel shaders leading to a more versatile core
design called streaming processor. Soon multi-core vertex
and pixel processors at Nvidia (2001), which were ancestors
for the subsequent multi-core CPUs at Intel (2005), turned
many-core with general-purpose capabilities, and in November,
2006, CUDA (Compute Unified Device Architecture) [8] was
announced as the hardware and software paradigm to design
and program GPUs for HPC.

Now reaching its tenth anniversary, the evolution of CUDA
has been impressive. Table I summarizes major achievements
according to Nvidia and the NSF. We may fairly say that
for the first time in HPC history supercomputing was de-
mocratized, combining three features never gathered before:
Price, power and ubiquity. The free availability of CUDA
tools to interact with other software communities (open-source
compilers, wrappers, back-ends) plus the generosity of CUDA
programmers, with thousands of source codes and libraries,
created a friendly ecosystem for developing applications. And
the last milestone attained by GPUs is energy efficiency,
with all top 40 supercomputers within the green500 list [3]
composed of accelerators, 31 of them being Nvidia GPUs.

In terms of raw computational power, GPUs are ahead of
CPUs roughly an order of magnitude. But peak processing
power is harder to reach on the GPU, so this difference
shortens in practice. Typical rates are sensitive to application’s
nature, but in general, a GPU programmer is happy squeezing
40% of peak performance, whereas a CPU programmer is often
disappointed in the 60% range.

Another remarkable difference lies in the programming
model. Multi-core CPUs use vector processing when enabling
multimedia extensions (MMX, SSE, AVX), instruction-level
parallelism when enabling HyperThreading, and coarse-grain
at thread level parallelism, either relying on the scheduler of
the operating system or programming explicitly via POSIX
threads. Many-core GPUs are programmed using the SIMT
(Single Instruction Multiple Thread) model to enable data
parallelism in a more scalable manner, particularly in the big
data era. The idea is to run the same program in all cores,
but each thread instantiates on a different data subset for each
core to work effectively in parallel. That way, the more cores
we have available, the smaller the working region becomes
for each core, thus making the execution time to be reduced

2016 IEEE International Conference on Computational Science and Engineering, IEEE International Conference on Embedded

and Ubiquitous Computing, and International Symposium on Distributed Computing and Applications to Business, Engineering

and Science

978-1-5090-3593-9/16 $31.00 © 2016 IEEE

DOI 10.1109/.64

320

2016 IEEE International Conference on Computational Science and Engineering, IEEE International Conference on Embedded

and Ubiquitous Computing, and International Symposium on Distributed Computing and Applications to Business, Engineering

and Science

978-1-5090-3593-9/16 $31.00 © 2016 IEEE

DOI 10.1109/.64

320

2016 IEEE International Conference on Computational Science and Engineering, IEEE International Conference on Embedded

and Ubiquitous Computing, and International Symposium on Distributed Computing and Applications to Business, Engineering

and Science

978-1-5090-3593-9/16 $31.00 © 2016 IEEE

DOI 10.1109/.64

320

2016 IEEE International Conference on Computational Science and Engineering, IEEE International Conference on Embedded

and Ubiquitous Computing, and International Symposium on Distributed Computing and Applications to Business, Engineering

and Science

978-1-5090-3593-9/16 $31.00 © 2016 IEEE

DOI 10.1109/CSE-EUC-DCABES.2016.203

320

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional Universidad de Málaga

https://core.ac.uk/display/62909228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE I. THE IMPRESSIVE EVOLUTION OF CUDA OVER THE LAST DECADE.

Year 2008 2016 Multiplier

Number of GPUs accepting CUDA > 100.000.000 > 600.000.000 6x

CUDA downloads monthly > 10.000 > 300.000 30x

CUDA-enabled supercomputers within Top500 list 1 10 Fermi + 53 Kepler 104x

Aggregate performance for those supercomputers 77 TFLOPS > 80000 TFLOPS 1039x

University courses teaching CUDA 60 > 800 13x

Scientific papers published using CUDA 4.000 > 60.000 15x

proportionally without even having to recompile the code. The
key for a successful massive parallelism on a SIMT deploy-
ment is data partitioning. Straightforward decompositions are
usually derived from 1D, 2D and 3D matrices as input data
sets, overall on regular access patterns, but the goal turns more
difficult in the presence of irregular accesses or dynamic data
structures.

II. BACKGROUND: MEMORY

The evolution of memory technology is a whole different
story, but we can see similarities with the processor. DRAM
memory has its own Moore’s law: It doubles its size (Gbytes)
every 18 months. That is like the transistor count for the CPU,
but unlike its partner, it does not translate that easy into speed
rates. Even worse, the larger a memory circuit becomes, the
slower reacts. And the more density holds, the tinier its atomic
cell, that is, the capacitor. It takes a while to read typical loads
of 25-30 fF, so it is faster to amplify those loads before starting
to read. In essence, amplifiers increase latency, but benefit
bandwidth. And since latency is unavoidable, we have tried
to amortize its cost with higher bandwidths. That has been the
fuel propelling SDRAM memories over the past 20 years, with
an overall increase of 48x, from the first SDRAM pumped at
66 MHz to provide 533 MB/s, to the last DDR4 at 2x1600
MHz to deliver 25.6 GB/s. In the meantime, CPUs contribute
with larger caches and more cache levels to minimize DRAM
memory accesses, and also with bigger cache lines to promote
bandwidth over latency.

On the other hand, GPUs have introduced wider paths (384
bits), for a GPU using GDDR5 video memory to deliver 336
GB/s bandwidth (see Table VII using Titan X as example). In
contrast, a typical CPU operating on a 4 channel motherboard
hardly reaches 64 GB/s (see also Table VII for the column of
the Intel Broadwell CPU).

Another similarity between memory and processor is the
multi-core evolution. DDR (Double Data Rate) chips split
memory cells into twin hemispheres sharing latency but dou-
bling bandwidth. The DDR saga exploits this idea with DDR2,
DDR3, DDR4 and GDDR5 designs the same way we have seen
with dual-cores, quad-cores, octo-cores, ... until we face the
truth: It is not an scalable idea. The clones of a single design
require more and more infrastructure for the memory chip to
be able to coordinate the efforts into a single response, and
therefore, latency increases proportionally to the bandwidth
increment. Figure 1 summarizes the evolution of memory
latency and bandwidth for the DDR family, where we see that
latency now represents more than 90% of the time required
for a memory read, that 20 years ago was barely 20%.

Life for transistor within the processor was easy thanks
to the silicon miracle: Every couple of years, manufacturing

nodes were shrinking gates around 30%, and therefore, the
atom of a processor became smaller, faster, cheaper and more
power-efficient on 32, 22, 14 nm... But for the memory,
capacitors did not help much, because is the delay for am-
plifying loads what really matters. Interfaces came to rescue
with smart ideas for exploiting interleaving, essentially with
(1) multi-banks enabled from multiple RAS (Row Access
Strobe) signals, and (2) multi-channel deployment for memory
modules along the motherboard. Unfortunately, none of these
ideas turned out to be scalable either.

Ultimately, the energy cost has killed further developments
for a SDRAM standard which has been pushed a long way.
Additional layers of circuitry are required to compose and
merge a single memory access (typically, the service of a
cache line as seen in Figure 1) from all banks, chips, modules
and channels involved, and that way, memory cells are placed
progressively deeper with respect to the I/O lines where voltage
enters the chip, leading to unatractive bandwidth/watt ratios.

Memories, like processors, are eager to find scalable ideas.
3D-DRAM developments represent a technology able to grow
in size and bandwidth at the same time, and without paying
so much toll in latency and energy. That is why, like many-
core GPUs, 3D-DRAM designs are here to stay and accompany
them on a long journey. This paper summarizes how 3D mem-
ory works (section III), how HPC accelerators are planning to
incorporate it (sections IV, V and VI), and how applications
can benefit from such alliance (section VII).

III. 3D MEMORY

Emerging 3D die-stacked DRAM technology represents a
chance to solve the memory wall problem on HPC systems [9].
It enables heterogeneous logic dies stacking within one DRAM
package and allows the vertical communications among layers
with TSVs (Through Silicon Vias) [10].

TSVs provide huge internal bandwith because they are
dense and fast at the same time. Typical densities are 512,
1024, 2048 and 4096 wires, and latencies are just few picosec-
onds. To fully utilize this bandwidth, regular DRAM dies are
re-partitioned into ranks to build individual memory banks to
be stacked in a 3D fashion [11]. That way, we can increase size
and speed simultaneously. Figure 2 illustrates the architecture
of a 3D die-stacked DRAM for the case of 8 layers with 16
banks each. Banks are grouped into ranks, each traversed with
thousands of TSVs.

The 3D die-stacked DRAM also has a separate logic layer
to implement the complicated DDR memory controller [12].
The goal is to enable bank-level parallelism to make the bus
much wider than on a typical DRAM design where all banks
in a rank share a common bus.

321321321321

Fig. 1. Time to fill a typical cache line of 128 bytes from SDRAM, established by the JEDEC as the standard memory technology for domestic PCs. Departure
point starts in the original SDRAM design, with a CAS Latency (CL) of just 2 cycles @ 100 MHz, and ends with DDR3, where CL represents 8 cycles @ 800
MHz. Latency is drawn in green (see arrows for RAS to CAS Delay, RCD, plus CL) and bandwidth acts during the next arrow in black.

(a) 3D DRAM layers. (b) Banks, ranks and TSVs.

Fig. 2. The 3D DRAM architecture, where each DRAM die is decomposed into banks, then grouped into ranks on a 3D fashion and traversed via through-silicon
vias (TSVs) in a very dense and swift manner.

In general, a die-stacked DRAM has L layers of DRAM
dies stacked vertically, and each die implements B banks of
DDR memory. Each bank has its own T-bit data TSV I/O.
Every L stacked banks compose a 3D vertical rank. Therefore,
the overall system consists of B ranks grouped in vertical. All
the banks in a 3D vertical rank share a single TSV bus, which
can largely relax the TSV pitch constraints [13].

The design can be enhanced by increasing any of these
parameters: L (layers), B (banks) or T (bus width), with
different results in terms of performance and cost. Table II
shows the effect of doubling each of those parameters while
leaving the other two unchanged. Numbers correspond to
stacked dies of DDR3 memory published in [14].

322322322322

TABLE II. TYPICAL PERFORMANCE NUMBERS (LATENCY, BANDWIDTH AND ENERGY) FOR A 3D DRAM MEMORY COMPOSED OF 8 GBITS OF DDR3
MEMORY DIES WITH A PAGE SIZE OF 8192 BITS ON A 32 NM. MANUFACTURING PROCESS. THE EFFECT OF DOUBLING LAYERS (L), BANKS (B) AND TSVS

(T) IS SHOWN SEPARATELY FOR A BASELINE DESIGN COMPOSED OF 4 LAYERS, 8 BANKS PER LAYER AND 512 TSVS PER BANK. SOURCE: REFERENCE [14].

Memory Number of Number of Number of Time for a RAS to CAS CAS Latency TSV Area (on-die) Data Power
architecture layers (L) banks (B) TSVs (T) bank precharge Delay (RCD) (CL) latency efficiency bandwidth consumption

Baseline 4 8 512 16.8 ns. 7.9 ns. 12.7 ns. 0.67 ns. 0.517 40.4 GB/s. 6.2 W.

Doubling layers 8 8 512 9.6 ns. 8.3 ns. 12.5 ns. 1.91 ns. 0.434 40.8 GB/s. 13.2 W.

Doubling banks 4 16 512 8.4 ns. 7.2 ns. 10.6 ns. 0.67 ns. 0.438 96.7 GB/s. 13.1 W.

Doubling TSVs 4 8 1024 16.8 ns. 7.9 ns. 12.1 ns. 0.67 ns. 0.445 84.4 GB/s. 10.5 W.

The baseline design reflects how fast TSVs are compared
to regular DDR3 memory. We have sorted latencies from less
to more influencial in the total time required to fill a typical
cache line composed of 128 bytes (1024 bits). A standard DDR
technology answers as shown in Figure 1. The first latency,
bank precharge, only counts when a memory access changes
the bank where the previous access was placed, which is never
true for the set of consecutive accesses required to fill the
cache line. The second latency, RAS to CAS Delay (RCD),
is the time required to warm-up a row, that is, moving the
page of 8192 bits from capacitors to sense amplifiers, where
data can be accessed more quickly. The CAS Latency (CL),
is the time spent to move data between sense amplifiers and
TSV bus. And finally, the TSV latency, is the vertical data
transfer from banks to the memory controller underneath. In
our case, a row (also called page) of DDR3 memory contains 8
cache lines, and therefore, a single RCD is enough to obtain all
consecutive accesses required to fill a cache line. Additionally,
each of these accesses requires the time characterized by CL.
However, once the first data has been answered with a CL,
all remaining ones benefit from the pipelined DDR designs to
consume just the cycle time (the inverse of the frequency for
the memory chip, also including the 2x factor for DDR).

The cronograms in Figure 1 clarify this process. We can see
that bandwidth has improved at the same rate that the actual
frequency for the memory modules, but RCD and CL latencies
remained constant in 20 ns. for almost 20 years:

• 2 cycles of a 100 MHz clock for SDRAM-100 in 1998.
• 2 cycles of a 100 MHz clock for DDR-200 in 2001.
• 4 cycles of a 200 MHz clock for DDR2-400 in 2007.
• 8 cycles of a 400 MHz clock for DDR3-800 in 2013.

On typical DDR3 memory modules, where data width is 64
bits, 16 accesses are required to fill a CPU cache line 128 bytes
long. When the motherboard is endowed with a dual-channel
architecture, only 8 accesses are required, and similarly, 4
memory accesses are enough for a quad-channel. Finally, on
a 3D-DRAM infrastructure containing 512 TSVs, 2 accesses
suffice. This way, we trade cycle times by TSV latencies. And
at the same time, we are building an infrastructure which can
hold much larger memories, and that means longevity.

From this departure point, a number of optimizations can
be conducted. Table II reflects that the increase of layers,
L, does not benefit bandwidth, whereas B and T do, but
at the cost of area overhead. In general, the most rewarding
alternative is to increase the number of memory banks, but
still, CL predominates. CL can be decreased by further folding
the subarrays of one bank to reduce the wire lengths between
the sense amplifiers and the TSV bus [15], but this forces
to break the structure within a bank, which deteriorates the
DRAM density and area efficiency [11]. On the other hand,

RCD and CL are for intra-layer DDR operations, which can
be overlapped from the memory controller to reduce the TSV
bus idle time, thus improving throughput.

IV. NVIDIA GPUS

All the latest Nvidia developments on graphics hardware
are CUDA-enabled processors: For low-end users and gamers,
we have the GeForce series starting from its 8th generation;
for high-end users and professionals, the Quadro series; for
general-purpose computing, the Tesla boards; finally, for low-
power devices, the Tegra family. Overall, it is estimated to exist
more than six 600 million CUDA-enabled GPUs in 2016.

Table III summarizes all the essential parameters for each
GPU generation since CUDA was born, where we have chosen
the most popular GeForce model to represent each generation.
The first generation was named Tesla, and had two different
architectures, the original G80 and the subsequent GT200. The
second generation, Fermi, introduced caches and double preci-
sion for floating-point arithmetic. The third generation, Kepler,
incorporated additional support for irregular computing, like
Hyper-Q and dynamic parallelism. The fourth generation,
Maxwell, reorganized cores to optimize energy and introduced
unified memory. Finally, the fifth generation, Pascal, consoli-
dates unified memory and introduces 3D DRAM.

CUDA architectures are organized into multiprocessors,
each having a number of cores (see Figure 3.a). As technology
evolves, future architectures will support the same CUDA
executable, but they will run faster for including more mul-
tiprocessors per die, and/or more cores, registers or shared
memory per multiprocessor. That is the recipe for scalability.

For example, the Pascal parallel architecture is endowed
with 2560 cores in the GeForce GTX 1080 GPU. Cores are
organized into 40 multiprocessors, each having a large set of
65536 registers, 64 KB shared memory (both 32 bits wide),
and constants and texture caches of a few kilobytes. Each
multiprocessor can run a variable number of threads, and the
local resources are divided among them. In any given cycle,
each core in a multiprocessor executes the same instruction
on different data based on its threadId, and communication
between multiprocessors is performed through global memory.

On the programming side, scalability is attained by declar-
ing CUDA blocks for each kernel launched on the GPU.
Blocks are mapped to multiprocessors, and threads within
blocks are mapped to cores within multiprocessors. That way,
when the number of blocks is high enough, the workload
is balanced among multiprocessors and additional number of
multiprocessors decrease proportionally the execution time.
Similarly, threads within a block are mapped to cores within
a multiprocessor and executed in a time shared fashion.

323323323323

(a) CUDA hardware resources. (b) CUDA programming model.

Fig. 3. The CUDA paradigm. The hardware consists of (a) a number of twin multiprocessors, which are fed from (b) CUDA blocks declared by the programmer.

TABLE III. THE EVOLUTION OF CUDA HARDWARE AND PROGRAMMING CONSTRAINTS OVER THE FIRST FIVE GENERATIONS COVERING LAST DECADE,
2007-2016. THAT IS: TESLA (WITH TWO REPRESENTATIVE MODELS, THE INAUGURAL G80 AND ITS SEQUEL, GT200), FERMI, KEPLER, MAXWELL AND

PASCAL. WE TAKE AS FLAGSHIP FOR EACH GENERATION WHAT WE CONSIDER THE MOST POPULAR GPU, TOGETHER WITH A REPRESENTATIVE VIDEO

MEMORY IN GRAPHICS CARDS AT THAT TIME. ALL GRAPHICS CARDS SHARE A SIMILAR COST, AROUND $400 AT LAUNCHING DATE (PEAK PRICE).

GPU architecture G80 (Tesla) GT 200 (Tesla) GF 100 (Fermi) GK104 (Kepler) GM204 (Maxwell) GP104 (Pascal)
GeForce reference model 8800 GTX (2006) GTX 280 (2008) GTX 480 (2010) GTX 680 (2012) GTX 980 (2014) GTX 1080 (2016)

Manufacturing Transistors 681M @ 90 nm 1.4BM @ 65 nm 3B @ 40 nm 3.54B @ 28 nm 5.2B @28 nm 7.2B @ 16nm

process Thermal D.P. (die size) 145 W 244 W 183 W 195 W (294 mm2) 165 W (398 mm2) 180 W (314 mm2)

Multiprocessors (SMs) 16 30 15 8 16 40
Processors Cores / Multiprocesor 8 8 32 192 128 64

Total number of cores 128 240 480 1536 2048 2560
Cores clock (w. Boost) 1.35 GHz 1.30 GHz 1.40 GHz 1006 MHz (1058) 1126 MHz (1216) 1607 MHz (1733)

32-bit registers / SM 8192 16384 32768 65536 65536
SRAM Shared memory / SM 16 KB 16 or 48 KB 16, 32 or 48 KB 64 KB
memory L1 cache / SM none 48 or 16 KB 48, 32 or 16 KB integrated with texture cache

L2 cache / GPU none 768 KB 512 KB 2048 KB

Global memory GDDR3 GDDR5 GDDR5 GDDR5 GDDR5 GDDR5X
DRAM Memory clock 2 x 900 MHz 2 x 1107 MHz 4 x 924 MHz 2 x 3000 MHz 2 x 3500 MHz 4 x 2500 MHz
memory Bus memory width 384 bits 512 bits 384 bits 256 bits 256 bits 256 bits

Memory bandwidth 86.4 GB/s 141.7 GB/s 177.4 GB/s 192.2 GB/s 224 GB/s 320 GB/s

CUDA compute capabil. 1.0 1.3 2.0 3.0 5.2 6.0
Programming Active blocks / SM 8 8 8 16 32 32
constraints Threads / block 512 512 1024 1024 1024 1024

Threads / SM 768 1024 1536 2048 2048 2048

The CPU host and the GPU device maintain their own
DRAM and address space, referred to as host memory and
device memory (on-board memory). The latter can be of three
different types. From inner to outer, we have constant memory,
texture memory and global memory. They all can be read from
or written to by the host and are persistent through the life of
the application. Global memory is the actual on-board video
memory, now moving from GDDR5 to HBM2 3D memory.

Multiprocessors have on-chip memory that can be of two
types: registers and shared memory (see Figure 3.b). Each
processor has its own set of local 32-bit read-write registers,
whereas a parallel data cache of shared memory is shared by
all the processors within the same multiprocessor.

Since the introduction of unified memory in Maxwell, pro-
grammer may choose to allocate memory together for the CPU
and GPU spaces. The driver is responsible for migrating pages
back and forth between main and video memory according to
access patterns to maximize likelihood for a given processor
to find its data inside its closer DRAM memory. Then Pascal
provides hardware support for a joint access to unified memory,

either from CPU or GPU. Obviously, that goal is easier when
counting on 3D memory, and, in addition, a page migration
engine has been included to complete the transition phase.

V. INTEL XEON PHI

The Xeon Phi story is quite hard to summarize, starting
with Larrabee back in 2008 and changing names into MIC
architecture to release Knights Ferry (KNF), Knights Corner
(KNC) and finally Knights Landing (KNL).

KNF was prototyped under 45 nm. lithography using a PCI-
e 2.0 card endowed with 32 cores, 8 MB of L2 cache and 2
GB of GDDR5 memory, but the product was cancelled without
being commercialized. KNC entered the market in 2013, and
was manufactured on 22 nm. using tri-gate 3D transistors (as
the Ivy Bridge saga) to reach 1 TFLOPS in double precision.
KNL represents the third generation of Xeon Phi Processors,
launched in June, 2016. It has been manufactured on 14 nm.
lithography, like the Broadwell Xeon E5 and E7 processors,
to include more than 8 billion transistors, the largest chip that
Intel has made so far.

324324324324

TABLE IV. TESLA ACCELERATORS FOR THE LAST THREE GENERATIONS AT NVIDIA CHARACTERIZED BY THE MOST REPRESENTATIVE GPU MODEL.

Models with 2D Memory Models with 3D Memory
Codename (generation) GK110 (Kepler) GM200 (Maxwell) GP100 (Pascal)
Commercial name Tesla K40 Tesla M40 Tesla P100 (with NV-Link) Tesla P100 (with PCI-e)
Year released 2012 2014 2016
Lithography 28 nm. 28 nm. 16 nm. FinFET

Manufacturing GPU die size 551 mm2 601 mm2 610 mm2

Number of transistors 7.1 billion 8 billion 15.3 billion
Thermal Design Power (TDP) 235 W. 250 W. 300 W. 250 W.

Number of Multiprocessors 15 24 56
FP32 CUDA Cores / Multip. 192 128 64
FP32 CUDA Cores / GPU 2880 3072 3584

Processor FP64 CUDA Cores / Multip. 64 4 32
FP64 CUDA Cores / GPU 960 (1/3 FP32) 96 (1/32 FP32) 1792 (1/2 FP32)
Base clock 745 MHz 948 MHz 1328 MHz 1126 MHz
GPU Boost clock 810 / 875 MHz 1114 MHz 1480 MHz 1303 MHz
Peak performance (FP64) 1680 GFLOPS 213 GFLOPS 5304 GFLOPS 4670 GFLOPS

Register File Size / Multip. 64 Kregs. 64 Kregs. 64 Kregs.
Register File Size / GPU 960 Kregs. 1536 Kregs. 3584 Kregs.
Shared Memory / Multip. 48 KB 96 KB 64 KB
L2 Cache Size 1536 KB 3072 KB 4096 KB

Memory Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 3072-bit HBM2 (12 GB)
4096-bit HBM2 (16 GB)

Memory size Up to 12 GB Up to 24 GB 16 GB 12 or 16 GB
Memory bandwidth 288 GB/s 288 GB/s 720 GB/s 540 GB/s (12 GB)

720 GB/s (16 GB)

TABLE V. XEON PHI PRODUCTS COMMERCIALLY AVAILABLE.

Knights Corner (KNC) Knights Landing (KNL)
Model 3120P / 3120A 5120D / 5110P 7120X / 7120P / 7120D / 7120A 7210 7230 7250 7290
Release date Q2’13 / Q2’13 Q2’13 / Q4’12 Q2’13 / Q2’13 / Q1’14 / Q2’14 Q2’16 Q2’16 Q2’16 Q3’16

Lithography 22 nm. 22 nm. 22 nm. 14 nm. 14 nm. 14 nm. 14 nm.

Cost $1695 $2759 / $2649 $4129 / $4129 / $4235 / $4235 $2438 $3710 $4876 $6254

Cost per TFLOPS $1695 $2732 / $2623 $3412 $916 $1393 $1601 $1810

Processor

Clock speed 1.10 GHz 1.05 GHz 1.24 GHz 1.3 GHz 1.3 GHz 1.4 GHz 1.5 GHz

Cores & threads 57 60 61 64 & 256 64 & 256 68 & 272 72 & 288

Peak perf. (FP64) 1.0 TFLOPS 1.01 TFLOPS 1.21 TFLOPS 2.66 TFLOPS 2.66 TFLOPS 3.05 TFLOPS 3.46 TFLOPS

Thermal D. P. 300 W. 245 / 225 300 / 300 / 270 / 300 215 215 215 245

L2 cache 28.5 MB. 30 MB. 30.5 MB. 32 MB. 32 MB. 34 MB. 36 MB

DRAM

Size and type 6 GB. GDDR5 8 GB. GDDR5 16 GB. GDDR5 Up to 384 GB DDR4 (to be purchased separately)

Max. clock speed 2x 2.5 GHz 2x2.75 GHz / 2x2.5 GHz 2x2.75 GHz 2133 MHz 2400 MHz 2400 MHz 2400 MHz

Bus width 384 bits 512 bits 512 bits 384 bits 384 bits 384 bits 384 bits

Bandwidth 240 GB/s 352 GB/s / 320 GB/s 352 GB/s 102 GB/s 115.2 GB/s 115.2 GB/s 115.2 GB/s

3D Memory

Size and type 16 GB MCDRAM (included in all models)
Bandwidth / pin do not include 3D Memory 6.4 GT/s. 7.2 GT/s. 7.2 GT/s. 7.2 GT/s.
Bandwidth 355 GB/s. 400 GB/s. 400 GB/s. 400 GB/s.

Table V summarizes all specifications for the KNC and
KNL products available. The first Xeon Phi products based on
KNL are the 7200 Series, introducing three major differences
with respect to its predecessor KNC. First, instead of a co-
processor, it is a stand-alone directly bootable infrastructure.
Second, rather than the Pentium 54C cores used in Knights cor-
ner, cores in KNL are based on a heavily modified Silvermont
version of the Atom processor that can execute four threads
per core and is around 3x the single-threaded performance of
P54C cores. Third, cores are organized into 8 octants of high
bandwidth stacked MCDRAM (Multi Channel DRAM), which
scales up to 16 GB of capacity (2 GB per octant).

The performance jump compared to KNC coprocessors
ranges between 2.6x and 2.9x, with the price rising by 1.4x-
1.5x. Cores are tiled in pairs, with each core having two
AVX512 vector processing units (the multimedia extensions)
and 1 MB of L2 cache shared across the tile. Tiles are linked
to each other using a 2D mesh interconnect, which also hooks
into the six DDR4 memory controllers that feed into what is
called far memory. Far memory scales up to 384 GB capacity

and delivers around 90 GB/s on the STREAM Triad memory
benchmark test. On the other hand, near memory is used for
implementing MCDRAM to reach 400 GB/s. The concepts of
near and far memory are explained in the HMC specification
(see section VI), but anyway, keep in mind that near memory
is integrated within the processor, whereas far memory has to
be purchased separately in DIMM modules.

KNL offers 3 modes for memory addressing, all selected
at booting time:

1) Flat, where DDR4 and MCDRAM are combined into
a NUMA single address space. An API is provided to
allow programmers to explicitly select MCDRAM us-
ing ”Fast Malloc” functions (hbw malloc/hbw free).

2) Cache, where MCDRAM acts as a L3 cache for the
DRAM, with the hierarchy managed by the system.

3) Hybrid, where MCDRAM is partitioned into two
chunks, each of them used as Flat and Cache modes.

Subsequent versions of Xeon Phi are coming out in Oc-
tober, 2016, with integrated dual-port, 100 Gb/s Omni-Path.

325325325325

Adding those links to the chip package boost the price by $278
and raises energy by 15 watts. Later, Intel plans to release the
co-processor version based on PCI-express 3.0 cards.

VI. 3D MEMORY CONSORTIUMS: HMC VERSUS HBM

Pioneer research projects about Stacked DRAM were de-
veloped during the 2003-2006 period. The first commercial
announcement of the technology was performed by Tezzaron
Semiconductors back in January, 2005. Now the company has
entered into its 4th generation of products, the DiRAM4 [16],
reaching a bandwidth of 1 TB/s. with a latency of 9 ns.

From that on, several manufacturing lines have been set up,
often oriented to other segments like PDAs or smartphones. A
good example is Samsung’s Wide I/O, designed to provide
SoCs with maximum bandwidth at minimum power. This
section focuses on the two consortiums having as target the
HPC arena: HMC and HBM.

A. Hybrid Memory Cube (HMC)

In October, 2011, the HMC Consortium was founded by
Micron Technologies and Samsung Electronics, and soon a
long list of companies signed as adopted members. Among
them, we may cite Microsoft, Altera, ARM, Cray, HP, IBM,
GlobalFoundries, Xilinx and SK Hynix. The specification
for HMC 1.0 was available in April, 2013, with production
samples based on the standard finished during the second half
of 2014. The consortium claims that 400 GB/s of bandwidth
are possible via HMC, with production expected in late 2016.

HMC is designed for high-end servers to respond to multi-
core scenarios and deliver data with much higher bandwidth
and lower latency. Primary goals are to strip out the duplicative
control logic of modern DIMMs, simplify the design, connect
the entire stack in a 3D configuration, then use a single control
logic layer to handle all read/write traffic. Major drawbacks
are cost and power consumption. HMC is also dependant
on a number of profound improvements to semiconductor
manufacturing, and it is not a JEDEC standard.

Intel’s MCDRAM memory is a variant of HMC that has
a proprietary interconnect between the processor interconnect
and that memory. That is why you do not see the company
officially into the consortium. But the concepts of near memory
and far memory that we find within the HMC specification are
used by Intel to explain its implementations of MCDRAM and
DDR4 memory controllers, respectively.

B. High Bandwidth Memory (HBM)

The development of HBM started at AMD in 2008 to
reduce the increasing power consumption and form factor of
the DDR saga. Soon partners from the memory industry (SK
Hynix), interposer industry (UMC) and packaging industry
(Amkor, ASE) joined the specification. HBM was adopted
as industry standard by JEDEC in October, 2012 following a
proposal by AMD and SK Hynix in 2010. Nvidia joined later
in 2014. AMD used HBM 1.0 chips for its Fiji GPU, released
during the summer of 2015 as a Radeon R9 Fury X model.

Nvidia uses HBM2 for Pascal, available in early 2017, with
the GPU integrated by TSMC using FinFET 16 nm. transistors
and the memory cubes manufactured by Samsung.

HBM is explicitly designed with a very wide bus for
graphics and HPC GPU environments. It may not reach the
bandwidth of HMC, but should be cheaper and more power
efficient. Nvidia claims bandwidth over 1 TB/s. at lower laten-
cies, 2.5x higher sizes and four times more energy efficient.

HBM uses 128-bit wide layers and stacks up to eight
of them for a 1024-bit interface. Each memory controller
is independently timed and controlled. Table VI summarizes
all major features of HBM and compares it with the HMC
consortium and also with the existing DDR3/4 saga.

Figure 4 shows the GP100 GPU on the printed circuit
board. Memory is structured into four cubes, each composed of
four layers. The GPU is separated from its cubes in what it is
called a 2.5D memory. The challenge here is to move massive
amounts of data coming down from the HBM cubes into the
horizontal plane all the way to the GPU. The silicon interposer,
which is composed exclusively of wires, integrates the required
interconnection density. That way, the package substrate only
manages externally the traffic that goes along NV-Link or
PCI-express to meet the host processor, and a interconnection
hierarchy is implemented. The heatsink extends along the four
cubes and the GPU, all placed at the same height, but a
challenge remains with heat on intermediate layers when its
number increases. Table VII summarizes the HBM features
and compares them against typical main memory for CPUs
(DDR3) and existing video memory for GPUs (GDDR5).

VII. PERFORMANCE ANALYSIS

We use the roofline model [17] for a comprehensive per-
formance analysis of accelerators endowed with 3D memory.
The roofline sets an upper bound on performance (GFLOPS,
drawn in the vertical axis) for an application depending on
its operational intensity (FLOP/byte, drawn in the horizontal
axis). Think of the operational intensity for an application as
a column hitting the roof to score a GFLOPS mark as the
expected performance attained on that platform. Then, when it
hits the roof on the flat part, the application is compute-bound;
otherwise, it is memory-bound.

Figure 5.a represents this model for three Nvidia GPUs
and Intel Xeon Phi models (see specific names and features in
Tables IV and V, respectively). Colored thick lines characterize
each accelerator, with the leaning line showing the perfor-
mance of the memory system and the horizontal line showing
the peak performance for computational units. Vertical thin
lines in black represent four well-known scientific kernels,
three of them are memory-bound and one is compute-bound
(typically, around 70% of scientific codes are memory-bound).
All of them are characterized by its operational intensity,
and they all score different performance in GFLOPS on each
accelerator. Vertical dotted and colored lines represent the
borderline between the memory-bound and the compute-bound
regions for each platform, that is, the point when extra band-
width does not translate into additional performance because
all ALUs and FPUs are fully utilized.

We can see that memory enhancements in Pascal benefit
3 of the 4 applications, and for the fourth one, GFLOPS are

what really matters. Over the years, scientific applications have
struggled against hardware memory constraints by shifting
their implementations to the right side of the charts, where the

326326326326

TABLE VI. THE DDR STANDARD COMPARED TO HMC AND HBM CONSORTIUMS.

Standard/Consortium DDR3 & DDR4 HMC HBM
Target platforms PCs, laptops, servers High-end servers and enterprises GPUs, HPC

Cost Low High Medium

JEDEC standard Yes No Yes

Energy consumption Medium High Low

DRAM interface Traditional parallel interface, Chip to chip Wide parallel,
single-ended, bidirectional SerDes interface multi-channel interface,
strobes, separated clocks DDR signaling

Voltage DDR3: 1.5, 1.35, 1.25 v. 1.2 v. 1.2 v.
DDR4: 1.2 v.

Width From 4 bits / chip 16 bidirectional lanes / link, 128 bits / channel,
to 64 bits / module 4 links / cube (in Gen2) 2 channels / layer,
(72 bits when ECC enabled) 4 layers / cube

Data Rate DDR3: Up to 2133 Mbps 10, 12.5 or 15 Gbps /lane Up to 2 Gbps
per pin DDR4: Up to 3200 Mbps 80, 100, 120 GB/s /cube (each way) (2x 1GHz DDR clock)

System PCB based connections, PCB based, point to point, 2.5D TSV based
configuration DIMM modules short reach SerDes interface silicon interposer

Available in market 2008 (DDR3), 2014 (DDR4) 2016 (Gen2) 2015 (HBM1), 2016 (HBM2)

Benefits - Mature infrastructure and low cost - High and scalable bandwidth - High and scalable bandwidth
- Low risk - Power efficiency - Power efficiency
- Familiar interface - PCB connectivity host-DRAM

Challenges - Speed no longer scalable - Relies on TSVs - Relies on TSVs
- Signal integrity - Not a JEDEC standard - Relies on interposer
- Customers unprepared - Cost - Cost
for integration. - PHY IP infrastructure - PHY IP infrastructure

TABLE VII. THE INCOMING HBM FOR GPUS COMPARED TO EXISTING VIDEO MEMORY (GDDR5) AND TYPICAL MAIN MEMORY ON CPUS (DDR3).

Memory technology DDR3 GDDR5 HBM1 HBM2
Adopted by Intel CPU motherboards Existing GPU boards AMD GPUs in 2015/16 Nvidia GPUs in 2017

Energy consumed 18-22 pJ / bit 6-7 pJ / bit

Cubes per GPU does not apply 4

Prefetching 8 / pin 2 / pin

Pins for data 8 / chip 32 / chip 2x128

Access granularity 8 bytes / chip 32 bytes / chip 64 bytes / layer

Bandwidth 2 GB/s / chip 28 GB/s / chip 32 GB/s / layer 64 GB/s / layer
(2 Gbps / pin) (7 Gbps / pin) (1 Gbps / pin) (2 Gbps / pin)

Chips or layers 2-16 chips / module 12 chips / card 4 layers / cube 4, 8 layers / cube

Broadwell CPU Maxwell Titan X AMD Fiji GPU Pascal models
Bandwidth 2 GB/s 28 GB/s 32 GB/s 64 GB/s
example x 8 chips x 12 chips x 4 layers x 4, 8 layers

x 4 channels = 336 GB/s x 4 cubes x 4 cubes
= 64 GB/s. (saturated here) = 512 GB/s = 1, 2 TB/s

(a) A Tesla P100 prototype. (b) The accelerator outlined sectionally.

Fig. 4. An example of the 3D integration of Pascal architecture: The Tesla P100 based on the GP100 GPU.

raw computational power (GFLOPS) use to be more generous.
That is the case for the Fast Multipole Method (FMM), a
numerical technique developed to speed up the calculation
of long-ranged forces in the gravitational n-body problem
[18]. Figure 5.a shows four implementations chronologically
developed from left (older) to right (newer), with successive
code optimizations trying to escape from the memory-bound
region. But in 2016, thanks to the enhancements produced by
accelerators with the advent of 3D memory, a performance gap
can be enjoyed without programming effort.

The roofline model also allows you to compare the ac-
celerators performance regardless of the application executed.
For example, KNC works well for memory-bound kernels, but
trails on compute-bound kernels. On the other side, Maxwell
is the worst in compute-bound kernels when double-precision
is required. The two KNLs behave better on compute-bound
kernels than on memory-bound ones. And Pascal is the leader
in both sides, offering a performance gap which is slightly
better on the memory-bound region (note that logarithmic
scaling makes the gap to appear shorter visually).

327327327327

(a) Accelerators. (b) Case study for the Fast Multipole Method (FMM).

Fig. 5. The roofline model for three representative accelerators of Intel and Nvidia and four popular scientific codes: the sparse matrix-vector multiply (SpMxV),
a stencil for a 8-points template, the 3D Fast Fourier Transform (FFT), and the Matrix Product on double precision numbers (DGEMM).

VIII. CONCLUDING REMARKS

When I started programming GPUs 15 years ago, I was
fascinated by extraordinary bandwidths, but soon I realized that
it was not enough. GPUs have always been two generations
ahead of CPUs in terms of DRAM (GDDR3 vs. DDR at
that time). And they can afford to dedicate more perimeter
to deploy wires (256 vs. 64 bits then). Speed and width
merge to combine an advantageous bandwidth (6-10x versus
CPUs). GPU boards have managed to keep the leadership in
technology and logistics, showing the right way to trailing
CPUs. The DDR saga and the multi-channel motherboards are
two good lessons that CPUs learnt well.

Now we have entered the heterogeneous computing era,
and CPUs and GPUs converge on the same chip. Every year
we get closer to the SoC (System on a Chip) approach. Stacked
DRAM has taught us that we can grow as modern cities do:
Through the third dimension. We have seen a thick GP100
GPU with four layers of DRAM, and CPUs can do the same
with caches, that now occupy more than 50% of the silicon die.
The ultimate goal would be a 3D chip composed of CPU+GPU
in the basement, controllers at the floor level, and multiple
memory layers on top. That is all: Computation, control and
storage. TSVs are fast, dense, reliable and, soon, cheap, so
we have the technology to live on a dreamt skycrapper with
plentiful and fast elevators.

The pessimistic side is heat. We are not improving dis-
sipation as much. That reminds me the story about batteries
in laptops: Our needs are way beyond what technology can
provide us. Memory consortiums have published specifications
for 8 layers of Stacked DRAM, few of them even more, but
still, we do not see those in commercial products. Because of
the heat. We are masters on how to spread heat on a surface
and remove it, but it has to be a visible layer. With four layers,
you still can stick heatsinks to two of them, but the story turns
challenging on 8, 12, 16 layers. TSVs are very dense and can
be built on good materials as far as dissipation is concerned.
That is something, but not enough to make our dream come
true. And at the end, what happened to the CPU once we
realized that it was too hot? We got tired of fighting, we learnt
to relax frequency, and gave up. More perseverance will be
required this time.

ACKNOWLEDGMENT

We thank Nvidia for hardware donation and travelling
support under GPU Education Center 2011-16, GPU Research
Center 2012-16 and CUDA Fellow 2012-16 Awards. Special
thanks to Lorena Barba for her contribution to the roofline
model applied to FMM. This work was partially funded by
Junta de Andalucia, Project of Excellence, PR12-TIC-1741.

REFERENCES

[1] General-Purpose Computation on GPUs. http://www.gpgpu.org.

[2] The Top 500 Supercomputers List. http://www.top500.org.

[3] The Green 500 Supercomputers List. http://www.green500.org.

[4] Intel. Intel Delivers New Architecture for Discovery with Intel Xeon Phi
Coprocessors. https://newsroom.intel.com/news-releases/intel-delivers\
-new-architecture-for-discovery-with-intel-xeon-phi-coprocessors

[5] J. Jeffers and J. Reinders. Intel Xeon Phi Coprocessor High-
Performance Programming. Morgan-Kaufmann, 2013.

[6] The Hybrid Memory Cube Consortium. www.hybridmemorycube.org.

[7] R. Fernando and M.J. Kilgard. The Cg Tutorial. The Definitive Guide
to Programmable Real-Time Graphics. Addison-Wesley, 2005.

[8] CUDA Zone. https://developer.nvidia.com/cuda-zone.

[9] J. Jeddeloh and B. Keeth. HMC New DRAM Architecture Increases
Density and Performance. VLSI Technology 2012, pages 87-88.

[10] D. Woo, N. Seong, D. Lewis and H. Lee. An Optimized 3D Stacked
Memory Architecture by Exploiting Excessive, High Density TSV Band-
width. The 2012 HPCA Conference, pages 1-12.

[11] k. Chen and S. Li. CACTI-3DD: Architecture-level modeling for 3D die
stacked DRAM main memory. DATE’12 conference, pages 33-38.

[12] G. Loh. 3D-stacked memory architectures for multi-core processors.
Proceedings ISCA’08, pages 453-464.

[13] R. Anigundi, H. Sun, J. Lu, K. Rose and T. Zhang. Architecture design
exploration of 3D integrated DRAM. Procs. ISQED’09, pages 86-90.

[14] Q. Zhu, B. Akin, H.E. Sumbul, F. Sadi, J.C. Hoe, L. Pileggi, F.
Franchetti. A 3D-Stacked Logic-in-Memory Accelerator for Application-
Specific Data Intensive Computing. Procs. IEEE 3DIC’13, pages 1-7.

[15] D. Woo, N. Seong and H. Lee. Heterogeneous die stacking of SRAM
row cache and 3D DRAM: An empirical design evaluation. Proceedings
MWSCAS’11, pages 1-4.

[16] DiRAM 3D Memory.. http://www.tezzaron.com/products/
diram4-3d-memory/.

[17] S. Williams, A. Waterman and D. Patterson. Roofline: an insightful
visual performance model for multicore architectures. Communications
of the ACM, vol. 52, no. 4, April, 2009.

[18] L.A. Barba and R. Yokota. How Will the Fast Multipole Method Fare
in the Exascale Era? SIAM News, Vol. 46, No. 6, 2013.

328328328328

