6 research outputs found

    Ageing bodies and the space they call home

    Full text link
    Within the population of âolder adultsâ there is more diversity than in any other user group. Yet, generalised assumptions still exist about their capabilities, needs, and technology use. This paper briefly outlines existing research into designing technology for (older) users and suggests that the built environment can, and should, serve as the canvas for new technologies that support the sociophysical interactions of ageing bodies. Innovations coming from the fields of tangible interaction and interactive architecture have the opportunity to consider the whole environment in which such bodies reside. Rather than devising specific technologies for older users, this paper suggests focusing on the incorporation of flexible, mainstream technologies, into adaptable, intelligent homes, which support the autonomy of older adults. The challenges of such an endeavour are discussed as the grounding for future research into sociophysical technology that supports older user

    LiftTiles: Constructive Building Blocks for Prototyping Room-scale Shape-changing Interfaces

    Full text link
    Large-scale shape-changing interfaces have great potential, but creating such systems requires substantial time, cost, space, and efforts, which hinders the research community to explore interactions beyond the scale of human hands. We introduce modular inflatable actuators as building blocks for prototyping room-scale shape-changing interfaces. Each actuator can change its height from 15cm to 150cm, actuated and controlled by air pressure. Each unit is low-cost (8 USD), lightweight (10 kg), compact (15 cm), and robust, making it well-suited for prototyping room-scale shape transformations. Moreover, our modular and reconfigurable design allows researchers and designers to quickly construct different geometries and to explore various applications. This paper contributes to the design and implementation of highly extendable inflatable actuators, and demonstrates a range of scenarios that can leverage this modular building block.Comment: TEI 202

    DESIGN AND EVALUATION OF A NONVERBAL COMMUNICATION PLATFORM BETWEEN ASSISTIVE ROBOTS AND THEIR USERS

    Get PDF
    Assistive robotics will become integral to the everyday lives of a human population that is increasingly mobile, older, urban-centric and networked. The overwhelming demands on healthcare delivery alone will compel the adoption of assistive robotics. How will we communicate with such robots, and how will they communicate with us? This research makes the case for a relatively \u27artificial\u27 mode of nonverbal human-robot communication that is non-disruptive, non-competitive, and non-invasive human-robot communication that we envision will be willingly invited into our private and working lives over time. This research proposes a non-verbal communication (NVC) platform be conveyed by familiar lights and sounds, and elaborated here are experiments with our NVC platform in a rehabilitation hospital. This NVC is embedded into the Assistive Robotic Table (ART), developed within our lab, that supports the well-being of an expanding population of older adults and those with limited mobility. The broader aim of this research is to afford people robot-assistants that exist and interact with them in the recesses, rather than in the foreground, of their intimate and social lives. With support from our larger research team, I designed and evaluated several alternative modes of nonverbal robot communication with the objective of establishing a nonverbal, human-robot communication loop that evolves with users and can be modified by users. The study was conducted with 10-13 clinicians -- doctors and occupational, physical, and speech therapists -- at a local rehabilitation hospital through three iterative design and evaluation phases and a final usability study session. For our test case at a rehabilitation hospital, medical staff iteratively refined our NVC platform, stated a willingness to use our platform, and declared NVC as a desirable research path. In addition, these clinicians provided the requirements for human-robot interaction (HRI) in clinical settings, suggesting great promise for our mode of human-robot communication for this and other applications and environments involving intimate HRI

    Proceedings of the CIB World Building Congress 2016: Volume I - Creating built environments of new opportunities

    Get PDF

    Architectural robotics, inevitably

    No full text
    corecore