
Clemson University
TigerPrints

All Dissertations Dissertations

8-2013

DESIGN AND EVALUATION OF A
NONVERBAL COMMUNICATION
PLATFORM BETWEEN ASSISTIVE ROBOTS
AND THEIR USERS
Anthony Threatt
Clemson University, tony.threatt@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Architecture Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Threatt, Anthony, "DESIGN AND EVALUATION OF A NONVERBAL COMMUNICATION PLATFORM BETWEEN
ASSISTIVE ROBOTS AND THEIR USERS" (2013). All Dissertations. 1150.
https://tigerprints.clemson.edu/all_dissertations/1150

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/773?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1150?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

DESIGN AND EVALUATION OF A NONVERBAL COMMUNICATION
PLATFORM BETWEEN ASSISTIVE ROBOTS AND THEIR USERS

A Dissertation
Presented to

the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy
Planning, Design, and the Built Environment

by
Anthony Lee Threatt

August 2013

Accepted by:
Dr. Keith Evan Green, Committee Chair

Dr. Ian D. Walker
Dr. Johnell Brooks
Dr. Michael Ellison

ABSTRACT

Assistive robotics will become integral to the everyday lives of a human

population that is increasingly mobile, older, urban-centric and networked. The

overwhelming demands on healthcare delivery alone will compel the adoption of

assistive robotics. How will we communicate with such robots, and how will they

communicate with us? This research makes the case for a relatively “artificial” mode

of nonverbal human-robot communication that is non-disruptive, non-competitive,

and non-invasive human-robot communication that we envision will be willingly

invited into our private and working lives over time. This research proposes a non-

verbal communication (NVC) platform be conveyed by familiar lights and sounds,

and elaborated here are experiments with our NVC platform in a rehabilitation

hospital. This NVC is embedded into the Assistive Robotic Table (ART), developed

within our lab, that supports the well-being of an expanding population of older adults

and those with limited mobility. The broader aim of this research is to afford people

robot-assistants that exist and interact with them in the recesses, rather than in the

foreground, of their intimate and social lives.

With support from our larger research team, I designed and evaluated several

alternative modes of nonverbal robot communication with the objective of

establishing a nonverbal, human-robot communication loop that evolves with users

and can be modified by users. The study was conducted with 10-13 clinicians --

doctors and occupational, physical, and speech therapists -- at a local rehabilitation

ii

hospital through three iterative design and evaluation phases and a final usability

study session. For our test case at a rehabilitation hospital, medical staff iteratively

refined our NVC platform, stated a willingness to use our platform, and declared

NVC as a desirable research path. In addition, these clinicians provided the

requirements for human-robot interaction (HRI) in clinical settings, suggesting great

promise for our mode of human-robot communication for this and other applications

and environments involving intimate HRI.

iii

DEDICATION

This dissertation is dedicated to my Mom and Dad, who encouraged me to

always do my best throughout 25 years of education and beyond; my sister, who is an

inspiration as her wit is only matched by her compassion; Grandma and Papa, who

have unconditionally provided me and my family with love, support, and shelter; my

extended family, who have always been inquisitive about my research; Melissa,

Lillian, and Remy - thank you for your love, dedication, support, and patience

throughout my graduate studies. I am eternally grateful for the sacrifices that you

have made so that I could accomplish my academic aspirations. I love you all.

iv

ACKNOWLEDGMENTS

I would first like to thank Dr. Keith Green for his guidance and support

throughout my graduate studies. His insights and willingness for exploratory research

have provided me the opportunity to accomplish my greatest academic achievement.

This work would not be possible without the efforts of my committee members. I

thank Dr. Ian Walker for his insights and encouragement, Dr. Johnell Brooks for her

willingness to teach, explore, participate, and laugh, and Dr. Michael Ellison for

always pushing me to prove him wrong.

This work would not have been made possible without Jessica Merino.

Jessica is more than a colleague and friend - she has become family. Thank you for

your efforts, your insights, your guidance, and your willingness to always push me

and this work to its greatest possible conclusion.

A big thank you to the Architectural Robotics lab including: Artemiy Zheltov,

Apoorva Kapadia, Joe Manganelli, Paul Yanik, Bryan Williman, and Ninad Pradhan.

I have appreciated learning from, working with, and commiserating with you all.

Finally, I would like to thank the members of the Roger C. Peace

Rehabilitation Hospital of the Greenville Health System -- Dr. Stan Healy, Dr. Kevin

Kopera, Jeremy McKee, Melissa Youseff, Kylie Sprogis, Dr. Matt Crisler, Jimmy

Bacon, Brad Looper, Yubin Xi and the doctors and physical, occupational, and speech

therapists -- who helped make this research possible. This research was supported by

the U.S. National Science Foundation under award IISSHB-116075.

v

TABLE OF CONTENTS

Page

..TITLE PAGE i

..ABSTRACT ii

..DEDICATION iv

..ACKNOWLEDGMENTS v

..LIST OF TABLES x

..LIST OF FIGURES xiii

CHAPTER

.................................. I. INTRODUCTION AND PROBLEM STATEMENT 1

 1.1 The motivation for nonverbal communication
.. in assistive robotics 1

 1.2 State-of-the-art assistive-robot communication
.. and the need for NVC 5

.. 1.2.1 Perceptual Primitives 5
 1.2.2 Nonverbal communication across

... bodies of knowledge 9
 1.3 Key components of our human-robot

.. communication loop 14
 1.3.1 “Emergent” gesture recognition

... via learning algorithm 14
 1.4 Our team’s early prototype of this kind

... of human-robot communication 18
.. 1.5 Project Objectives 19

.. 1.6 Hypothesis 19
.. 1.7 Research Questions 20

vi

Table of Contents (Continued)

Page

... II. CASE STUDY 21

.. 2.1 Introduction 21
... 2.2 The Assistive Robotic Table (ART) 23

.. 2.3 Post-stroke patients 27
 2.4 ART, post-stroke patients, and the

.. non-verbal communication platform 29
.. 2.5 Scenario 31

.. III. METHOD AND PROCEDURES 34

.. 3.1 Introduction 34
... 3.2 Participants 34

.. 3.3 Study Design 36
... 3.3.1 Independent Variables 36

... 3.3.2 Dependent Variables 38
.. 3.3.3 Setting 38
.. 3.4 Procedures 39
.. 3.4.1 Phase I 40
.. 3.4.2 Phase II 43
... 3.4.3 Phase III 44

.. 3.5 Statistical Analysis 45

... IV. RESULTS 47

.. 4.1 Results 47
.. 4.1.1 Phase I Results 47
... 4.1.2 Phase II Results 51
... 4.1.3 Phase III Results 56

.. V. DISCUSSION 62

... 5.1 Summary and discussion of findings 62
.. 5.2 General implications of findings 62

... 5.3 General limitations of study 63
.................... 5.4 Study discussion organized by pre-study hypotheses 64

vii

Table of Contents (Continued)

Page

.. 5.4.1 Phase I Discussion 66
... 5.4.2 Phase II Discussion 69
.. 5.4.3 Phase III Discussion 70

... 5.5 Future Directions 75

.. VI. FINAL USABILITY STUDY 78

.. 6.1 Introduction 78
... 6.2 Participants 79

.. 6.3 Study Design 79
... 6.3.1 Independent Variables 79

... 6.3.2 Dependent Variables 79
.. 6.4 Procedure 80

.. 6.5 Results 84
.. 6.6 Discussion 91

... 6.6.1 General implications of findings 91
.. 6.6.2 General limitations of study 92

... 6.6.3 Usability Study 92
... 6.7 Future Directions 96

..APPENDICES 99

.. A: Institutional review board approval letter 100
.. B: Informational letter 102

.......................... C: Pre-study sound and light sequences with lab members 103
.................................... D: Pre-study sample survey page with lab members 107

.. E: Independent Variables 108
... F: Phase I: Script 110

... G: Phase I: Data Template 112
... H: Phase I: Light Panel 115

... I: Phase I: Distributed Lights 116
.. J: Phase I: Lighting Data Collection Sheet 117

... K: Phase I: Light Heatmap 118
... L: Phase II: Script 119

... M: Phase II: Sample Data Collection Template 121

viii

Table of Contents (Continued)

Page

................................... N: Phase II: Final sound and light sequence pairings 124
... O: Phase III: Script 125

... P: Phase III: Sample Data Collection Template 127
... Q: NVC communication actions 130

............. R: ART communication action themes frequency content analysis 131

............. S: ART communication action themes frequency content analysis 133
... T: Patient personas 136

... U: Final usability testing: Script 137
.................................... V: Final usability testing: Data Collection Template 141

.............................. W: Clinician preferences for gesture command interface 145
 X: Clinician subjective scale ratings for the overall

.................................. NVC platform and each of the gesture commands 146
.......................... Y: Clinician estimation of time to learn the NVC platform 147

.. Z: NVC electrical diagram 148
... AA: Steel manufacturer contact information 149

.. BB: Phase II Code: Arduino - Sound 150
.. CC: Phase II Code: Processing - Sound 157

.. DD: Phase II Code: Arduino - Light 198
.. EE: Phase II Code: Processing - Light 235

... FF: Phase III Code: Arduino 240
... GG: Phase III Code: Processing 249

.. HH: Usability Study Code: Processing 257
.. II: Usability Study Code: Arduino 270

...REFERENCES 287

ix

LIST OF TABLES

Table Page

 3.1 Presented are the independent variables tested during
 Phase I. Each sound had two sounds associated
 with it, were tested audibly, and the clinicians selected
 their preference between the two. The clinicians
 chose between the lighting options and used the
 chosen option to place the options on ART.. 36

 3.2 Presented are the independent variables tested during
 Phase II. Each sound and lighting sequence tested
 had two options, were either button or gesture actuated,
 and the clinicians chose which sound or lighting
 sequence best represented each NVC action.. 37

 3.3 Presented are the independent variables tested during
 Phase III. Without prior training, the clinicians
 listened to or viewed the NVC action, chose what
 action they thought it was, and, if necessary, stated
 whether the sound, lighting sequence, or both together
 best demonstrated the presented action.. 38

 4.1 The sound preferences of clinicians during phase I of
 the study. All sounds were retested during phase II
 except Bend out and Bend in because clinicians felt
 that these two actions would distract from therapy sessions. 48

 4.2 Presented are the clinicians’ sound and light sequence
 preferences during phase II and tested during phase III.
 The carrots show specific actions that had a 58%
 majority and 33% or less than second preference.
 The intention of the researchers was to test a
 complete platform. ... 54

x

List of Tables (Continued)

Table Page

 4.3 Clinician responses during phase III for each of the
 NVC actions. Without training, clinicians chose
 the action presented, described what mode best
 described the action, and after an explanation of
 the action was given were asked if given training
 if they could understand the action. ... 57

 4.4 This table shows an overall categorical frequency
 analysis of the NVC actions -- explanation of clinician
 choice and thoughts after given the correct action............................... 58

 4.5 This table shows the categorical frequency analysis
 for each of the NVC actions -- clinician choice
 explanation and clinician thoughts after given the
 correct action.. 61

 5.1 This figure shows the variability of clinician acceptance
 for the NVC platform throughout the research.
 One can see that acceptance declined during phase II
 but that over time (the final usability study -- Chapter 6)
 acceptance increased. The System Usability Study
 scores show that the researched NVC requires
 further testing to be used in practice. ... 66

 6.1 An example of the subjective preference rating scales
 used to evaluate the NVC platform.. 84

 6.2 Presented are the clinician preferences for each of the
 gesture commands. Compared with the other two
 gesture commands, the clinicians were reticent about
 accepting the Therapy command. They cited the
 desire to use conventional rehabilitation practices. 86

 6.3 Presented are the subjective ratings for the overall
 NVC platform and each of the gesture commands.
 Similar to the results of Table 6.2, the Therapy
 command scored the lowest for the Need rating.................................. 88

xi

List of Tables (Continued)

Table Page

 6.4 Presented are the clinicians’ estimation of time to learn
 the presented NVC platform. It is disconcerting
 that the current platform may require up to two
 weeks to learn. Given the time sensitive nature
 of healthcare it would be necessary to learn the
 platform in under one hour... 90

xii

LIST OF FIGURES

Figure Page

 1.1 In the continuum of assistive robotics, there is a big
 gap between humanoid robots (as envisioned by

.. many) and the likes of the Roomba 2

 1.2 The proposed Human-Robot Communication Between
 ART, Post-Stroke Patients, and their Clinicians
 whereby human to human interaction is not
 interrupted by low-level communication between
 human and machine. .. 9

 1.3 Stills from our video, showing our early-pilot
 development of ART and our NVC loop.. 18

 2.1 Presented are the features that comprise the Assistive
 Robotic Table (ART). The highlighted features
 are the result of a study defining ART.. 23

 2.2 Final therapy surface prototype with 12 pneumatic
 muscles, spacer fabric, and cotton batting. The
 therapy surface was developed through a parallel
 iterative design and evaluation process along with ART. 25

 2.3 ART, the therapy surface, and rehabilitation: This figure
 show the intended interaction with ART, the therapy
 surface, patient, and clinician in the rehabilitation setting................... 27

 3.1 Home+ lab at Roger C. Peace Rehabilitation Hospital
 of the Greenville Health System. ... 39

 3.2 Presented is the NVC platform evaluation set-up for
 Phase II and III. Push buttons and a Microsoft
 Kinect® were used to actuate each NVC action
 and sounds were played through an adjacent computer....................... 42

xiii

List of Figures (Continued)

Figures Page

 4.1 Presented in a heat map are the clinician results of lighting
 device selection and arrangement during phase I.
 The larger squares are LED screens and the dots
 and lines are individual LEDs.. 50

 6.1 Presented is the proposed NVC gesture command
 interface. Each gesture must be activated and

................. begun in a ready position before beginning the command. 80

 6.2 Presented is the NVC platform evaluation set-up for
 the Usability Test. When the Down button was
 pressed the first time, the Something in the way
 action activated. ... 81

 6.3 Presented here are the NVC platform components.
 The LEDs make up the lighting sequences and the
 Microsoft Kinect® activates the gesture command
 interface. (Not pictured are the speakers.) .. 81

 6.4 Presented are the components that comprise the
 NVC platform. ... 83

 6.5 Presented are the six proposed ART positions. It is
 intended that each of these positions would address
 a particular ART required function. ... 85

xiv

CHAPTER ONE

INTRODUCTION AND PROBLEM STATEMENT

1.1 The motivation for nonverbal communication in assistive robotics

Inevitably, assistive robotics will become ubiquitous in the everyday lives of a

human population that is increasingly mobile, older, urban-centric, and networked.

The overwhelming demands on healthcare delivery alone will compel the adoption of

assistive robotics. However, for assistive robotics, there exists a vast gap between

humanoid robots (anthropomorphic, increasingly multi-functional, and intelligent)

and the Roomba®, the “killer app” of robotics (formally abstract, single-purpose, and

exhibiting lower-intelligence). Filling the gap between humanoids and the Roomba®,

is the emergence of a class of assistive robots, “Architectural Robotics,” cultivated by

our lab in recent years (see Figure 1.1) (Green, 2008; Green, Gugerty, Walker, &

Witte., 2006; 2005a; 2005, 2005b; Green, Walker, Brooks, Threatt, & Merino, 2011;

Gross & Green, 2012). “Architectural Robotics” is a novel classification of cyber-

physical artifacts of the built environment, at the scale of furniture or larger, that

adapts and reconfigures to support the co-habitation of their users (Gross & Green,

2012). While offering far greater utility than the function-driven Roomba,

Architectural-Robotic artifacts do not strive for human appearance or behavior as do

humanoid robots, nor are they overtly imitative of other living things.

1

Particularly for assistive applications, Architectural-Robotics (and similar

robots that might also fill this gap), have these virtues: 1.) they don’t suffer the

likelihood of users perceiving them as human and expecting them to act human; 2.)

they don’t suffer the possibility of falling into the “uncanny valley” (Mori, 1970); 3.)

they don’t compete with humans for attention; 4.) they don’t participate in a “master-

slave relationship” of human and humanoid; 5.) they aren’t perceived as invading

human privacy; and, 6.) they are not likely, operating on a lower cognitive level, to

disrupt human-human communication. It is the latter of these virtues that frames the

key objective of this research to design and evaluate an appropriate and effective

nonverbal communication (NVC) platform for robots to communicate with people.

This mode of communication, like Architectural-Robotics, dignifies what it is to be

human by not competing with us, nor imposing on our social-emotional-cognitive

constitution.

Figure 1.1: In the continuum of assistive robotics, there is a big gap between humanoid robots (as
envisioned by many) and the likes of the Roomba. Our group is working in this vast in-between. How

will we communicate with such robots, and how will they communicate with us?

2

It should be made clear that Architectural-Robotic artifacts (and other assistive

robot platforms that may occupy the gap) do not preclude nor supplant their future co-

existence with humanoid, pet, or single-function assistive robots. Tokens of all these

robot classifications can comprise a future, expanded ecosystem of mutually-

supportive, communicative, living, and artificial beings. Likewise, the NVC is

envisioned as a promising candidate for employment in all classifications of robots,

where it can overcome various technical challenges in robotics research and also be

responsive to natural language and diverse human populations.

It is befitting that, for a computational artifact situated in the vast gap between

Roomba® and humanoid, the mode of its human-robot communication should be

more artificial than natural (i.e., human-like), to avoid unnecessary confusion and

distraction in the lives of the computational artifact’s users. The NVC elaborated

herein is conveyed by the familiar means of audio-visual communication: low-cost

lighting (colors and patterns) and sounds. This NVC is based on an understanding of

cognitive, perceptual processes of non-verbal communication in humans and affords a

communicative dialogue (i.e., acknowledging requests or providing requested

feedback) that conveys the purpose of accomplishing tasks. Our employment of

learning algorithms offers both user and robot the capacity to interrupt, query, and to

correct the dialogue. This NVC conveys in the robot some semblance of emotional

information (e.g., urgency, respect, or frustration) at a level that is not disconcerting

and in a way the user might misconstrue as human (i.e. not as in Picard’s sense of

3

“Affective Computing” [1995] that has inspired human-robot interaction (HRI)

investigations employing humanoids that “match their mood” to human users,

[Gonsior, Sosnowski, Buß, Wollherr & Kuhnlenz 2012]).

In a series of experiments, our larger research team designed and evaluated

several alternative modes of nonverbal robot communication with the objective of

establishing a nonverbal, human-robot communication loop that evolves with users

and can be modified by users. This research is partly informed by American Sign

Language (ASL) and particularly, its methods (Quenqua, 2012) for adding new

vocabulary to what is the most-established form of NVC. We employed mixed

methods that solicited user input and allowed the NVC to evolve (Quenqua, 2012).

A significant part of the research involved integrating our NVC onto a specific

Architectural-Robotic artifact, our own Assistive Robotic Table (ART) to evaluate

human-robot communication up-close, “in-the-wild,” at the Roger C. Peace

Rehabilitation Hospital of the Greenville Health System (GHS) (described in Chapter

2). For our NVC platform, as for American Sign Language, it must be “tested and

refined in everyday [exchanges to be] accepted quickly” (Quenqua, 2012, p. D1).

ART supports post-stroke patient therapy and, more broadly, the well-being of an

expanding population of older adults and those with limited mobility. The broader

aim of this research is to afford people robot-assistants that exist and interact with

them in the recesses, rather than in the foreground of their intimate and social lives.

For many of us, this is the kind of non-disruptive, non-competitive, and non-invasive

4

human-robot communication that we envision will be willingly invited into our

private and working lives over time.

1.2 State-of-the-art assistive-robot communication and the need for NVC

This research is dedicated to forming a mode of nonverbal communication

that an assistive robot “speaks” in its interaction with people. In the mid-20th

century, Norbert Weiner reasoned that “it is quite possible for a person to talk to a

machine, a machine to a person, and a machine to a machine” (Weiner, 1954, p. 76).

What is the language of a robot, if not natural, spoken, human language? Briefly,

what follows are the foundations for answering this question towards realizing the

ambition of developing a nonverbal communication platform for assistive robotics.

1.2.1 Perceptual Primitives

For this research, the simple, nonverbal unit comprising the NVC is viewed as

a “perceptual primitive.” Perceptual primitives are “Gestalt-like primitive biases

deriving from the architecture and functioning of the perceptual system” (Gervain &

Mehler, 2007, p. 1). One way of understanding “perceptual primitive” is to

distinguish it from the two, perhaps more familiar theories of language acquisition:

the genetically-based, symbolic rule theory (identified with Chomsky); and the

statistical learning theory, in which language is acquired piecemeal as evidence

presents itself (identified with Elman and Tomasello) (Gervain & Mehler, 2007).

In the computing domain, the concept of “primitives” has been employed in

5

vision research (Huang, Huang, Tan, & Tao, 2009) and in computer graphics

(McNamara, 2009; Mezger, Winfried, & Giese, 2005). In these instances, primitives

are used as a conceptual vehicle for capturing real world phenomena, as in evaluating

the fidelity of simulated imagery relative to their real sources (McNamara, 2009),

capturing the trajectories of more complex human body movements (e.g., “movement

primitives” in karate) (Mezger et al., 2005), or within HRI research, facial recognition

(Bartlett et al., 2005, 2006; Susskind, Hershey, & Movellan, 2004). Common to all

these uses of perceptual primitives is a machine-centric perspective. That is, the

concept of perceptual primitives is employed as a vehicle that captures the “outside”

world of people, things and their physical surroundings. In this research we invert

this relationship; the concept of perceptual primitives is employed as a vehicle for the

robot to speak to us. The reasoning is if machines operate on the level of perceptual

primitives, then it seems reasonable to employ the same kind of “robot-mindedness”

to form the “language” a robot “speaks” to users. This kind of human-robot

communication would establish two bandwidths of communication: 1.) a lower-

bandwidth of sounds and lights for human-machine communication and 2.) a higher

bandwidth of natural language for human-human communication. The lower

bandwidth communication remains in the recesses of our lives, maintaining high-

bandwidth human-human communication for human beings, conducting their private

and social lives.

As noted here, perceptual primitives have received extensive attention in

6

vision-related computer research; however, it is perceptual primitives as considered

by neuro-cognitive research in its focus on language acquisition that is the scientific

motivation for this investigation. In the first of a series of experiments conducted by

Dehaene-Lambertz (Gervain & Mehler, 2007), newborn infants were presented with

blocks representing two artificial grammars of three-syllable “sentences”. The first of

these artificial grammars had an ABB structure, where one syllable was immediately

repeated (e.g. “mubaba”, “tofefe”, “pishosho”, etc.); the second of these artificial

grammars exhibited an ABC structure – without repetition (e.g., “mubafe”, “tofesho”,

“pishoge”, etc.). As measured by near infrared spectroscopy, the infants’ brain

activities in areas responsible for structural representation-building and integration

show that the newborns immediately detected adjacent repetitions (i.e., ABB as

distinct from ABC) as perceptual primitives, and that these perceptual primitives are

later integrated by the infants into higher level, more general structural

representations (Gervain & Mehler, 2007). As reported by Gervain and Mehler

(2007), “these findings argue for the existence of auditory/linguistic perceptual

primitives, such as representationally adjacent…repetitions. These primitive, Gestalt-

like configurations are automatically detected by the auditory system; and in later

processing, they get recruited as building blocks of higher-level representations” (p.

1). Forming a bridge between Weiner’s ponderings in the middle of the last century

and neuro-cognitive results like these, we recognize that human beings are genetically

prepared to process nonverbal perceptual primitives and, indeed, begin doing so at

7

birth. Curiously, it is in the movies that we discover the potential and delight of

nonverbal communication by intelligent machines – that of R2D2, WALL-E, and the

alien machine of Close Encounters of the Third Kind – that “speak” to us with

combinations of lights and sounds. There is, however, a lack of understanding of how

such nonverbal utterances could be employed in assistive robot communication (Read

& Belpaeme, 2010). The intent of this research is to investigate how perceptual

primitives generated by lights and sounds form a platform for NVC, particularly as it

is embedded in our nonverbal, robot communication loop (Figure 1.2).

The iterative development of the NVC included multiple combinations and

patterns of light-and-sound. The NVC is a human-robot communication loop situated

in a real-world context--the Roger C. Peace Rehabilitation Hospital, inhabited by

post-stroke patients, family members, and clinicians. The loop is comprised of: 1.)

our developing NVC, 2.) our emergent (human) gesture recognition (as the NVC

“spoken” by our human participants), and 3.) ART, an architectural robotic artifact of

our design. In short in the real-world context of the Roger C. Peace Rehabilitation

Hospital, post-stroke patients and their clinicians will communicate with the robot

through gestures, which the robot learns (e.g., via the Growing Neural Gas (GNG)

algorithm employed in our lab). In turn, the NVC of lights and sounds is “uttered” by

the robot. If the human recipient should respond adversely to the qualities of the

robot’s utterance, the human recipient can gesture “in annoyance” to the robot, which

will (through a learning algorithm) alter its “speech” to satisfy the human conversant,

8

consequently rewarded by gesture or (haptic) “petting” of the robot – as do two

people in an analogous human-human exchange. In this way, our human-robot

communication constitutes a well-balanced, bi-directional mode of nonverbal

communication. Our research team assumes that the user identified in our scenario

was already conversant with our NVC prior to suffering a stroke; that the architectural

robotic furniture (here “ART”) was (as we envisioned) integral to the life of the

healthy user at home. This implies that the user was literate in our NVC after

suffering a stroke and is now making great use of the functionality of this

technologically advanced piece of furniture that “grows” with its “co-inhabitant” –

the user.

Figure 1.2: The proposed Human-Robot Communication Between ART, Post-Stroke Patients, and their
Clinicians whereby human to human interaction is not interrupted by low-level communication

between human and machine.

1.2.2 Nonverbal communication across bodies of knowledge

Nonverbal communication (NVC) is defined as communication outside formal

language as used in the human acts of speaking and writing (Johansson, 1973).

Ninety-three percent of human-human communication is said to be nonverbal

communication (Johansson, 1973), not only comprised largely of body language and

9

voice tonality but also, for instance, the visual characteristics of clothing worn by

those engaged in social interaction. What is key, drawing from this body of literature,

is the recognition that nonverbal communication is a rich, effective, and expedient

form of communication; that more complex, rich “utterances” are comprised of

simple units of communication (kinemes and morphemes being the minimum units);

and that simple units of communication can be understood by themselves, without

adding greater complexity, particularly if they are presented in a familiar social and/or

environmental situation (i.e., context).

A foundational study of gestures and other forms of NVC for computational

artifacts is found in the work of Justine Cassell (Cassell, 1998; Cassell et al., 1999)

and contextualized by Rossini (2012) who defines nonverbal cues in robots as

“Embodied Conversational Agents” (Cassell, 1998; Cassell et al., 1999, p. 520).

Many investigations in HRI and many inspired by Cassell have explored the

implementation of natural communication – the spoken word, often accompanied by

gestures and other kinds of cues imitating human ones (Breazeal, et al., 2008; Cassell,

1998; Kirchner & Alempijevic, 2012; Lallée et al., 2010; Rossini, 2012). However,

regarding human-machine communication, people tend to react adversely to robots

issuing commands to them, or dictating the terms of their interaction with spoken

language (Dautenhahn, 2007; Mutlu, Bartneck, Ham, Evers, & Kanda, 2011; Syrdal,

Dautenhahn, Koay, & Walters, 2009). Instead, people are relatively more receptive to

10

non-verbal communication emanating from robots (Dautenhahn, 2007; Komatsu,

2006; Syrdal et al., 2009).

Whatever side of the argument one takes, nonverbal communication has

received much more attention from investigators working with humanoid or

zoomorphic robots than with investigators employing robots that are not humanoid or

zoomorphic. What is suggested by these wide-ranging investigations is that people

can easily interpret the meaning of nonverbal utterances. (See Rossini (2012) and

Read and Belpaeme (2010) for overviews of this literature.) People who are ill or in

pain tend to reduce their level of verbal communication, making more use of

nonverbal communication (“Pain in Non-verbal” 2011). The nonverbal

communication of American Sign Language is reportedly more effective “than

spoken English because of the linearity of spoken language” (Quenqua, 2012). These

findings and observations further underscore the need for and desirability of a novel

NVC-approach like the NVC platform presented in this study is to human-robot

interaction.

Nonverbal communication involving non-humanoid, non-zoomorphic robots

has been the focus of few investigations (Komatsu, 2006; Matsumoto, Fujii, Goan, &

Okada, 2005; Okada, Sakamoto, & Suzuki, 2000; Yamada & Komatsu, 2007). The

closest research ambition is that of Yamada and Komatsu (2007), who developed and

evaluated a “minimalist” looking, non-anthropomorphic, LEGO MindStorms robot

communicating by audio “beeps.” Yamada and Komatsu also recognize the

11

challenges of the “uncanny valley” for anthropomorphic robots, as well as the rich

and expedient characteristics of NVC. They cite Matsumoto’s important concept of

“minimal design” for robots (Matsumoto et al., 2005), which calls for agents having

minimalist (non-anthropomorphized) appearance and communicating to users via

minimal (low-information) means, as realized in their interactive robot,

“Muu” (Okada et al., 2000). Inspired by Matsumoto’s concept, Yamada and Komatsu

developed audio primitives by means of simple beeps of different durations and

deflections. They found that sounds with decreasing intonation of shorter durations

were perceived as expressing “agreement”; that sounds with increasing intonation

regardless of intonation were perceived as communicating “disagreement”; and that

flat sounds with longer durations were perceived as communicating “neutrality” or

“hesitancy” (Komatsu, 2006). These beeps, mapped to the three robot “utterances,”

served as intuitive, effective perceptual primitives for the MindStorms robot in

communication to users. Frequency (number of beeps), duration (in ms), and pitch

(in Hz) over the duration were the measurements used for the NVC vocabulary. The

NVC developed for the MindStorms robot was then compared to more natural

communication, expressing the same three states, comprised of tail-wags, barks and

blinking as presented by AIBO, the consumer-popular robotic dog. Eighteen students

evaluated the robot communication by questionnaire (a six-point Likert scale;

ANOVA) with respect to accuracy in mapping “utterance” to significance and with

respect to the impressions of the robots on the participants. Example questions

12

included the following:

Q1: Did you understand the robot’s mind?
Q2: Was the expressed information easily understandable?
Q3: Did you enjoy the way that the robot expressed its information?
Q4: Do you think that this robot can be part of our daily life?
Q5: Do you think that this robot has emotions?
Q6: Do you think that you can communicate effectively with this robot?

The experimental results suggested that communication by the MindStorms

robot was more effective for and better received by participants than that of AIBO. In

other words, the robot of “minimalist” appearance/communication outperformed the

“familiar pet” robot (Komatsu, 2006). While Yamada and Komatsu’s results are

striking, quite obviously, they speak for a robot that 1.) exhibits “minimalist”

appearance and communication (just three “utterances,” and all of these limited to

auditory primitives); and that 2.) is not intended to assist people. In Yamada and

Komatsu’s experiments, as well as in a similar one by Read and Belpaeme (2010), the

human-robot communication is merely uni-directional: participants do not

communicate with the robots but instead assume the role of the recipients of the

robot’s utterances. As Cassell points out, “there has been little research” situated “in

the wild” and “focused on bi-directional human-robot communication employing

models of nonverbal communications as both input and output” (Cassell et al., 1999,

p. 521).

13

1.3 Key components of our human-robot communication loop

In this research, an NVC was developed and tested through an iterative,

human-centered design and evaluation process. In addition, as reported in Klingspor,

Demirs, and Kaiser (1997) we recognize that designing interfaces for Human-Robot

Communication demands that 1.) the interface allow users to intuitively instruct the

robot and 2.) feedback “must be provided to the user so that she can immediately

understand what’s happening on the robot’s side” (p. 721). Towards realizing the

ambition of an NVC integral to a human-robot communication loop, we employed

ART, our well-suited Architectural Robotics hardware/software platform, as well as a

novel means of communicating with the robot through a learning algorithm consonant

with the approach and motivations presented here. Consequently, the missing piece

in our system is the focus of this research: the development of an NVC “spoken” by

the robot. To understand our human-robot communication system, we introduce in

the following section one aspect that will support the development of the NVC

platform.

1.3.1 “Emergent” gesture recognition via learning algorithm

Recognition of human gesture is integral to the development of intuitive

human-robot interfaces, particularly those for assistive robotics facilitating

rehabilitation and aging in place. With hand and arm gesticulation accounting for

some 90% of gestured communication (Mitra & Acharva, 2007) research within the

lab has been focused at this scale. The problem of gesture recognition typically

14

involves a common set of issues to be addressed including sensing, data

representation, pattern recognition, and machine learning (Yanik et al., 2012). A

review of methods in each of these spaces has allowed us to select a set of approaches

that overcomes various limitations and affords many desirable outcomes.

Typical sensing paradigms include wearable instruments (Jin et al., 2011;

Lamentec & Bajcsy, 2004; Zhou et al., 2009), IR proximity sensors (Cheng, Chen,

Razdan, & Buller, 2011; Ryu et al., 2010; Yanik et al., 2011), and, most often,

cameras (Chen, Georganas, & Petriu, 2008; Kuno, Murashima, Shimada, & Shirai,

2000; Yun & Peng, 2009). These sensing strategies may suffer from practical

difficulties, inadequately sparse data, or user discomfort due to compromised privacy

(Beach et al., 2009; Demeris, Hensel, Skubic, & Rantz, 2008). To overcome these

limitations, our work utilizes the depth-sensing capability of an RGB-D camera

(Microsoft, 2012) that preserves user privacy while providing a sufficiently rich data

set.

Data representations of gesture may be broadly categorized as parametric

(dependent on the kinematics of the actor) versus holistic (based on sensor data

statistics) (BenAbdelkader, Cutler, & Davis, 2004). Motion History Images (MHI)

(Bobick, 1999; Karahoca & Nurullahoglu, 2008), histograms of gradients (HOGs)

(Dalal, Triggs, Rhone-Alps, & Montbonnot, 2005), and self-similarity matrices

(Cutler & Davis, 2002; Junejo, Dexter, Laptev, & Perez, 2008; Yanik et al., 2011)

have been used to generate robust discriminants. It has also been shown that

15

observers may recognize motion-by-motion trajectories (accelerations) at the actor’s

joints (Johansson, 1973; Rao, Yilmaz, & Shah, 2002). Use of the RGB-D camera’s

depth sensing capability allows us to represent data according to its 3D maxima of

acceleration.

Numerous methods have been applied to the task of gesture classification.

These commonly include Hidden Markov Models (Moni & Ali, 2009; Wilson &

Bobick, 2000; Yamato, Ohya, & Ishii, 1992), neural network approaches (Kleinsmith,

2004; Touzet, 1997; Varkonyi-Koczy & Tusor, 2011), and clustering (Prasad &

Nandi, 2009; Schlomer, Poppinga, Henze, & Boll, 2008). Our approach utilizes the

Growing Neural Gas (GNG) algorithm (Angelopoulou, Psarrou, Garcia-Rodriguez, &

Gupta, 2010; Fritzke, 1995; Stergiopoulou & Papamarkos, 2006) in order to effect

clustering of gesture representations; to act as an associative memory for robotic

response (Touzet, 1997; Yanik et al., 2012); and to track a moving distribution of

input patterns (Holmstrom, 2002).

Machine learning allows the robotic agent to develop an associative mapping

between sensory input and kinematic response. This often requires offline training

with large data sets or extensive reinforcement learning trials. A primary goal of the

research is to allow learning with a novice human “teacher”. Thus, the endurance and

patience of the user are of primary concern. We employ a form of reinforcement

learning (Sutton & Barto, 1998; Watkins & Dayan, 1992) which combines a

searchable feature map (Touzet, 1997) with a human-generated reward signal

16

(Blumberg et al., 2002; Kaplan, Oudeyer, Kubinyi, & Miklosi, 2002; Kuno et al.,

2000; Thomaz & Breazeal, 2008) to reduce training time to levels tolerable by a

human user.

Collectively, the methodology we employ provides an easily adoptable

paradigm for inexperienced users, preserves privacy, and expedites learning in real

time. Particularly novel is the robot’s capacity to learn to recognize the gesture of a

human partner; recognizing that gesture of human partners can vary due to perceived

angle of reception, precise form of expression, and (most importantly) the varying

capacity of individual users to perform the gesture given the current (and changing)

status of their health. This combination of qualities is not only novel but also

essential to an adaptive human-machine interface. In like ways, both directions of

our proposed human-robot communication loop “take into account that gestures (as

signs) are something ‘alive’, depending on cultural and human aspects, time and

context” (Malizia & Bellucci, 2012, p. 37).

While this is not the focus of the research presented, the NVC platform

requires this research to work effectively and efficiently. Within the larger lab,

research is being conducted on the Growing Neural Gas algorithm and its relationship

to ART and the NVC platform. Currently, the gesture interface is hardwired into the

NVC platform as a proof of concept thus, allowing the user to interface with ART and

the NVC platform more effectively.

17

1.4 Our team’s early prototype of this kind of human-robot communication

Figure 1.3: Stills from our video, showing our early-pilot development of ART and our NVC loop. The
assistive robotic table is conversing to Jessica with lights (numbers and durations of blinks; color), and

Jessica is reinforcing the table’s actions by “petting” it.

An early sketch (in hardware and software) of this human-robot

communication system was generated in a graduate-level course. As can be seen in

figure 4 of the video clip (http://youtu.be/Iui8cwEyApY) and as referenced in

conference proceedings (Merino, Threatt, Walker, & Green, 2012; Threatt et al.,

2012), the early working prototype of ART delivers eye glasses to the patient; the

patient then retrieves the glasses; lighting conveys the systems status throughout the

activity; and the patient reinforces the robot’s “good” behavior with a haptic “pet”;

which causes the robot to respond with “your welcome” in evocative lighting. While

this is a rather crude prototype exhibiting simplified NVC and human gesture

recognition (with learning), it is nevertheless a compelling proof-of-concept of the

research vision.

18

1.5 Project Objectives

1. To iteratively design and evaluate a mode of nonverbal communication for

assistive robotics.

2. To develop a mode of NVC that is understood by user(s) and robot.

3. To develop a mode of NVC that can be extended and customized over time

as user needs change.

4. To develop a means to program the robot for new or modified NVC

utterances.

5. To ponder the larger question of how much human intelligence is required

of an assistive robot?

1.6 Hypothesis

H1: An assistive robot that conveys nonverbal communication can be readily

understood by users, with the long term goal of those who are medically

at-risk, such as post-stroke patients.

H2: Additionally, an assistive robot communicating in NVC does not need to

be humanoid or otherwise explicitly life-like in appearance to be readily

understood by users.

H3: Finally, our entirely nonverbal human-robot communication will be

perceived as a desirable, low-invasive, and expedient communication

mode for HRI, particularly in intimate human-robot interactions.

19

1.7 Research Questions

I. In an increasingly digital society, how might a non-verbal

communication (NVC) platform be embedded in the Assistive

Robotic Table to provide clinicians opportunities to best

understand and interact with a patient’s recovery?

II. Will clinicians prefer an Assistive Robotic Table with an NVC

platform over current stroke patient therapeutic practices?

III. What are the requirements for an NVC platform used in the

rehabilitation of post-stroke patients?

IV. How might an NVC platform continue to support life-long

rehabilitation?

20

CHAPTER TWO

CASE STUDY

2.1 Introduction

Medical facilities and healthcare personnel are overextended and costly. With

the graying of the population, there is a smaller segment of the population to both

care for, and pay for the well-being of, older and clinical populations (Houser, Fox-

Grage, & Gibson, 2006). Data suggest that most people want service robots to

assume an assistive role that compensates for their reduced capacities, more so than

having robots physically resemble humans or “possess” virtues best ascribed to

humans such as creative thinking, judgment, or friendship (Fong, Nourbakhsh, &

Dautenhahn, 2003; Wada & Shibata, 2007). More broadly, previous robotics research

for health and eldercare applications have tended to focus on specialized devices

aimed at dedicated tasks such as rehabilitation robotics (Leifer, 1981; Tapus, Mataric,

& Scassellati, 2007), robot-assisted surgery (Rosen & Hannaford, 2006; "Special

Issue on Robots in Surgery," 1995), prosthetics (Dellon & Matsuoka, 2007; Leifer,

1981), or to replace humans engaged in healthcare-related activity (Dario,

Guglielmelli, Allotta, & Carrozza, 1996; Forlizzi, 2005; Forlizzi, DiSalvo, &

Gemperle, 2004; Pineau, Montemerlo, Pollack, Roy, & Thrun, 2002; Roy et al., 2000)

This chapter focuses on the development of the Assistive Robotic Table

(ART), a new over-the-bed-table for aging in place. We envision ART as integral to

21

the domestic life of its user(s), even as they transition from home to clinic and,

hopefully, back home again. Users that have ART as part of their domestic landscape

might rehabilitate faster while under the care of healthcare professionals in a

rehabilitation hospital that also makes ART part of its clinical setting; ART is meant

to be highly attractive and functional both at home and in clinic.

The design of ART was a challenge for our larger design team. To understand

the people and systems with which ART interacts requires a “creative” approach to

research, involving both creative design and engineering innovation concentrating

“on functionality, aesthetics, and manufacturability simultaneously” ("Review of

Hartfield, B. and Winograd, T. Bringing Design to Software," 1996, p. 165). Our

larger lab has elaborated these design and engineering principles (Green, 2008) and,

more popularly, these principles are employed by the designers of IDEO (2003).

Physically, ART is an over-the-bed table (OBT) universally found in hospital

patient rooms with a novel, yet optional, plug-in upper extremity rehabilitation device

used in therapy. ART comprises a smart OBT that makes the human-object interface,

specifically when addressing positioning of the object around the patient, more usable

and a novel therapy surface that helps patients perform upper extremity therapy

exercises of the wrist and hand to aid in their ability to perform activities of daily

living. The components of ART recognize and communicate with each other in

interaction with human users. ART aims to augment the rehabilitation environment

by improving patient well-being, rehabilitation, and staff productivity.

22

2.2 The Assistive Robotic Table (ART)

In the investigation described in the following chapters, we designed and

evaluated several alternative modes of nonverbal, robot communication towards

establishing an effective non-verbal communication (NVC) loop (as conceptualized in

Figure 1.2) – one that is efficient, expedient, user-extendable, and user-customizable.

For these experiments, we embedded our developing NVC platform in a real-world

context, the Roger C. Peace Rehabilitation Hospital (RCP) of the Greenville Health

System, where medical clinicians (and in the future their post-stroke patients)

determined its effectiveness.

Figure 2.1: Presented are the features that comprise the Assistive Robotic Table (ART). The
highlighted features are the result of a study defining ART.

As healthcare is becoming more digital, technological and increasingly costly,

healthcare environments have yet to become embedded with digital technologies to

support the most productive (physical) interaction across patients, clinicians, and the

physical artifacts that surround and envelop them. This shortcoming motivated our

larger team to envision home+, a suite of networked, distributed “robotic furnishings”

23

integrated into existing domestic environments (for aging in place) and healthcare

facilities (for clinical care). The over-the-bed table (OBT) that exists in most hospital

rooms is cumbersome to control and maneuver, cheaply made, and often broken.

Our response to the over-the-bed table, the table we employ for this

investigation is a novel one developed in our lab: the Assistive Robotic Table (ART)

presented in Figure 2.1. The result of participatory design and evaluation with

clinicians in a rehabilitation setting, and supported by a National Science Foundation

Smart Health & Wellbeing award (IIS SHB IIS-1116075), ART is comprised of a

cantilevered OBT (Manganelli, et al., 2013a; Manganelli, et al., 2013b). The robotic

table has two degrees of freedom: it raises and lowers from its base and has a tilting

work surface. At the extreme tip of the table surface is a continuum-robotic surface

supporting post-stroke patient therapy, actuated by twelve pneumatic muscles (with,

theoretically, infinite degrees of freedom) (Merino et al., 2012).

The surface was constructed of a spacer fabric made from polyester fibers on

a triple bar warp knitting machine. The fibers of the material were woven to induce

maximum curvature while providing stability for the arm and decreasing lateral

compression. The material was also designed to be thick enough to allow muscles to

be attached to both sides of the surface via elastic thread through the surface material

and around the muscle down the entire length of the muscle and tied down at the two

24

opposing end of each muscle. Figure 2.2 shows the final therapeutic surface and

Figure 2.3 shows the intended interaction in the rehabilitation setting1.

Figure 2.2: Final therapy surface prototype with 12 pneumatic muscles, spacer fabric, and cotton
batting. The therapy surface was developed through a parallel iterative design and evaluation process

along with ART.

The aim for this research was to develop an actively assistive table that when

evaluated by clinicians and patients was an improvement (by subjective scales) over

the current nightstands and OBTs used in the rehabilitation hospital setting. This

current research follows a line of research conducted within our lab to understand the

25

1 The following are videos from each phase of the iterative design process for the therapeutic surface
(links are available as of 7/26/2013). Phase 1 http://youtu.be/BYsO6ZOOIoA, Phase 2 http://youtu.be/
CXbs3f40y-k, Phase 4 http://youtu.be/-275vsGakI4, Phase 5 http://youtu.be/A2PldUhq2RE, Final
Prototype http://youtu.be/ycvVfJapgJc

contents of a nightstand (Brooks et al., 2011a; Smolentzov, 2010), understand

clinicians preferences for current OBTs (Manganelli, et al. 2012), design and evaluate

a new nightstand (Brooks et al., 2012), understand how healthcare practitioners use

OBTs (Manganelli, et al., 2013a), and to validate healthcare practitioner’s

requirements for an actively assistive robotic table (Manganelli, et al., 2013b). In

order to accomplish this aim, the base, up and down mechanism, and operating

controls were replaced. Features such as the tilting surface, lazy Susan patient drawer

(later removed to implement the gestural interface), and clinician’s work surface were

added to the table to enhance the user’s experience by (subjectively) increasing the

user’s effectiveness, efficiency, and satisfaction with ART over the current OBTs.

Also, the continuum robotic surface (and later the mechanical column to control it)

was designed to increase the effectiveness and efficiency of therapy sessions and was

an integral piece of the engineering research aims. This research shows that ART is

an improvement over the current OBT and, therefore, is an adequate environment to

interact with the NVC platform. Furthermore, ART provides the NVC platform an

entrance into and the first step for integration with our lab’s vision for the larger

patient hospital room ecosystem. The subsequent section describes one patient type

-- post-stroke patients, who are prevalent in the southeastern United States and

present both cognitive and physical deficits. The aim for ART and the NVC platform

was to address both physical and cognitive patient deficits, as those living longer (in

particular) may find themselves moving between home and clinic as they mature.

26

Figure 2.3: ART, the therapy surface, and rehabilitation: This figure shows the intended interaction
with ART, the therapy surface, patient, and clinician in the rehabilitation setting.

2.3 Post-stroke patients

In the southeast United States, statistics show that the percentage of people

affected by stroke is increasingly higher than in other United States regions, attributed

to high blood pressure, smoking, and diet (National Stroke Association, 2012c). “In

the United States, stroke is the fourth leading cause of death, killing over 133,000

people each year, and a leading cause of serious, long-term adult disability...

[A]pproximately 795,000 strokes will occur this year” (National Stroke Association,

2012c). Rehabilitation within minutes, days, and weeks after a patient suffers a

stroke is most important often requiring intense and direct interaction between the

patient and therapist. Stroke survivors often suffer from cognitive deficits (short term

27

memory loss, dementia, or aphasia) and/or physical deficits (visual field cuts or

hemiparesis) often requiring lifelong rehabilitation; and due to the high cost of

healthcare the patient performs the exercises at home alone (National Stroke

Association, 2012a, 2012c).

Cognitively, aphasic patients may lose their “ability to communicate orally,

through signs, or in writing” (Teasell, McClure, Katherine, Salter, & Murie-

Fernandez, 2013, p. 21). Physically, hemiplegic patients may be inattentive to their

upper extremities as they have “weakness or the inability to move one side of the

body” (National Stroke Association 2012b). Unlike gait training that is a gross motor

movement, the affected limb often requires the retraining of fine motor skills needed

for activities of daily living. Additionally, a visual field cut may reduce a patient’s

peripheral vision. Rehabilitation methods include exterior sensory stimulation or

other visual or auditory feedback strategies with increased intensity and difficulty in

an attempt to increase the patient’s awareness for the vision and limb neglect

(National Institute of Health 2011).

We updated the OBT to provide a recovering stroke patient a companionable

and therapeutic aid in those early rehabilitation hours. As effective post-stroke

rehabilitation must occur in the minutes, hours, and days following the stroke and

must continue during the weeks and years that follow, stroke patients with these

deficits require technologies that are adaptable to the patient needs, increasing and

decreasing assistance as required. As elaborated later in this thesis, the variety of

28

personas and the subjective scales used to evaluate the features of ART and the

addition of the therapy surface helped show ART’s versatility with post-stroke

patients with various abilities. The following section here is a discussion of the

interactions of ART and the post-stroke patient facilitated by the NVC platform.

2.4 ART, post-stroke patients, and the non-verbal communication platform

First, people would find working with [assistive robots] more
enjoyable and would thus, feel more competent. Second,
communicating with them would not require any additional training
since humans are already experts in social interaction. Third, if the
robot could engage in various forms of social learning (imitation,
emulation, tutelage, etc.), it would be easier for the user to teach new
tasks. Ideally, the user could teach the robot just as one would teach
another person (Breazeal, 2004, p. 182).

Following up a claim by Reeves and Nass (1996) that humans are experts in

social interaction, Breazeal (2004) proposed the paradigm of robot-as-social partner.

Breazeal envisioned a world where sociable robotics would be, similar to Weiser’s

(1991) thoughts about computation, ubiquitous in society. Such robots would need to

be designed so that anyone could easily interact with them. Therefore, for the

designed platform to work effectively the user (clinicians and/or patients), ART, and

the NVC must form a symbiotic relationship - each affecting the other.

ART provides the user with an easy-to-use and more enjoyable actively

assistive table to support activities such as reading, eating, storing items, and

performing therapy. ART provides an environment to develop the NVC platform. As

a direct result, the NVC platform provides ART with 1.) a bi-directional

29

communication interface, 2.) a way to position ART, and 3.) a way to accomplish

tasks. However, without a user enforcing the interaction, the NVC and ART have no

meaning; therefore, the NVC provides the user: 1.) a bi-directional communication

interface to ensure the patient understands how the system can and is being used; 2.) a

way to position ART; 3.) an ambient alert notification system; 4.) a possible therapy

tool for post-stroke patients; and 5.) in the future a notification system to ensure the

patient is performing therapy exercises adequately. As the relationship between ART,

the NVC platform, and the user continues to grow, it is hoped that the communication

platform will change and adapt to user needs.

Similar to previous research in our larger lab (see www.CU-iMSE.org), this

research is a collaboration between the fields of architecture, engineering, human

factors psychology, and rehabilitation therapy. The NVC platform is envisioned to

further the field of architecture by providing a guide for creating conversant, iterative

architecture; to advance engineering by extending the works of Mataric for sociable

assistive robotics (Feil-Safer & Mataric, 2005; Tapus et al., 2007; Wade, Parnandi, &

Mataric, 2011); to expand human factors psychology by developing appropriate

communication models for robots, stroke patients, and clinicians and by designing an

intuitive interface; and to show health care provider preferences for implementation

of the NVC platform. The following section is a proposed scenario for interacting

with the NVC platform.

30

2.5 Scenario

The following scenario envisions how the NVC for assistive-robotics is

expected to operate over a short period at a rehabilitation hospital with a patient, her

sister, and a clinician. This scenario suggests how the NVC promises to advance the

wellbeing of a critical target audience.

Joanne was living a healthy life in her own home, which contained an

assistive architectural robotic table amongst its furnishings. Joanne had quickly

welcomed ART’s functionality and aesthetics. It fit nicely in her home, and it gave her

confidence that ART provided more supportive functions than a conventional table,

whenever she needed them. Unexpectedly one day, Joanne suffered a stroke that

primarily affected her left side. Presently, she is in her private room, reclining in bed,

listening to a podcast on her iPod. Next to Joanne is ART. Joanne’s sister, Amy, has

arrived to visit Joanne and accompany her for the afternoon therapy session. As Amy

enters Joanne’s room, she waves her hands to signal her entry. Joanne interrupts her

podcast and welcomes her sister with a few kinds words and by waving her right

hand. Joanne’s left arm lays limp in the bed, and she tells Amy that she is having

issues with her left leg. Joanne reports her frustration with her physical condition and

her short-term memory lapses. Amy asks about Joanne’s barely eaten food, and

Joanne tells her she is still having trouble swallowing, not to mention her difficulty

seeing the left side of the tray without twisting herself about.

31

Joanne asks Amy to borrow her tablet computer to check her email. To

accommodate the computer, Joanne would like ART to rise and position its flip tray

for her. Joanne still feels a little unsteady holding things; fortunately, ART can

provide the needed support for this activity. While Joanne and Amy continue their

exchange, the following sub-linguistic dialogue occurs between Joanne and ART:

Joanne: [Gestures ART to kindly rise and tilt, as if to say, “ART, please rise
and tilt for me.”]

ART: [Displays two quick light flashes and a beep beep sound , as if to say,

“Yes, I am pleased to do that for you.”]

All the while, Joanne and Amy are chatting, catching up on recent news in

their lives and the world. A few moments later:

Joanne: [Gestures for ART to rise, but ART does not comprehend at first].

ART: [Displays blinking lights and a sound that, if written, might be ant ant,
as if to say, “Hmmm, I don’t know what you are asking of me. I am puzzled.”]

Joanne: [Makes the gesture once more in a way that ART comprehends,
learns from, and responds with the correct behavior.]

To reinforce ART’s actions,

Joanne: [Runs her hand along ART’s sensors at the perimeter of the table, in
what appears to be a “pet" to convey, “Thank you.”]

ART: [Displays gradient on/off light pattern and a purrr sound, as if to say,
“I understand that I performed the task correctly!”]

In this scenario, ART communicates with Joanne at a nonverbal level so that

ART neither competes for Joanne’s attention nor distracts she and her sister from the

intimate human conversation and course of therapy. The NVC is a human-robot

32

platform that renders the robot useful but neither intrusive nor invasive to human-

human relations and the routines of individuals. Should Joanne find an utterance

irritating, she gestures so, and ART presents her alternatives until she selects, by

gesture or pet, an acceptable one. Should Joanne or Amy required the addition of a

new utterance to the NVC platform, this can be added by way of a user-friendly tablet

interface.

In the qualitative design study reported, we designed and evaluated a three

phase pilot study for one non-verbal communication (NVC) for our Assistive Robotic

Table (ART), an architectural-robotic artifact supporting post-stroke patients.

Participants in our iterative design and evaluation process are medical staff (i.e.,

physicians, nurses, occupational, physical and speech therapists) at the Roger C.

Peace Rehabilitation Hospital of the Greenville Health System (RCP). Because the

design and evaluation of language like our NVC is complex, medical staff regularly

treating post-stroke patients, rather than the patients themselves, are more apt

participants in the early phases of developing that language. That is medical staff are

experts in the condition of post-stroke patients, and patients may be overwhelmed

with this novel human-robotic interface. In the next chapter, the iterative design and

evaluation cycles of our investigation involving such medical staff are elaborated.

33

CHAPTER THREE

METHOD AND PROCEDURES

3.1 Introduction

This study sought to understand clinician preferences for a non-verbal

communication (NVC) platform composed of lights and sounds for a robot,

envisioned for intimate human-robot interaction. We developed an exploratory

participatory design and evaluation process of an NVC in a regional rehabilitation

hospital with a participant pool including doctors, occupational, physical, and speech

therapists, as well as environmental service technicians. Each phase of this study

sought to understand a variety of questions for the NVC platform, as well as to use a

convergent design method. The following is the study design including the procedure

for the three phase study.

3.2 Participants

Volunteers for this study consisted of research team members and a

convenience sample of clinicians at Roger C. Peace Rehabilitation Hospital. Eight

members of the research team participated in the pre-study activities. Thirteen health

care subject-matter experts (stroke patient rehabilitation and general rehabilitation

experts), including doctors, occupational, physical, speech therapists, and

environmental service technicians – participated in phase I of the research study.

Twelve subject-matter experts – all clinicians, including doctors, occupational,

physical, and speech therapists – participated in phase II of the research study. Ten

34

subject-matter experts – all clinicians, including doctors and occupational and

physical therapists – participated in phase III of the research study. Two participants

dropped out of this phase of the study for personal reasons; thus, 10 participants

completed phase III. In the interest of protecting the privacy of this small,

exploratory sample population and based upon the conditions of the approval for this

study design by the hospital's institutional review board, demographic data are not

presented here.

The 12 clinicians who participated during phase II also participated in phase I.

The 10 clinicians who participated during phase III participated in all three phases.

This is a result of three factors. The first is that the small convenience sample

population used in this study did not allow for multiple rounds of participant

recruitment from within the hospital. The second factor was the use of convergent

methods to design the NVC platform - requiring participant to be familiar with the

platform throughout the process. Finally, due to the novelty of the NVC platform

there was desire to have a repeated measure - technology acceptance for the NVC

platform. The limitation of the convenience sample provided an opportunity to

develop the subsequent methods to define the trajectory of the study.

35

3.3 Study Design

3.3.1 Independent Variables

Independent variables for phase I of the study included two sounds for each of

the 20 NVC actions for sound and two lighting prototype designs (e.g., individual

LEDs or an LED screen). See Table 3.1 for a complete breakdown of the independent

variables for phase I.

Phase IPhase IPhase IPhase I

SoundSoundSound Light

Bend in Drag Reprimand Individual LEDs

Bend out Emergency Stop LED Screen

Can't do Go Swipe

Come I'm thinking Tilt Back

Confirm Request Pet Tilt forward

Do not understand
request

Select Up

Down Something in the way

Table 3.1: Presented are the independent variables tested during Phase I. Each sound had two sounds
associated with it, were tested audibly, and the clinicians selected their preference between the two.
The clinicians chose between the lighting options and used the chosen option to place the options on

ART.

Independent variables for phase II of the study included two sounds for each

of the 15 NVC actions for sound and two lighting sequences for each of the 17 NVC

actions for lighting sequences. Additionally, there were seven buttons and eight

gestures that initiated the sound communication, as well as eight buttons and nine

gestures that initiated the light communication. The Swipe, Drag, and Select actions

36

were not tested because a tablet interface was not a part of the ART prototype. See

Table 3.2 for a complete breakdown of the independent variables for phase II.

Phase IIPhase IIPhase IIPhase II

SoundSound LightLight

Button Gesture Button Gesture

Up Come Up Come

Down Go Down Go

Tilt forward Stop Tilt forward Stop

Tilt Back Confirm Request Tilt Back Confirm Request

Emergency Do not understand
request

Emergency Do not understand
request

Pet Can't do Pet Can't do

Reprimand I'm thinking Reprimand I'm thinking

Something in the way Bend Out Something in the way

Bend In

Table 3.2: Presented are the independent variables tested during Phase II. Each sound and lighting
sequence tested had two options, were either button or gesture actuated, and the clinicians chose which

sound or lighting sequence best represented each NVC action.

Independent variables for phase III included five NVC actions that were

assigned a button command and eight NVC actions assigned a gesture command.

Three NVC actions were assigned a sound, five NVC actions were assigned a lighting

sequence, and five NVC actions were assigned a sound, lighting sequence, or a sound

and lighting sequence combination. See Table 3.3 for a complete breakdown of the

independent variables for phase III as well as this video http://youtu.be/

kR2JMkhJBJw.

37

Phase IIIPhase IIIPhase III

Sound Light Sound And Light

Button Button Button

Down Reprimand Tilt Forward

Bend In Tilt Back

Gesture Gesture Gesture

Stop Emergency Go

Can't Do I'm thinking Do not understand request

Come Something in the way

Table 3.3: Presented are the independent variables tested during Phase III. Without prior training, the
clinicians listened to or viewed the NVC action, chose what action they thought it was, and, if
necessary, stated whether the sound, lighting sequence, or both together best demonstrated the

presented action.

3.3.2 Dependent Variables

For phase I and II, dependent variables included the selection of the ART

communication action choice, either A, B, or Neither, and comments given by the

clinicians for open-ended response questions. Dependent variables for phase III

included the ART communication action, the sound, lighting sequence or sound and

light sequence combination that best described the action, the System Usability Scale

score, and comments given by the clinicians for open-ended response questions about

the ART communication action.

3.3.3 Setting

The study occurred in the home+ lab in the basement of Roger C. Peace

Rehabilitation Hospital (RCP). The home lab is an extension of the research and

38

therapy gyms at RCP and was designed as a studio apartment. The home lab includes

a dining table with 6 chairs, a nightstand, a dresser, a pantry, counter space, and a bed.

See figure 3.1.

Figure 3.1: Home+ lab at Roger C. Peace Rehabilitation Hospital of the Greenville Health System.

3.4 Procedures

The methods of this study are presented in three sections: Phase I, Phase II,

Phase III. Phase I was conducted in November 2012, Phase II was conducted in

March 2013, and Phase III was conducted in April 2013. The research timeline was

affected by two factors. The first factor was a limitation set by our partnership with

RCP that the research team could only interact with an individual clinician one time

per month for up to one hour. The time constraint placed on the research team

provided the second factor, a repeated measure study design, to be implemented

(Cohen, Cohen, West, & Aiken, 2003). In this study design, the repeated measure

was technology acceptance by the clinicians for the designed and evaluated NVC

platform. This allowed the research team to see how clinician feelings changed

39

throughout the research process. Described below are the procedures for each phase

of the research study.

The procedure prior to the start of an experimental session was the same

during each phase: the research moderator welcomed the clinicians, handed out the

research study information sheet describing the purpose of the study, asked the

participants to review it, and answered any questions the participants had about the

study. Data for this descriptive study were collected through structured interviews

and recorded on a personal computer. Each phase of the study was conducted as

described in the following sections. At the end of each session, the moderator

answered any questions the participants had about the session, reminded the

participants about future sessions, asked the participants not to speak about the

session with their colleagues who might participate in future sessions, and thanked

the participants for their participation. Approval from the appropriate institutional

review boards was obtained prior to data collection.

3.4.1 Phase I

To develop the NVC, eight members of the lab research team - two human

factors specialists, four research coordinators and two PhD students, who were not

subject-matter experts, participated in pre-study, brainstorming activities to provide a

list of 20 actions by which the NVC could be matched to ART (e.g., up, down,

forward, back, correct action, something is in the way, I don’t understand, etc.). The

lab members then met in small groups to generate potential sound and lighting

40

sequences to describe the actions. Regarding which sounds and lights were best

matched to a given action, there was consistency, both within the groups (e.g., by a

group discussion) and between the groups (e.g., after all the focus groups were

conducted, each team member completed a survey about his or her sound and lighting

contribution). This information served as the beginning for the research study

sessions. Each focus group session was conducted in less than 60 minutes.

Participants completed the survey on their own time.

Focus groups were conducted over three days at RCP. The number of

clinicians for each focus group was four, five, and four. The number of participants

was determined by each clinician’s schedule and provided the research team with an

understanding of clinician requirements and to achieve a consensus for the

developing NVC platform. (Rogers, Sharp, & Preece, 2011) The clinicians were told

the purpose of this phase of the study was to evaluate lights and sounds, two features

to be added to ART, as each related to patient-clinician communication with an

assistive robot. Each session had one research moderator and a note-taker for every

two clinicians. The clinicians sat across from the research moderator at a long table

with the note-taker beside the clinician. Audio speakers to play the sounds were

placed on the table in front of the clinicians equidistant from each other and the

clinicians.

Two feedback methodologies were used: open-ended response and a forced-

choice methodology. Open-ended questions were used to determine clinician

41

preferences for NVC in healthcare environments. The forced choice methodology

required the clinicians to verbally select their preference from a choice of A, B, or

Neither after each sound played (two sounds for each of the 20 ART actions).

Similarly, the clinicians chose between two lighting prototype designs (individual

LEDs or LED screen) that were presented. The clinicians were told that the lighting

would display information regarding the 20 ART actions. Finally, on a sheet of paper

showing three architectural-drawn views of ART, each clinician marked where he or

she thought the light communication displays should be located and verbally

answered how he or she would customize the display. Each focus group took less

than 60 minutes.

Figure 3.2: Presented is the NVC platform evaluation set-up for Phase II and III. Push buttons and a
Microsoft Kinect® were used to actuate each NVC action and sounds were played through an adjacent

computer.

42

3.4.2 Phase II

Clinicians at RCP were interviewed in focus groups of one to two clinicians

over six days. The clinicians were told the purpose of the study was to evaluate lights

and sounds, two features to be added to ART, as each related to patient-clinician

communication with an assistive robot. Each session had two research moderators

and a note-taker. The clinicians sat across from the research moderator and ART.

LED strips and a Microsoft Kinect® (depth camera) were placed on top of ART and a

computer, placed next to ART, was used to play the sounds.

Two feedback methodologies were used: a forced-choice methodology and

open-ended response. The forced choice methodology required the clinicians to

verbally select their preference from a choice of A, B, or Neither after each sound

played (two sounds for each of the 15 ART actions). The Bend Out and Bend In

actions were not tested because during phase I the clinicians stated that those actions

did not need a sound. Similarly, the clinicians verbally selected their preference from

a choice of A, B, or Neither between two lighting sequences for each of the 17 ART

actions. Open-ended questions were used to determine clinician preferences for and

possible improvements to the proposed NVC in healthcare environments. Each focus

group took less than 60 minutes. Due to time constraints, four participants were

unable to answer all questions after evaluating the lighting sequences.

43

3.4.3 Phase III

Clinicians at RCP were interviewed in focus groups of one to two clinicians

over seven days. The clinicians were told the purpose of the study was to evaluate

lights and sounds, two features to be added to ART, as each related to patient-clinician

communication with an assistive robot. Each session had one research moderator and

one note-taker. The clinicians sat across from the research moderator and ART. LED

strips and a Kinect were placed on top of ART and a computer, placed next to ART,

was used to play the sounds.

Two feedback methodologies were used: a forced-choice methodology and

open-ended response. The clinicians were given a printed sheet of possible ART

communication actions. Clinicians watched a demonstration of an ART

communication action, and either a sound, lighting sequence, or a sound and lighting

sequence combination was heard or viewed by the clinician. After watching the

demonstration, the clinicians stated what communication action was demonstrated

and, if appropriate, which sound, lighting sequence, or sound and lighting sequence

best demonstrated the communication action. This procedure was repeated for the 15

ART communication actions. All communication methods were tested without the

associated movement because some actions (e.g., Go, Come, Stop) did not have an

associated movement developed in this prototype and there was a need to avoid

biased results for the actions that worked in the prototype. Four ART communication

actions (e.g., Up, Pet, Confirm Request, Bend Out) were not tested because during

44

phase II the clinicians did not declare a majority preference for either a sound or

lighting sequence. After completing the confirmation of the ART communication

actions, clinicians answered a System Usability Scale survey. Finally, open-ended

questions were used to determine clinician reasoning behind the answers given during

Phase I. Two communication actions, Do not understand request and I’m thinking,

only had nine responses because the research moderator inadvertently gave the

answer to the communication action to the participants. Each focus group took less

than 60 minutes.

3.5 Statistical Analysis

A frequency analysis was used to determine the sound or lighting sequence

selection for each of the ART communication actions. Selections were chosen if they

had a greater than 66 % preferred majority because of the small sample size, to ensure

a “strong opinion” from the clinicians was achieved, and this selection criteria,

developed by previous research in our lab (Brooks et al., 2012), showed the strong

opinion criteria was appropriate. An exception was included for five lighting actions

that had 58 % preferred majority because there was a 33 % selection of one of the

other choices, and the research team wanted to evaluate as many complete

communication actions as possible. The System Usability Scale survey was scored

by the method provided by Brooke (1996), and a trimmed mean and standard

deviation was calculated. A content analysis, developed by frequency analysis, was

used on the open-ended response questions. It is the research team’s experience that

45

these comments provide insight into the ratings given, and using these statistical

analyses help to understand the results presented in the subsequent chapter.

46

CHAPTER FOUR

RESULTS

4.1 Results

4.1.1 Phase I Results

Given the small sample size, descriptive statistics were assessed (i.e., no

statistical validity could be determined). Scassellati, Admoni, and Mataric (2012)

states that this is standard in robotics research. “User testing in robotics often focuses

on careful qualitative and quantitative observations of small numbers of study

participants; it is not uncommon to perform a second-by-second analysis of behavior

for only three or four participants in a given study” (Scassellati et al., 2012, p. 277).

Table 4.1 shows the percentage preferences of the clinicians for the 20 sounds

tested. More than two-thirds (66%) of the clinicians had to select the sound for it to

be evaluated as a preferred sound. Interestingly, a specific Can’t Do sound was

chosen by all clinicians in the study. The clinicians maintained a majority preference

for the Reprimand (92%), Something in the way (84%), and Confirm request (76%)

sounds.

Of the seven sounds that had a preferred choice, three sounds (Go, Bend Out,

Bend In) had a preference for Neither sound. The Bend Out and Bend In sounds relate

to an added therapy surface feature (see Figure 2.2) that will be used by clinicians to

help expedite stroke patient recovery. Overall, the clinicians did not feel that a sound

47

was required for these movements because clinicians would be interacting with the

patient during the therapy sessions. Because the Go sound is an important feature

designed for the mobility of ART, it will be retested and evaluated in phase II with an

interactive prototype to ensure that the sound is not required. The remaining sounds

that did not have majority preference will also be retested in phase II with an

interactive prototype.

> 66% agreement < 66% agreement
Can’t Do (A) Down

Reprimand (A) Stop
Something in the way (B) Pet

Confirm Request (B) Swipe
Go (N) Come

Bend out (N) Emergency
Bend in (N) I’m thinking

Select
Tilt Forward

Tilt Back
Do not understand request

Up
Drag

Table 4.1: The sound preferences of clinicians during phase I of the study. All sounds were retested
during phase II except Bend out and Bend in because clinicians felt that these two actions would

distract from therapy sessions.

Figure 4.1 shows the clinicians’ location preferences for selected lighting

display prototypes as a “heat map”. Four participants chose an LED screen; six

participants chose the individual LEDs; three participants chose both displays. The

green color (lines and dots) represents the individual LEDs, and the blue color (larger

rectangles) represents an LED screen. The color shade variations describe the

number of participants who placed the lighting type in the same location. From this

data, one can see a trend for the lighting displays. The individual LEDs were drawn

48

on the edges of ART, while the LED screens were drawn primarily on ART’s tabletop

surface. Clinicians’ preferences for customization of the lights included the

brightness of the LEDs and the colors displayed - primarily red, green, and yellow.

However, one participant noted that red and green should not be used due to patients

who are colorblind.

At the beginning of each study session, clinicians were asked, “If ART had the

ability to communicate, would the clinicians communicate with ART?” The

clinicians unanimously agreed that they would like to communicate with ART.

Clinicians then answered 12 open-ended questions regarding what types of

information are appropriate in the healthcare setting, how the information should be

communicated, and the interaction with stroke patients. Finally, clinicians were asked

again if they would communicate with ART. Again, 100 % of the clinicians said that

they would like to communicate with this assistive robot.

Interestingly, the clinicians proposed a nonverbal communication focus

different from the focus of the research team; the clinicians proposed patient care

terminology instead of “the state of ART” terminology (e.g., up, down, emergency,

etc.) proposed by the research team. A content analysis, developed by frequency

analysis, showed that 10 clinicians preferred that ART communicate orientation

information (e.g., day, date, time, schedule, nurse's name) to the patients. Eleven

clinicians stated that they would program ART to give the patients clinical reminders

(e.g., bed safety, fall safety, therapy assistance) to assist in patient care. Despite no

49

overwhelming majority, clinicians also stated that they would like ART to increase

their ability to care for the patient by ART communicating to the clinician the patient's

vital signs, if the patient attempted to get out of bed, and if the patient attempted to

perform their therapy homework.

Figure 4.1: Presented in a heat map are the clinician results of lighting device selection and
arrangement during phase I. The larger squares are LED screens and the dots and lines are individual

LEDs.

After the first focus group, the research team determined that clinicians were

proposing a different communication focus than the research team (patient care versus

the state of ART). Two additional questions were subsequently added to our

interview: “If ART had the ability to ‘communicate’ the way the research team

Customize colors

Individual LED
light placement

st
rin

g
lig

ht
s

surface light for visibility

Patient related

Diagnostic control
light panel

Under side light

control buttons
lit for sta!

Base light

Patient light
control panel

yellow
blue
green

3-4 lights combined
@ each location

Also on Reverse
side

50

proposed, would you use our NVC platform?” and “Do you think stroke patients

would use the platform the research team proposed?” All clinicians who responded to

these questions (N=9) said that they and their patients would communicate with ART,

given the researchers' proposed platform. Additionally, two participants stated that

their decision to use our proposed platform would also depend on the patient's

condition. This line of questioning was designed to capture whether the clinicians

had a change of mind concerning the NVC embedded in ART. In phase I, evidence

suggested that despite the variation in proposed NVC platforms, the clinicians

remained willing to communicate with an embedded NVC platform in ART.

4.1.2 Phase II Results

Table 4.2 shows the percentage of clinician preferences for the 15 sounds

tested, 7 button actuated sounds and 8 gesture actuated sounds. More than two-thirds

(66%) of the clinicians had to select the sound for it to be evaluated as a preferred

sound. The clinicians maintained a majority preference for the Tilt Forward (75%),

Tilt Back (67%), and Down (67%) button actuated sounds and the Stop (100%), Go

(83%), Can’t Do (75%), Do Not Understand Request (67%), and Something in the

Way (67%) gesture actuated sounds.

The Down, Go, Stop, Can’t do, Something in the Way sounds had a majority

for the same sound in both phase I and phase II. Similar to the results during phase I,

the Up, Emergency, Come, or I’m Thinking sound did not have a majority result.

Clinicians commented that the two Up sounds were too similar and that the

51

Emergency sound needed to be more distinguishable to grab the attention of the staff.

Even though the Pet and Reprimand sounds had a majority preference during phase I,

there was no majority during phase II. Three clinicians questioned the reason for the

Pet and Reprimand function of the table. During phase I the Confirm Request sound

had a 66 % majority preference, but it did not during phase II. After seeing the

intention of the action, two clinicians said that this was an added, unnecessary step;

and one participant stated that this was more vocabulary for the patient to learn when

interacting with ART.

When asked, “If ART could ‘communicate’ the way the research team

proposed, would you use the sounds?”-- the clinicians had a mixed response with no

majority preference between yes, no, and maybe. However, when asked, “Are the

proposed sounds appropriate for the hospital setting?”-- nine clinicians stated “yes”

and three stated “ no”. Extending these results, when asked, “Are the proposed

sounds communicating what you would expect them to communicate?”-- eight

clinicians stated “yes”, two stated “ no”, and two stated “ maybe”. These results

imply that while the sounds met expectations and were viewed as appropriate for the

hospital, the participants were reticent in their acceptance of the proposed

communication methods.

When asked, “What would you want to customize about the sounds?”--

despite no overwhelming majority, clinicians mentioned volume, a dependency on the

patient’s characteristics, tone, and making ART speak instead of using the sounds.

52

When asked, “When would the sounds be used?”--clinicians mentioned sounds would

be used when ART moved and in a state of emergency. Finally, when asked, “Could

you please describe the characteristics of a patient who might use the sounds?”-- the

clinicians mentioned a patient with cognitive issues, visual issues, and mobility

issues. This line of questions was meant to narrow the focus of a communication

system utilizing sounds similar to the one designed. While no majority preference

was determined, clinicians maintained trends seen throughout the study, such as the

dependency on patient characteristics.

Table 4.2 shows the percentage preferences of the clinicians for the 17

lighting sequences tested, 9 button actuated sounds and 8 gesture based actuated

sounds. More than two-thirds (66%) of the clinicians had to select the sound for it to

be evaluated as a preferred sound. The clinicians stated a majority preference for the

Emergency (83%) and Reprimand (75%) button actuated lighting sequences and the

Something in the Way (100%), Do Not Understand (83%), and I’m thinking (75%)

gesture actuated lighting sequences.

When asked, “If ART could ‘communicate’ the way the research team

proposed, would you use the lights?” -- (N=10) six clinicians stated that it would

depend on patient characteristics and four stated “yes”. Continuing with these results,

when asked “Are the proposed lights appropriate for the hospital setting?” -- six

clinicians stated “yes”, and four stated that it would depend on patient characteristics.

Then when asked, “Are the proposed lights communicating what you would expect

53

them to communicate?”-- six clinicians stated “yes”, one stated “ no”, and three stated

that it would depend on the patient characteristics. These results show that unlike the

sounds, which may be more relatable to current technology (e.g., phones and

computers), the success of the lighting sequences will depend on patient

characteristics.

ButtonButtonButton GestureGestureGesture

Sound Lighting
Sequence Sound Lighting

Sequence

Bend In ^A Can’t Do B

Bend Out Come ^B

Down A Confirm Request

Emergency A Do not understand
request B B

Pet Go A ^B

Reprimand B I’m Thinking A

Tilt Back A ^B Something in the
Way B A

Tilt Forward A ^B Stop A

Up

Table 4.2: Presented are the clinicians’ sound and light sequence preferences during phase II and
tested during phase III2. The carrots show specific actions that had a 58% majority and 33% or less

than second preference. The intention of the researchers was to test a complete platform.

Despite no majority preference, when asked, “When would the lights be

used?”-- (N=8) clinicians stated emergency situations, at night, either day or night,

and it would be used with patients with visual issues. Then when asked, “What

54

2A full description of the phase II sounds and light sequence results (tested during phase III) can be
viewed here (link is available as of 7/26/2013).
http://www.youtube.com/watch?
v=kR2JMkhJBJw&feature=share&list=UUwzcR9h7R6m5B_zQ5E2AHog

would you want to customize about the lights?”-- (N=8) clinicians mentioned the

capability to turn the lights on or off , adjust the brightness, limit with what

commands the lighting would be used, and change the colors. Finally, when asked,

“Could you please describe the characteristics of a patient who might use the

lights?”-- (N=10) clinicians mentioned the best patient types would be those who are:

cognitively intact, non-verbal, not blind, not suffering from severe traumatic brain

injury, not susceptive to seizure, not able to hear well, in need of visual feedback, or

in need extra lighting to deal with depression. While there was no majority

preference for these questions, clinicians offered a breadth of patient characteristics

and customization options, as well as when the lights would be used.

A system like the one developed relies on ambient monitoring to interface

with clinicians or patients; therefore, we asked questions to determine the best

location for ambient monitoring in the room and on ART. Clinicians were asked, “If

there were ambient monitoring in the room, where would it be placed?” (N=10)

clinicians mentioned “ under the television” six times, “ in the ceiling” three times,

and “at the end of the bed” two times. Finally, when asked, “If there were ambient

monitoring on the table, where would it be placed to best serve you as a clinician?”--

11 clinicians stated that ambient monitoring should be located in the area where the

drawer is currently located. However, one clinician stated, “Not on the table but on

the wall in the room. Somewhere centrally located to register the person and the

55

table.” Based on the results for phase II, the NVC platform was revised and

evaluated during phase III.

4.1.3 Phase III Results

For each of the 13 ART communication actions tested during phase III, Table

4.3 shows the following: the number of clinicians who correctly selected the

communication action without training; whether the clinician stated that they could

use that action with training; if appropriate, which mode best described the action

(sound, light sequence, or sound and light sequence combination); and the choice

with the highest frequency response. To further clarify these results, the number of

ART communication actions selected correct (trimmed M=3.38, SD=1.41) was

calculated.

Clinicians correctly selected three of 13 communications with greater than or

equal to 50% selection rate. Ten of 13 communication actions had a less than or

equal to 30% selection rate, and two communication actions had a 0% selection rate

(Do not understand request and Bend in). Clinicians stated that they often confused

the Can’t do, Stop, Do not understand request, and Something in the way actions.

One clinician questioned when and under what conditions the Reprimand action

would be used. For two ART communication actions (Reprimand or Bend in),

clinicians did not have a 66% majority preference about whether training would

improve the action.

56

ART
Communication

No.
Corre

ct

With
trainin

g

Mode that describes
the action

Other suggestions

Emergency 7/10 3/3 Can’t do (2)

I’m thinking 6/9 3/3 Come (2)

Something in the
way

5/10 5/5 Both (2), Sound (8),
Light (0)

Stop (2)

Can’t Do 3/10 7/7 Something in the way (3), Do not
understand (3)

Down 3/10 7/7 Emergency (2), Tilt Back (2)

Tilt Back 3/10 7/7 Both (3), Sound (7),
Light (0)

Down (2), Tilt Forward (2)

Go 2/10 Y: 7/8
N: 1/8

Both (2), Sound (3),
Light (5)

Bend In (5)

Stop 2/10 Y: 7/8
N: 1/8

Do not understand request (4),
Down (2)

Come 1/10 9/9 Thinking (2), Reprimand (2)

Reprimand 1/10 Y: 5/9
N: 4/9

Go (3), Come (2), Stop (2),
Thinking (2)

Tilt Forward 1/10 Y: 8/9
N: 1/9

Both (5), Sound (5),
Light (0)

Something in the way (3), Come
(2), Tilt Back (2)

Do not understand
request

0/9 9/9 Both (5), Sound (3),
Light (1)

Something in the way (4), Can’t do
(2), Reprimand (2)

Bend In 0/10 Y:
6/10
N:

4/10

I’m thinking (3), Go (2), Tilt
Forward (2)

Table 4.3: Clinician responses during phase III for each of the NVC actions. Without training,
clinicians chose the action presented, described what mode best described the action, and after an

explanation of the action was given were asked if given training if they could understand the action.

57

The clinicians rated the ART communication action platform using the System

Usability Scale (SUS) (trimmed M=50.31, SD=16.93). Based on Bangor, Kortum,

and Miller (2009), when comparing the SUS score to an acceptability range

developed by the authors, the SUS score is “marginal low to not acceptable”. Also

using Bangor et al. (2009), when comparing the SUS score of the ART

communication action platform to a grading scale, the SUS score receives an “F”.

Times
mentioned

Explanation of choice Times
mentioned

Participants thoughts after given the
correct action

23 Sounded like ... 15 Understand afterwards

14 Light Pattern 11 Sounded like ...

13 The lights looked like ... 8 The lights looked like ...

11 Directional movement
of the lights 6 Direction of light movement

10 Only choice left

8 Pace of lights

Table 4.4: This table shows an overall categorical frequency analysis of the NVC actions -- explanation
of clinician choice and thoughts after given the correct action.

Table 4.4 is an overall categorical frequency analysis of how clinicians made

decisions about what ART communication was appropriate and their thoughts after

they were given the correct answer. This table shows that clinicians used the look and

sound of each action to make decisions about what the platform was trying to

communicate. While clinicians mentioned 15 times that they understood the action

after given the correct answer, the table shows that in their explanation the action

continued to look or sound like another action. For the full table, see Appendix S.

58

Table 4.5 is a categorical frequency analysis of how clinicians made decisions

about what ART communication was appropriate and their thoughts after being given

the correct answer for each of the ART communication actions. A closer analysis for

those actions answered less than or equal to 20%, reveals that the lights and sounds

selected for those particular actions did not meet clinicians’ expectations. When

initially encountering Go, clinicians stated Go sounded like it was moving, and

clinicians tried to make their selection of the communication action using clues from

the Go light sequence. Yet, when given the correct answer, clinicians stated that the

sound and light sequence did not make sense for Go because the sound the light

sequence moved toward the clinicians instead of away from them. In the instance of

Stop, clinicians commented that this action needed a stronger sound to distinguish it

from other actions. Clinicians also stated that the random light sequence used for

Come did not naturally map to the action and that a directional light sequence was

needed. The lights for the Reprimand action appeared to be similar to other actions

(e.g., Go, Come, Stop, I’m thinking), and clinicians perceived the lights as movement

with a positive connotation. One clinician stated, “I would still say that light pattern

doesn't seem like a negative feedback.” Clinicians perceived a movement action for

Tilt forward, but the sound and lights reminded clinicians of other ART

communication actions. Furthermore, the Do not understand request action sounded

or looked like other actions, and clinicians interpreted the negative connotation as a

stronger action (e.g., Something in the way, Can’t do, or Reprimand). Finally, when

59

the clinicians viewed Bend in, they used the direction and the pace of the lights to

make their selection. However, the direction and pace of lights did not match

clinician expectations. To review the full table, see Appendix R. A discussion of the

results is presented in the next chapter.

ART Communication No.
Correct

Explanation of choice Participants’ thoughts after given
the correct action

Emergency 7/10
Fast light flash (3)
Needs a sound (2)
An alarm (2)

Needs a sound (2)
Fast light flash (2)

I’m thinking 6/9
Directional movement of
the lights (5)
Pace of lights (4)

The lights looked like ... (2)

Something in the way 5/10
Sounded like car horn (3)
Sounded like stop (2)
The sound is cultural
intuitive (2)

Understand afterwards (2)

Can’t do 3/10
Sounded like a mistake
(3)
The sound (2)
Something in the way (2)

Something in the way (3)
Negative indication (2)

Down 3/10

Inflection of sound (4)
Similar to expected tilt
back sound (2)
Only choice left (2)
It’s a negative sound (2)

Out of choices (3)
Understand afterwards (3)

Tilt back 3/10
Expectations of
movement (3)
Sounded like it was
going down (3)

Understand afterwards (4)

Go 2/10

Light pattern (5)
Sounded like moving (3)

Light pattern doesn’t make sense
(5)
The sound doesn’t make sense (3)
Sounded like it’s moving (2)
Understand afterwards (2)

Stop 2/10 Sounded like ... (3)
Deeper sound (2)

Sound needs to be stronger (5)
Understand afterward (2)

60

ART Communication No.
Correct

Explanation of choice Participants’ thoughts after given
the correct action

Come 1/10
Only choice left (4)
Light pattern (3)
Looks like processing (2)

Random light pattern was not
correct (5)
Light pattern needs direction (2)
Looks like ART will move (2)

Reprimand 1/10

The lights looked like ...
(7)
Light pattern (3)
Pace of lights (2)

Perceived lights as a movement (3)
Lights were positive, not negative
(3)
The lights looked like ... (3)
I don’t understand
“Reprimand” (2)

Tilt forward 1/10

There will be movement
(4)
Alarming (2)
The lights looked like ...
(2)

A different tone needed (3)
The lights looked like ... (3)
Sounded like ... (3)

Do not understand
request 0/9

Sounded like ... (5)
The lights looked like ...
(4)
It’s not an emergency (3)
Negative connotation (2)

Interpreted a stronger command (2)
Negative connotation (2)

Bend in 0/10
Directional movement of
the lights (6)
Pace of lights (2)

Direction of light movement (6)
Pace of lights (3)

Table 4.5: This table shows the categorical frequency analysis for each of the NVC actions -- clinician
choice explanation and clinician thoughts after given the correct action.

61

CHAPTER FIVE

DISCUSSION

5.1 Summary and discussion of findings

This study sought to understand clinician preferences for an NVC platform

composed of lights and sounds for a robot, envisioned for intimate human-robot

interaction. The exploratory, participatory design and evaluation three phase process

sought to understand a variety of questions for the NVC platform, as well as to use a

convergent design method. The subsequent sections discuss the findings for this

study.

5.2 General implications of findings

Phase I provided 1.) insights on methodologies to iteratively design and

evaluate NVC platforms; 2.) a sense of how clinicians view an NVC platform (patient

care versus the state of ART); 3.) the preferences of users (clinicians) of an NVC

platform for two features (lights and sounds); and 4.) a sense of whether clinicians

and post-stroke patients might use an NVC that was integrated into an assistive robot

intended for their use.

Phase II provided 1.) preferences of clinicians of a revised NVC platform

(button actuated, gesture actuated, and an LED strip) installed into ART; 2.) a sense of

whether clinicians would use the platform, the NVC’s appropriateness in the hospital

setting, and whether the platform was communicating as expected; 3.) a sense of

62

when the platform would be used, the participants desired customization features, and

a refined list of appropriate patient characteristics who might use the platform; and 4.)

a sense of where clinicians felt ambient monitoring should be place in the room and

on ART.

Phase III provided 1.) initial clinician choice for each of the NVC actions; 2.)

insights on how clinicians made their selections for the NVC actions and how to

improve the platform; 3.) if given training, whether the clinicians felt that the

designed NVC action was appropriate; and 4.) a System Usability Scale score

intended to measure the general usability of the NVC platform.

5.3 General limitations of study

The generalizability of these findings is limited by the following factors.

First, this study included no patient input about the requirements and design of the

NVC platform. Guided by the human factors faculty team member, the team

concurred that the complex nature of this novel, cyber-physical artifact would be

evaluated initially and iteratively by medical staff before inviting patients to

participate in the iterative development of ART. In an attempt to overcome the

patient-participant limitation, the clinicians assumed a medium-functioning stroke

patient persona in order to determine whether a patient would be able to communicate

with ART and how the patient might communicate with ART. Previous studies by our

research team have shown that the clinicians are able to estimate a majority of patient

preferences, but not the entire scope (Brooks et al., 2011a; Brooks et al., 2012;

63

Manganelli et al., 2012). Incorporating patient feedback will allow the NVC platform

to be fully realized as a communication platform to aid in patient rehabilitation.

While similar research projects have a smaller sample size (Scassellati,

Admoni, & Mataric, 2012), evaluation was conducted with a small sample (10-13) of

clinicians from Roger C. Peace Rehabilitation Hospital in Greenville, South Carolina.

As no demographic data were collected, these results cannot be generalized to other

medical disciplines either at Greenville Health System or in the Southeast (i.e., cancer

center, children’s hospital, heart and vascular care, general medicine, primary care,

surgery, women’s hospital).

Finally, a limitation of the study was the time constraint given to the research

team. This study was conducted in a one hour time slot during the clinician’s lunch

hour. Due to work- related responsibilities, some clinicians arrived after their

scheduled time and ate lunch during the session. Often, a 60-minute session would be

reduced to a 45-minute session or less. Given these time constraints, direct

interaction was necessary to ensure that the session would only last during the time

given.

5.4 Study discussion organized by pre-study hypotheses

An assistive robot that conveys nonverbal communication can be readily

understood by users, even those who are medically at-risk, such as post-stroke

patients. An examination of the pre-study hypotheses show mixed results for this

study. Shown in phase III and discussed further in the following sections, using the

64

evaluated NVC platform requires training. Thus, future research is required to design

a more intuitive platform and to understand the amount of training required for an

NVC platform in a rehabilitation setting. On the other hand, the NVC platform

presented here might arguably work very well outside the clinical setting for non-

clinical users interacting with and supported by assistive robots in everyday life

rituals occurring at home, work, and schools. Additionally, an assistive robot

communicating in NVC does not need to be humanoid or otherwise explicitly life-like

in appearance to be readily understood by users. Throughout this research, and

despite the low usability ratings of the NVC platform, clinicians easily assumed

communication with ART via the NVC platform presented them. As an example, in

phase I, clinicians expressed a need for a patient care terminology in addition to

expressing a preference, in phase II, for the NVC platform in the hospital. Finally,

our entirely nonverbal human-robot communication will be perceived as a desirable,

low-invasive, and expedient communication mode for HRI, particularly in intimate

human-robot interactions. The results of this study suggest that this hypothesis

requires further research. In phase I, clinicians stated unanimously that they would

use the platform; yet, in phase II, clinicians did not have a majority preference.

Furthermore, clinicians stated that while the sounds could be used in the hospital,

patient characteristics would determine the usability of the lighting sequences.

Additionally, the clinicians’ low correct selection rate of the NVC actions in phase III

suggest that the platform would not be a low-invasive or an expedient communication

65

mode. Broadly, this exploratory research provided requirements for an NVC platform

in the rehabilitation setting, despite the poor results for this particular NVC platform.

(Refer to Figure 5.1 for an explanation of these findings.) A discussion for each

phase of this study is presented in the following sections.

Figure 5.1: This figure shows the variability of clinician acceptance for the NVC platform throughout
the research. One can see that acceptance declined during phase II but that over time (the final

usability study -- Chapter 6) acceptance increased. The System Usability Study scores show that the
researched NVC requires further testing to be used in practice.

5.4.1 Phase I Discussion

In an increasingly digital society, how might a non-verbal communication

(NVC) platform be embedded in the Assistive Robotic Table to provide clinicians

66

opportunities to best understand and interact with a patient’s recovery? The research

team developed an NVC consisting of lighting sequences and sounds and a gesture

command interface, embedded into ART, to communicate with clinicians and their

stroke patients. In phase I, clinicians provided their preferences for what sounds

should be used as well as where and what type of lights should be used in the NVC

platform. Additionally, clinicians provided insights to the question: What are the

requirements for an NVC platform used in the rehabilitation of post-stroke patients?

Clinicians desired a platform that augmented their ability to care for the

patient. Thus, the clinicians provided requirements for a patient care terminology

platform. This terminology was seen as an expedient to help healthcare providers and

patients mutually interact in patient recovery. However, the research team developed

an NVC platform intended to allow the clinicians and patients a more efficient and

effective way to operate ART. As shown, the clinicians stated that they would still

use the developed NVC platform and speculated that their patients would use the

platform as well.

Throughout phase I clinicians were asked, “If ART had the ability to

communicate, would the clinicians communicate with ART?” The clinicians

responded three different times (before, during, and after the study session) that they

would communicate with ART. Before and during the session, participants

unanimously agreed that they would communicate with ART. However, when asked

after the session, two participants said communicating with ART would depend on a

67

patient’s characteristics. While clinicians had knowledge of ART and had been

participants in previous research studies, the sounds were played in the abstract,

without a physical ART present and without incorporating the sounds into ART. As

demonstrated in a later phase, the unanimous sentiment of the clinicians to

communicate with ART changed and focused on the variability of the patient

characteristics.

As stated, the clinicians proposed a different type of communication platform

than the research team’s communication platform. The clinicians focused their

terminology on patient care, as opposed to the state of ART (e.g., up, down, tilt

forward, tilt back). While the clinicians did not reject the research team’s platform,

future studies should address the discrepancy between the two systems of

terminology. Future studies might begin with patient care terminology and explore

possible input and output dialogs to best address efficiency and patient care in the

rehabilitation context.

Interestingly, clinicians declared areas that they did not want the NVC

platform to interfere with their interaction with the patients. The Bend in and Bend

out sounds (75%), dedicated to a novel therapy surface component, were rejected.

Clinicians thought that these sounds would distract from the patient’s therapy because

it would be perceived as extra noise when clinicians needed patients to focus on the

rehabilitation tasks. Future studies should investigate what scenarios are best served

for an NVC platform to meet clinician and patient needs, possibly using other

68

technologies (e.g., personal handheld devices) as case studies to determine where one

might want communication and in what scenarios they would like to turn it off or

have it only present one mode (i.e., cell phone - non-verbal cues versus sound). The

needs of clinicians and patients are different; therefore, a system that adapts to the

user is required.

5.4.2 Phase II Discussion

Interestingly, in phase II participants had mixed reactions and did not have a

majority preference to the question, “If ART had the ability to communicate, would

the clinicians communicate with ART?” However, the clinicians stated a high

preference for both the appropriateness of the communication platform in the hospital

and if the communication platform was communicating as expected. These results

appear to illustrate the clinicians’ low acceptance of the technology for their

individual use, despite a majority positive preference for the technology. As an

example one clinician stated, “I probably wouldn't use the sounds or I wouldn't use

them all . . .” But when asked about use of the NVC platform in the hospital the

clinician stated, “yes, I don't think the sounds would frighten or disturb.” A future

study should explore the reason behind this discrepancy.

The clinicians desired specific, customized features for the sound and light

elements. The clinicians wanted to be able to adjust the volume of the sounds, as well

as, turn on and off the lights. While these features are similar to those associated with

other personal handheld devices, there is a concern that once this platform has these

69

notifications removed, they will be removed indefinitely. The ART communication

actions should be designed in a manner that the sounds and lights enhance the

clinician or patient experience with the assistive robot. Future studies using the

iterative design process should explore clinician preferences for the best interaction

with the sounds and lights, as the results of the one proposed (the state of ART) do not

show a high acceptance of the platform.

Finally, the clinicians provided an expanded list of patient characteristics for

an NVC platform. Thus, the clinicians provided further clarity to the question: What

are the requirements for an NVC platform used in the rehabilitation of post-stroke

patients? For the sounds, these characteristics included a patient who is cognitively

intact but has visual and/or mobility issues. For the lighting sequences, these

characteristics included a patient who is 1.) cognitively intact with 2.) visual or 3.)

mobility issues; a patient who is 4.) not verbal, 5.) not blind, 6.) not suffering from

severe traumatic brain injury, 7.) not susceptive to seizure; as well as a patient who

might be 8.) hard of hearing, 9.) in need of visual feedback or 10.) in need of extra

lighting to deal with depression. Future research should explore these patient

characteristics and seek to design a communication platform to address the needs of a

broader, non-stroke related patient population with similar characteristics.

5.4.3 Phase III Discussion

Will clinicians prefer an Assistive Robotic Table with an NVC platform over

current stroke patient therapeutic practices? In phase III, the research team measured

70

the effectiveness of the NVC platform by having the clinicians respond to the

platform without training by selecting NVC actions, complete an SUS survey, and

explain their NVC actions selections. As was shown -- the low correct selection rate,

a marginally acceptable SUS score, and clinician comments equating the lighting

sequences and sounds to other NVC actions -- these results suggest that the NVC

platform embedded into ART is not preferred over current stroke therapeutic

practices. Furthermore, a goal of the research team was to design an intuitive

platform. However, these results suggest that a complex platform, like the one

designed, requires adequate training before use. An in-depth discussion of these

results is presented in the following section.

Phase III sought to quantify the usability of the designed ART communication

platform. Initially, clinicians were asked to match each ART communication action

with a presented light sequence, sound, or a combination of light and sound. Despite

clinicians being a part of the iterative design process, without training before the

testing session, clinicians were unable to correctly select the actions when presented

to them. As stated previously, 10 of 13 actions had a less than or equal to 30% correct

selection rate (trimmed M=3.38, SD=1.41). These results present two issues with this

research method. The first issue was the research team’s ability to correctly and

naturally map the lights and sounds to each action without clinicians having prior

knowledge of the platform presented to them. One method that might be beneficial to

future research would require clinicians to develop the sounds and lights themselves.

71

Another method might include multiple iterations of the phase I sound and light

creation sessions by the research team. The second issue is the training required to

use the designed platform. This training might be similar to the training required to

use any technological device (e.g., phone, television, computer, etc.). Future research

might explore how much and when training is required.

Important results of phase III included how clinicians made their choices and

how to improve the platform. Primarily, clinicians used the sounds or lights

presented to them to decide on the action. One participant stated that he or she used

the research assistant’s demonstration of a gesture-based action (Something in the

way) to make a decision. However, clinicians stated, “It sounds like . . .” or “It looks

like . . .” as they attempted to interpret each action.

The clinicians stated that some actions required different sounds or lights to

make the action intelligible. For example, clinicians stated that Emergency needed a

sound, Stop needed a stronger sound, and Go and Come needed a different light

sequence. However, this is in contradiction with a large majority of clinicians who

stated that these actions could be used with training. In previous phases, the

Emergency sound did not have a majority preference, and the sounds did not satisfy

clinician preferences for Emergency. However, when asked to develop new sounds,

clinicians were reticent. This illustrates the point that more iterations by the research

team are needed.

72

As an extension of these results, clinicians stated that they often confused the

Can’t do, Stop, Do not understand request, and Something in the way actions. All

four of these actions were gesture based commands and communicated with at least a

sound. While Do not understand request and Something in the way also

communicated with a lighting sequence. Without training, Something in the way had

the highest correct selection rate at 50% and Do not understand request had the

lowest correct selection rate at 0%. In the current intended ART interaction, the

gesture command will not change. Therefore, clinicians should clarify how they view

each of these NVC actions and their relation to ART. In future iterations of this study,

the research team should provide multiple iterations of the NVC sounds and lighting

sequences at multiple times throughout the study (there was only one pre-study

creation phase for the NVC actions). Finally, each of these NVC actions was

evaluated with the clinician seated in front of ART. In the future, clinicians should

use ART as it is intended, by positioning it around a hospital room, and encounter the

NVC platform in an everyday environment. This may change the clinician’s

perspective on the NVC actions and the way each action is presented via the lighting

sequences and sounds.

Finally, based on the SUS score, the NVC platform was not ready to be

implemented in current rehabilitation practice. As stated previously, when comparing

the NVC platform SUS score (trimmed M=50.31, SD=16.93) to an acceptability

range (marginal low to not acceptable) and to a grading scale (F), the platform was

73

poorly scored. Comparing these results to the results of previous phases, the number

of clinicians who stated that they would communicate with the designed platform

decreased from 100% during phase I to no majority preference (sounds) and

dependency on patient characteristics (lights) during phase II. Also during phase II,

clinicians stated that the designed platform was appropriate for the hospital and was

communicating as expected. Interestingly, in phase III when asked, “If given a period

of training, do you think that this communication method is appropriate for this

action?” -- for all but two actions (Reprimand and Bend in) clinicians had a 66%

majority preference that they could learn the action. Yet, when the clinicians

completed the SUS to evaluate the system, based on the proposed interaction with the

platform and not the number of actions they may have answered correctly, the ART

communication platform scored low. Again, this may illustrate that the current NVC

platform was not ready to be used in a rehabilitation setting and would require further

research.

These results show that as the platform developed, clinician preferences for

the platform declined, despite the high rating by the clinicians for the appropriateness

of the platform in the hospital and its ability to communicate as expected. Comparing

these earlier results with the results from phase III, there is a contradiction, as the

clinicians believed highly in their ability to learn the platform but scored the overall

usability low. These results parallel clinician comments in Manganelli, et al. (2013)

about the current over-the-bed table used at the rehabilitation hospital. Clinicians

74

expressed frustration about the usability of the device but were confident in their

ability to use it to accomplish patient care objectives. Anecdotally, it appeared

clinicians preferred “analog” therapy devices manipulated by the therapist and patient

versus “digital” devices that may not work correctly, may break down, and required

therapist work arounds to make the device work properly. While not investigated as a

part of this research, future research should investigate the contradiction between

clinician feelings to overcome technologies meant to simplify and aid in patient care

and the low usability ratings.

In these three phases clinicians were not asked to estimate how long it would

take them to learn the platform. However, comments by the clinicians about

simplifying the platform to a limited number of gestures, light sequences, and

gestures would speed up the process. Given the current number of possible

combinations clinicians may take less than 30 minutes to learn the platform basics

but, dependent upon how often clinicians interact with ART, it may take a couple of

weeks for clinicians to learn the whole platform. Thus, clinicians may need to carry

around a “cheat sheet” to completely understand the platform - an unfavorable

solution. Future research should investigate possible solutions to simplify the

platform to be more usable.

5.5 Future Directions

A goal that was not met during this study was the development of an intuitive

platform that requires no training to be used in a rehabilitation hospital. Future

75

studies should seek to expand the iterative design process throughout the duration of

the study. Future studies should also develop a method that includes multiple rounds

of divergent and convergent iterative design and evaluation techniques to ensure the

ultimate success of the NVC platform. A refined methodology would also include

patient feedback as well as an expanded participant pool and increased number of

participants to apply the lessons learned in this study to multiple disciplines. Our

current study was limited to the time constraints and ensuring the study was

compliant with the current constraints of working within a real clinical setting.

An unexpected finding of this study was clinician preferences toward new

technology in healthcare. Despite a decrease in clinician acceptance of the platform

and a low usability score, clinicians believed that they could be trained to overcome

the deficiencies of the NVC platform. Future research should attempt to find what

other healthcare technologies clinicians feel they have had to overcome, as well as

why and how clinicians feel that they have to overcome these technologies. These

areas may open the possibility for research and may be appropriate for an

architectural robotic solution.

In NVC research, researchers should consider user population input, ambient

monitoring, the ability of the NVC platform to “understand” (i.e., learn of) its users,

and the ability of an assistive robot like ART to convey information. A specific topic

of future research, derived from this work with clinicians at a rehabilitation hospital,

is an NVC platform that focuses on patient care terminology instead of the state of the

76

assistive technology. NVC platforms must be integral with the robot, developed to

accept multiple sources of input, act on the data given, and present data back to the

user. More broadly, a dynamic NVC like ours may improve job performance of

caregivers and increase patient satisfaction.

77

CHAPTER SIX

FINAL USABILITY STUDY

6.1 Introduction

“Usability testing, in general, involves representative users attempting

representative tasks in representative environments” (Lazar, Feng, & Hochheiser,

2010, p. 252). This methodology provides researchers the opportunity to find flaws

and potential user problems with a designed interface or product (Molich & Nielsen,

1990; Nielsen, 1992, 1993). Subsequently, usability testing requires a small number

of participants, a similar constraint to the elaborated study (Lazar et al., 2010). This

usability study is the conclusion of the exploratory, three phase, participatory design

and evaluation of a non-verbal communication (NVC) platform.

This chapter focuses on a final usability study conducted to find potential

problems and to understand clinician’s thoughts about components of the NVC

platform in a real world environment, a rehabilitation hospital patient room.

Although the the ambient monitoring NVC action (Emergency) and the NVC

notification action (Something in the Way) were hardwired into the system, clinicians

understood and interacted with the platform. Also, clinicians observed a gestural

interface, a proposed way to interact with the NVC platform, as it interacted with the

Assistive Robotic Table (ART) in real-time. The results of this study are presented in

the following sections.

78

6.2 Participants

Volunteers for this study consisted of research team members and a

convenience sample of clinicians at Roger C. Peace Rehabilitation Hospital (RCP).

Eleven subject-matter experts – all clinicians, including doctors and occupational and

physical therapists – participated in the final usability study of the research. In the

interest of protecting the privacy of this small, exploratory sample population and

based upon the conditions of the approval for this study design by the hospital's

institutional review board, demographic data are not presented here.

6.3 Study Design

6.3.1 Independent Variables

Independent variables for the study included two NVC actions, Emergency

and Something in the Way and three NVC gesture commands Rest, Therapy, and Up/

Down.

6.3.2 Dependent Variables

Dependent variables included open-response and forced choice questions

about the Emergency and Something in the Way actions, open-response questions

about the Rest, Therapy, and Up/Down gestures, LIKE, NEED, and EASY TO USE

subjective preference ratings for each command as well as for the overall NVC

platform, and a System Usability Scale for the overall NVC platform.

79

6.4 Procedure

Figure 6.1: Presented is the proposed NVC gesture command interface. Each gesture must be
activated and begun in a ready position before beginning the command.

Clinicians at RCP completed the usability study in an individual session.

Eleven individual sessions were conducted over two days in a hospital patient room.

This session had multiple aims, as it was the final usability session for ART and the

NVC platform. Thus, the clinician was told the purpose of the study was to evaluate

the usability of the Assistive Robotic Table: 1.) around the bed, 2.) around a chair for

therapy, and 3.) a gesture command interface for the NVC platform. As a part of the

study session, the clinician positioned around the room a fully functioning final ART

prototype, integrated with the NVC platform consisting of lights and sounds. Each

session had one research moderator and one note-taker. Each person sat in the room

but out of the way of the participant. Two feedback methodologies were used: a

forced-choice methodology and open-ended response.

80

Figure 6.2: Presented is the NVC platform evaluation set-up for the Usability Test. When the Down
button was pressed the first time, the Something in the way action activated.

Figure 6.3: Presented here are the NVC platform components. The LEDs make up the lighting
sequences and the Microsoft Kinect® activates the gesture command interface. (Not pictured are the

speakers.)

81

To begin the study, ART was in its lowest possible position and located

against the wall perpendicular to the hospital bed. The clinician was instructed to

move ART over to the bed and position ART over the bed, as if a patient were using

ART to eat and then to read by extending the flip-up surface. When the clinician

pressed the “up” button for the first time, the Emergency NVC action would activate.

Then the participant answered two open-ended questions as well as a forced-choice

question about interacting with the Emergency communication action. Each clinician

was given a printed sheet of possible NVC communication actions to answer the

forced-choice question. When the participant pressed the “down” button for the first

time, the Something in the Way NVC action would activate. The clinician would

evaluate Something in the Way similar to the Emergency action. The Something in the

Way action did not operate for one participant. After completion of the ART portion

of the usability study, the clinician evaluated three NVC gesture commands -- Up/

Down, Therapy, and Rest -- that might be used to interact with ART. (See Appendix

V for a complete list of questions.)

To evaluate the gesture commands, the research moderator demonstrated how

to activate the command and how to begin the command. In response, ART would

move in a preprogrammed way. Up/Down was programmed to move in real-time up

or down, dependent upon the movement of the moderator; Therapy was

preprogrammed to move up for a designed interval; and Rest was preprogrammed to

move down for a designed interval. To evaluate the Therapy gesture, the clinician

82

was told to imagine that he or she performed therapy with the same patient and at the

same height (33 inches from the floor) each day and would use this gesture to

position the table. The therapist would then use the Therapy command to position

ART to a preprogrammed height to begin therapy. When evaluating the Rest

command, therapists were told to imagine that after completing a meal a patient

would push ART away from the bed. The patient would then use the Rest command

to position ART to a preprogrammed, desired height next to the bed.

Figure 6.4: Presented are the components that comprise the NVC platform.

After the completion of each gesture, the clinician answered open-ended

questions about their preferences for the gesture and ART’s response, and completed

subjective preference ratings (LIKE, NEED, and EASY TO USE)-- three scales

developed within our lab to triangulate preferences (Smolentzov, 2010). Refer to

Table 6.1 for the subjective preference rating scales. After answering questions

83

related to the final gesture, the clinician answered open-ended questions about using

ART with the intended NVC platform gestures.

1 2 3 4 5

Like Strong Dislike Dislike Neutral Like Strongly Like

Need Never Need Rarely
Need

Sometimes
Need

Often Need Always Need

Easy to
Use

Strongly
Disagree

Disagree Neutral Agree Strongly Agree

Table 6.1: An example of the subjective preference rating scales used to evaluate the NVC platform.

Finally, the clinician completed the evaluation by answering questions about

his or her acceptance of the NVC platform, an estimation of how long it would take

the clinician to learn the platform, if the NVC platform was a productive line of

research, and whether the clinician would rather speak to ART and have ART speak

back to him or her. The clinician also completed the subjective preference ratings and

a SUS survey to evaluate the entire NVC platform, including the lighting sequences,

sounds, and gesture interface. After the completion of the session, the clinician was

thanked for his or her time and excused. The session took less than 60 minutes.

6.5 Results

The results focus on three main areas. The first area is whether the clinicians

understood the NVC actions within the context of the usability testing within a

hospital patient room. The second area is the clinician’s acceptance of the proposed

gesture interface as well as the clinician’s acceptance of the overall NVC platform.

The results are discussed in the subsequent section.

84

Figure 6.5: Presented are the six proposed ART positions. It is intended that each of these positions
would address a particular ART required function.

When clinicians were presented with the Emergency NVC lighting sequence

action, fast paced flashing lights, clinicians chose other NVC actions including: Can’t

do (5), I’m thinking (2), Something in the way (2), Stop (1), and Do not understand

request (1). One clinician stated, “I thought that flashing light was emergency, but

because of what I did, I would say it's emergency because there's nothing … I'll pick

85

‘can't do.’” In order to make their decisions (N=10), the clinicians primarily used the

lighting sequence presented (6). In most cases the clinicians knew that the NVC

action was trying to alert them about something (5) but they were not sure what the

NVC alert meant (4).

Did you like ART’s response to the gestured command?Did you like ART’s response to the gestured command?Did you like ART’s response to the gestured command?Did you like ART’s response to the gestured command?

Yes Maybe No

Up/Down 10 1 0

Therapy 7 2 2

Rest 10 0 1

Table 6.2: Presented are the clinician preferences for each of the gesture commands. Compared with
the other two gesture commands, the clinicians were reticent about accepting the Therapy command.

They cited the desire to use conventional rehabilitation practices.

When clinicians were presented with the Something in the Way NVC lighting

sequence and sound action, the lights would individually illuminate, a sound played

sounding like “urrp urrp”, and then the lights individually turned off, clinicians

(N=10) chose Can’t Do (4), Something in the Way (2), I’m Thinking (1), Stop (1), Do

not Understand Request (1), and “Maybe I’ve put it down” (1). When making their

decisions, clinicians used both ART not doing the action requested (down) and the

lighting sequence (4), the lack of movement (3), or the lighting sequence (2).

Clinicians had mixed thoughts about what had occurred with no major preference--

stating “it couldn’t do it” (3) or “it’s too close to the bed/patient” (2). One clinician

stated, “Well, it's not happy about something; I would think I did something wrong.”

These results show that the clinicians understood that the NVC was trying to alert

86

them to something, but the alert was not intuitive.

Overall, when the clinicians evaluated the NVC gesture commands, the

clinicians had a strong majority like preference for ART’s response to the command.

Refer to table 6.2 for the clinicians’ preference for each of the gesture commands.

When asked what they liked about ART’s response to the Up/Down gesture, clinicians

stated, “It’s intuitive” (4). When asked what they liked about ART’s response to the

Therapy gesture, clinicians stated, “It responded” (4). Even though the participants

were told that the Therapy gesture was based on the American Sign Language gesture

for Therapy, one clinician stated, “Because the gesture went down and the table went

up - it was a confusing gesture - the direction of the table being inconsistent.” When

asked what they liked about ART’s response to the Rest gesture, clinicians stated, “it

responded” (4) and “preprogrammed to certain height with a specific gesture” (3).

Primarily, clinicians liked that ART responded to the command given. These results

combined with the ratings (see Table 6.3) show the clinicians’ preferences for the

NVC platform.

When using the three rating scales (LIKE, NEED, and EASY TO USE) for

each of the NVC gesture commands, the clinicians “Liked” each command.

However, the clinicians thought that the Therapy gesture would only be “Sometimes

Needed”. Clinicians were between “Neutral” and “Agree” for EASY TO USE

concerning patients using the Rest command, especially patients in the bed. Overall,

clinicians rated the NVC platform as “Like” and “Often Needed”, but were between

87

“Neutral” and “Agree” about its ease of use. In order to fully understand these

ratings, clinicians were asked a series of open-response questions.

Up/Down Therapy Rest Overall

Like 4.18 3.82 3.82 3.82

Need 3.73 3.18 3.73 3.82

Easy to Use 4.00 3.64 3.45 3.45

Table 6.3: Presented are the subjective ratings for the overall NVC platform and each of the gesture
commands. Similar to the results of Table 6.2, the Therapy command scored the lowest for the Need

rating.

When asked, “If ART had the ability to ‘communicate’ the way the research

team proposed, would you use our platform?”-- eight clinicians stated yes, two stated

no, and one stated maybe. Of the participants who stated they would use the NVC

platform, the clinicians stated “ease of use” (4), “more functionality” (3), and “patient

autonomy” (1) were the reasons they would use the NVC platform. However, not all

of the clinicians preferred to use the platform. One of the clinicians who would not

use the NVC platform stated, “Well I just find it ridiculous to be honest it's

completely non-functional it's way over the top. It's going from the first wheel to the

spaceship - it's too big of a jump. Just in this setting more complicated is not better in

a hospital setting.”

Continuing this line of questioning, when asked, “Do you think this is a

productive line of research?”-- seven clinicians stated yes, three stated no, and one

stated maybe. Of the participants who stated the NVC platform is a productive line of

research, the clinicians stated the reasons as, “there is a general need” (5), “the

88

patients have a need” (1), and “the technology is less expensive” (1). The participant

who was not sure stated the following:

“I think there are a lot of good features that are a part of the table that would

be beneficial for patients and care providers. There are some things that feel

more frustrating or not necessary. If people have the money to purchase and

use it at home [but] we have difficulty to get [the] patient to use a shower

chair at home. I don't think they would be useful without money.”

One participant who stated they did not think it was a productive line of research

stated the following:

“I just I think it's over the top for this particular setting and clientele I don't

really understand if it's be helpful for patient and helpful for clinicians. I think

it would be 10 times worse and it’s very bulky. For clinicians our time is

valuable and limited and it would cause me more stress.”

These statements show that the NVC platform has barriers it will need to overcome in

order to be accepted by a wider audience within the rehabilitation setting.

Finally, when asked, “Would you have preferred to simply speak to ART and

ART speak to you?”-- six clinicians stated yes, four stated no, and one stated maybe.

Of the participants who stated that they would prefer to speak to ART, the clinicians

stated “speaking is easier than hand gestures” (4) and “the technology is

appropriate” (2) as reasons. Of the participants who stated that they would not prefer

to speak to ART, the clinicians stated “hand signals are easier in a room filled with

89

other noise” (2), “voice recognition is difficult” (1), and “I don’t like Siri” (1) as

reasons. One participant stated, “To me hand signals would be easier. I speak to the

patient all time and how would the table differentiate from me talking to the patient

[versus the] table?”

In your estimation, how long would it take
you to learn how to use the communication
platform you used today?

In your estimation, how long would it take
you to learn how to use the communication
platform you used today?

30 Minutes 3

1 Hour 2

1-2 hours 1

A couple of days 1

A few days - consistently 1

1 week - consistently 1

2 weeks 2

Table 6.4: Presented are the clinicians’ estimation of time to learn the presented NVC platform. It is
disconcerting that the current platform may require up to two weeks to learn. Given the time sensitive

nature of healthcare it would be necessary to learn the platform in under one hour.

Despite the clinicians stating a preference for this NVC platform, when the

clinicians rated the ART communication action platform using the System Usability

Scale (SUS) (trimmed M=40, SD=14.49), it was rated poorly. Based on Bangor,

Kortum, and Miller (2009), when comparing the SUS score to an acceptability range

developed by the authors, the SUS score is “not acceptable”. Also using Bangor et al.

(2009), when comparing the SUS score of the ART communication action platform to

a grading scale, the SUS score receives an “F”. The result of SUS contradict the

clinician’s statements about the NVC platform and will be discussed further in the

90

subsequent section.

Finally, the clinicians were asked to estimate the time required to train and

learn the NVC platform. When asked, “How many teaching intervals (response and

feedback) would you be willing to go through before you would expect ART to learn

a given gesture command?”-- clinicians stated about three times (trimmed M=2.94,

SD=1.18). When asked how long would it take for the clinicians to learn the

platform, six of 11 of the clinicians stated under two hours. Refer to Table 6.4 for a

complete breakdown of the clinician’s estimation. A discussion of the results is

presented in the subsequent section.

6.6 Discussion

The usability study sought to understand clinician preferences for an NVC

platform comprised of lights, sounds, and gestures for a robot, envisioned for intimate

human-robot interaction. The study sought to understand how the NVC platform

would perform when clinicians used the Assistive Robotic Table, clinician

preferences for a gesture interface, and questions about clinician acceptance and

learnability with the NVC platform. In the subsequent sections is a discussion of the

findings for this study.

6.6.1 General implications of findings

The usability study provided 1.) the ability of clinicians, without training, to

understand two NVC actions; 2.) clinician preferences for the gesture interface; 3.)

91

clinicians’ estimation of the time required to teach and learn the NVC platform; 4.)

clinicians’ preferences for a verbal interface versus the designed NVC platform; 5.) a

System Usability Scale score intended to measure the general usability of the overall

NVC platform; and 6.) whether the clinicians would use the final designed NVC

platform.

6.6.2 General limitations of study

The generalizability of these findings is limited by the following factor.

Similar research projects, like the one conducted, have a small sample size

(Scassellati, Admoni, & Mataric, 2012); evaluation during this study was conducted

with a small sample (11) of clinicians from Roger C. Peace Rehabilitation Hospital in

Greenville, South Carolina. As no demographic data were collected, these results

cannot be generalized to other medical disciplines either at Greenville Health System

or in the Southeast (i.e., cancer center, children’s hospital, heart and vascular care,

general medicine, primary care, surgery, women’s hospital).

6.6.3 Usability Study

At the beginning of the study, clinicians were presented with two NVC

actions. While the clinicians knew ART was trying to alert them to something,

overall they were unsure of what the alert meant. Despite the clinicians participating

in the design of the NVC platform and using ART in a more realistic scenario, these

results support the results of phase III that users will require training before using the

92

platform. These results suggest that the platform does not meet a goal of being

intuitive without training. Future research should seek to design a system that is

intuitive that requires minimal lighting sequences, sounds, and gestures commands.

Future research should also design and evaluate an appropriate training protocol to

ensure users adopt the NVC platform quickly.

Overall, the clinicians preferred the presented gestures. The preferences are

shown by clinician responses to the open-response questions and Table 6.3.

However, when asked after each gesture, “What would you like to change about this

response?”-- clinicians stated “nothing” 16 times. While there was no majority

preference for what to change for each gesture, discussing the results for each gesture

provides direction for future research.

When addressing the Up/Down gesture, clinician statements included: going

up and down a distance from the clinician would not be helpful; a desire to move

ART without a delay (currently there is a recognition and then a ready phase); and

there were concerns about about provider and patient safety, provider acceptance of

the gesture technology, and patient requirements to raise ART while lying or sitting in

bed. When addressing the Therapy gesture, clinician statements included: a

preference for therapist only controls by keypad not by gesture, a preference to use

the gesture to conduct therapy at multiple heights, a desire to change the gesture, and

questions what other gestures would be required to make the table work at different

heights -- such as a nurse setting up the table for the patient to eat. When addressing

93

the Rest gesture, clinician statements included: a desire for a more consistent response

to the gesture, a desire that the response would be similar to the gesture, and a desire

to change how the table responded to the gesture. Additionally, there was a concern

about the patient being able to learn the Rest gesture and a desire for voice control.

Each statement for each of the gestures provides opportunities for future research, as

they were not addressed within this study.

When asked about the time required by ART to learn a gesture command

(trimmed M=2.94, SD=1.18), clinicians stated less than 3 intervals. This will require

a learning algorithm that is able to quickly adapt to user input, an area of future

research. As well, six of 11 clinicians stated a desire to be able to learn the platform

in under two hours. However, five clinicians stated that what they saw would require

anywhere from a couple of days up to two weeks. This is disconcerting for a platform

desired to be intuitive and in a time sensitive industry.

Clinicians did not have a preference about speaking to ART instead of using

the designed NVC platform. Some participants stated that speaking is easier than

using hand gestures and citing that the technology is available; however, two

participants mentioned that the other sounds in the hospital room could interfere with

a verbal interface. This contradiction may provide an opportunity for future research:

Where are there spaces in society with multiple stimuli, always or sometimes present,

that would affect the success of a verbal interface? How would an NVC platform best

serve those areas?

94

However, there are limitations of the current NVC platform. As mentioned,

one limitation is the patient’s cognitive and physical characteristics. Another

limitation is the available technology. Currently, the Microsoft Kinect sensor used to

control the NVC platform requires the user to be a set distance away from ART. As

suggested in Phase III, the NVC lighting sequences and sound feedback should be

limited to a small number as to not overburden the clinician or patient with too much

to learn. This limitation also supports the amount of time the clinicians estimated for

the NVC to learn a given gesture and for the clinician to learn the platform. As these

results suggest, a majority of the clinicians stated that non-verbal communication is a

productive line of research, even stating a need for this type of technology, but it

requires more research to determine where in the healthcare setting it would be most

effective.

In this study, clinicians stated a strong preference to use the NVC platform (8

of 11). These results support the clinicians’ unanimous agreement to use the platform

during Phase I, despite not having a preference during Phase II. These results may be

the result of a highly developed platform and using the platform in a hospital room.

Interestingly, these results are contrary to the System Usability Scale score.

A surprising finding was the clinician’s System Usability Scale score

(trimmed M=40, SD=14.49). The score rated the platform as “not acceptable” and as

an “F”; however, this is counter to what the clinicians stated about the platform. In

support of the platform, clinicians stated not only that they preferred the platform and

95

that it was a productive line of research but also they did not prefer a verbal only

platform. One possibility for this contradiction is that the number of proposed

gestures (7 - Give, Take, Eat, Rest, Read, Therapy, and Up/Down) and the number of

individual NVC actions (13, from phase III) overwhelmed the clinicians. However,

in this study clinicians were only presented with two NVC actions and three gestures.

The EASY TO USE rating (3.45) for the overall NVC platform may provide a clue

about the low SUS score but in this study clinicians were not asked to explain the

given ratings. Future studies should seek to answer why clinicians had these

preferences.

6.7 Future Directions

How might an NVC platform continue to support life-long rehabilitation?

While this question was not answered directly, it appears that an NVC platform must

be a part of the patient’s life before an illness, such as a stroke, occurs. Aging with

the NVC platform (integrated into ART) already in place allows high-functioning

users to communicate with assistive robots in his or her everyday life, without the

stress of learning the platform and coping with the onset of the illness. Thus, the

platform should be intuitive. An examples can be seen in the results of phase III and

the usability study whereby the clinicians were unable to intuitively use the platform

without training. Future studies should seek to expand the iterative design process

throughout the duration of the study and should attempt to reduce the number of NVC

actions and gestures required to adequately address the platform.

96

Additionally, the results of phase I provided information about where the

NVC platform would be best utilized in the rehabilitation setting. Phase II extended

these results by providing information about the required patient characteristics to use

the NVC platform. Furthermore, the results of the usability study provided future

research questions about the gesture command interface. These questions also

provide the opportunity for a cross-disciplinary research effort. The research

elaborated here benefits from a cross-disciplinary team of architects, engineers, and

human factors researchers by which a complex system like the NVC platform has

been designed.	 	 In the future, researchers should synthesize theses requirements to

determine how to better implement an NVC platform in the rehabilitation setting.

Finally, from the results in phase I and in the rehabilitation hospital setting,

the NVC platform should focused on the clinicians and their use of patient care

terminology. This may require the NVC to adapt to its surroundings, applying certain

features at certain times. As human to human conversation is subjective and/or

contextually based so should an NVC platform conform to its surroundings. Future

research should investigate how an NVC might change from the home to the

rehabilitation setting and back to the home to adequately facilitate life-long

rehabilitation.

Non-verbal communication requires further research to determine its place in

the healthcare industry and outside it, in our everyday lives. This research has

explored NVC as a part of the Assistive Robotic Table in the area of stroke

97

rehabilitation. Arguably, the NVC platform presented might work very well outside

the clinical setting for non-clinical users interacting with and supported by assistive

robots in everyday life. As we come to interact with a broad-range of Assistive

Robotics in our everyday lives -- whether at work, school, home, or the hospital --

NVC platforms must be intuitive, integral with the robot, and adaptable as they

promise to be an important mode of human-machine communication.

98

APPENDICES

99

Appendix A

Institutional review board approval letter

100

101

Appendix B

Informational letter

Nightstand Study Information Sheet– October 28, 2011 IRB File #00012187
 Page 1 of 1

 Greenville Hospital System

 IRB Number: Pro00012187
Approved: 10/19/2012
Expiration: 10/18/2013

RESEARCH STUDY INFORMATION SHEET

An Assistive, Robotic Table [ART] Promoting Independent Living

Study to be Conducted at: Roger C. Peace Rehabilitation Hospital
 701 Grove Road
 Greenville, SC 29605

Sponsor Name: National Science Foundation

Principal Investigator: Kevin Kopera, MD 864-455-6262

INTRODUCTION
You are being asked to participate in a research study. The Institutional Review Board of the Greenville Hospital
System has reviewed this study for the protection of the rights of human participants in research studies, in
accordance with federal and state regulations. However, before you choose to be a research participant, it is
important that you read the following information and ask as many questions as necessary to be sure that you
understand what your participation will involve.

PURPOSE AND PROCEDURES
The purpose of this research is to design and build better furniture for hospitals. You are being asked to
participate in a study approximately once a month for an hour per session. Your participation will involve:

o Being interviewed in a mock hospital room where you will answer questions regarding how you interact
with patients and the room’s equipment and furnishings

o Complete a card-sort where you will organize features and ideas written onto individual cards into groups
o Provide your feedback on new furniture designs.

POSSIBLE RISKS AND BENEFITS
There are no known risks associated with this research. No personally identifiable information will be recorded or
used as part of this research study. There are no known benefits to you that would result from your participation in
the study. This research may help design better furniture.

VOLUNTARY PARTICIPATION
Participation in this study is completely voluntary (your choice). You may refuse to participate or withdraw from
the study at any time. If you refuse to participate or withdraw from the study, you will not be penalized or lose any
benefits. Your decision will not affect your relationship with the Greenville Hospital System.

CONTACT FOR QUESTIONS
For more information concerning this study and research-related risks or injuries, or to give comments or express
concerns or complaints, you may contact the principal investigator, Kevin Kopera, 864-455-6262. You may also
contact a representative of the Institutional Review Board of the Greenville Hospital System for information
regarding your rights as a participant involved in a research study or to give comments or express concerns,
complaints or offer input. You may obtain the name and number of this person by calling (864) 455-8997.

A survey about your experience with this informed consent process is located at the following website:

www.ghs.org/research
Participation in the survey is completely anonymous and voluntary and will not affect your relationship with the
Greenville Hospital System. If you would like to have a paper copy of this survey, please tell the principal
investigator.

102

Appendix C

Pre-study sound and light sequences with lab members

Group Sound Light

Up

1 wooop

Up

2 brrrruuupp - (going up - voice
command) increase in pitch -
low to high

series of lights (display) / lights
around the table top (green)

Up
3 wooooooop - wuuuuu two or three for lights - light it up

as the table goes up - so that the
patient knows where the table is on
the track

Up

4 oooooooooo up in pitch -
vrrrrrrrr softer but in pitch -
woooop wooop wooop wooop

green lights should cycle up in 1/10
of a sec like an animation

Down

1 wuuuuu

Down

2 bird - burrrrrrr - high to low (green positive - flashing yellow in
motion - red flash when first
stopped and then green)

Square display with leds - leds
draw the picture of what is
happening - color could all be the
same color ** this goes for all
motions unless otherwise noted

Down

3 wuuuuu - decreasing tone same as up - with an indicator -
like a thermometer

Down

4 wooooooooong decreasing -
quuuiiiisssh (hydraulics) -
sounds that the chairs make
when you let go - in GHS

red lights same as previous

Come

1 breathing out sound/sucking air
in - woooosh

Come
2 wooooiiish - friction sound

Come 3 grrrruuuup - like a fart Natural mapping way ... pattern of
a cross up/down - left/right

Come

4 mmmmmmm - humming yoga
sound

yellow flashing - bedazzled the
front of this on the edge

Go

1 **opposite of come

Go

2 spooosh - friction sound

Go 3 ding once it’s fully retracted -
metal cling

Go

4 swoooosh red (undoing what you just did)
flashing

103

Group Sound Light

Stop

1 click - terminal sound, for
everything that exists / limit (of
action)

Stop

2 bonk - negative sound

Stop
3 car breaking - frrrrrr might be

too harsh (mild sound for
stopping - friction - rub
something and come to a stop)

turn all the lights off - or dim the
lights low light intensityStop

4 beep - one single beep very pale white lights on each
corner / flash red lights around the
table top - square light flash red

Tilt
forward

1 mmmmmm - higher pitch

Tilt
forward

2 burrrrzzzzppp - actuator sound

Tilt
forward

3 sounds should be distinct or like
table raise - bzzzzz

pattern of a forward thing
(animation - needs to be intuitive)Tilt

forward 4 womp womp womp - in
increasing pitch (Mario one
up) / ratching of a roller coaster
- chick chick chick chick

yellow solid color when tilting /
rim of a white light around the
surface - soft white light

Tilt back

1 mmmmm - lower pitch

Tilt back

2 same as forward

Tilt back
3 bzzzzz - tone high to low Pattern of lights for tilting back

(animation - needs to be intuitive)Tilt back
4 womp womp womp womp -

down in pitch / pssssss - bedeet
bedeeet (right before closing -
closing) psssss

red solid when tilting / white light
would cut off

Bend out

1 combination of tilting sound w/
breathing out

Bend out

2 wooo wooo wooo - wooooish -
low/high pitch

Bend out 3 (continuous deeeeee) tone up add a degree for where the patient
is at

Bend out

4 ocean makes waves hitting -
woooo wuuush / vibration
vvvvvvv like a blood pressure
cuff

lt blue just cycles in the arm - can it
glow lt blue

Bend in

1 combination of tilting sound w/
breathing in) -mec

Bend in 2 (shooooo) high/low pitchBend in
3 (same as out) tone down

Bend in

4 wuuuuuuu / air going out sound
- feel and hear

goes to drk blue

104

Group Sound Light

Emergen
cy

1 get out of the way (backing up
or interrupted urp urp urp) spills
versus physical emergencies,
major/minor or levels (issues is
time) urgent need has multiples
- get out way is just get out of
way Clinicians do they agree/
disagree - what else would they
add?

Emergen
cy

2 (beep beep beep - fire alarm
bell)

(flashing red lights)Emergen
cy

3 high pitched beep - dozzzz
dozzz dozzz - like the fire
alarm) (if something is spilled is
different - different pitch or
volume - dooo dooo lower dB)

lots of flashing lights in big case
(frequency changes) (red is only
for emergency case - moving is
green - red is a strong emotion)

Emergen
cy

4 alarm clock - mrrrp mrrrp mrrrp
hey come clean me - HEY
COME HERE NOW same
sound but louder

yellow / red / white flashing
together anywhere there is lights -
same lights - the sound will change
per emergency

Confirm
request

1 tink - mmmhmm

Confirm
request

2 (beep beep - positive) (green) (2 quick flashing lights

Confirm
request

3 (like a chime - ding - dung dung
dung - chord) - just do a ding

make a smileConfirm
request

4 ba da dun - an ok / down tube
for mario da da da - complete
mario sound track - one up

green - green and blue lights /
quick cycle

Do not
understan
d request

1 woooomp

Do not
understan
d request

2 boooop Yellow - do not understand
Red - flash can’t do
Flash boop boop (color doesn’t
matter)Do not

understan
d request

3 (dun dun - quick) two separate
things - make it sound like a
question - question mark - dun
dun (second have a higher pitch
than the first)

a sad face - or a question mark
Do not

understan
d request

4 urrrrrr - like a dog / aant aant red and yellow / orange with a
quick cycle to go with the noise

Pet

1 cat purr

Pet

2 purrrrr What’s a happy color? (affirmative
color - green)
Would need to use color in some
way?

105

Group Sound LightPet
3 (joyful sound - doo oooop -

sounds like a smile - clapping
sound)

a smile
Pet

4 purrr / there is no sound for that
- pop

fade white - to green - to white

Repriman
d

1 womp wooooomp

Repriman
d

2 burp burp - sad/low tone Red
Light in sequence with the beepsRepriman

d 3 (oooooooo - bomp bomp -
(decreasing tone) i know i’m
not doing good)

a sad face if you’ve done
something wrong

Repriman
d

4 facebook pop / aaant build to red from white

Somethin
g in the

way

1 emergency

Somethin
g in the

way

2 same noise as emergency -
variable noise beeep beeep -
slower beep

Yellow - warning
Flashing yellow - indicating a
hazardSomethin

g in the
way 3 boo boo - very short two short flash - rest for a while -

two short flash (yellow)

Somethin
g in the

way

4 beep beep / aaaaaaaant i can’t
go there is something in the way

cycle the rainbow / flash red
around

Swipe

1 wooosh

Swipe

2 swooosh

Swipe 3 shoooooSwipe
4 swipe from an iphone -

swoooosh / zip up sound
zzzzziiiip

Drag

1 ** none provided

Drag

2 feel the click - rougher - buzz or
screech

Drag
3 woooo

Drag 4 dadadada / i want a buzz but
nothing during - want a sound
when you touch and untouch it -
soft pop / same sound for
contact uncontact

Select

1 ding

Select

2 telephone dial - or a beep

Select 3 ca tah - like the mouseSelect
4 button click - click - like the

game of trouble middle button /
check

Can’t do
I’m

thinking

106

Appendix D

Pre-study sample survey page with lab members

107

Appendix E

Independent Variables

Phase IPhase IPhase IPhase I

SoundSoundSound Light

Bend in Drag Reprimand Individual LEDs

Bend out Emergency Stop LED Screen

Can't do Go Swipe

Come I'm thinking Tilt Back

Confirm Request Pet Tilt forward

Do not understand
request

Select Up

Down Something in the way

Table 3.1: Presented are the independent variables tested during Phase I. Each sound had two sounds
associated with it, were tested audibly, and the clinicians selected their preference between the two.
The clinicians chose between the lighting options and used the chosen option to place the options on

ART.

108

Phase IIPhase IIPhase IIPhase II

SoundSound LightLight

Button Gesture Button Gesture

Up Come Up Come

Down Go Down Go

Tilt forward Stop Tilt forward Stop

Tilt Back Confirm Request Tilt Back Confirm Request

Emergency Do not understand
request

Emergency Do not understand
request

Pet Can't do Pet Can't do

Reprimand I'm thinking Reprimand I'm thinking

Something in the way Bend Out Something in the way

Bend In

Table 3.2: Presented are the independent variables tested during Phase II. Each sound and lighting
sequence tested had two options, were either button or gesture actuated, and the clinicians chose which

sound or lighting sequence best represented each NVC action.

Phase IIIPhase IIIPhase III

Sound Light Sound And Light

Button Button Button

Down Reprimand Tilt Forward

Bend In Tilt Back

Gesture Gesture Gesture

Stop Emergency Go

Can't Do I'm thinking Do not understand request

Come Something in the way

Table 3.3: Presented are the independent variables tested during Phase III. Without prior training, the
clinicians listened to or viewed the NVC action, chose what action they thought it was, and, if
necessary, stated whether the sound, lighting sequence, or both together best demonstrated the

presented action.

109

Appendix F

Phase I: Script

Introduction:
Thank you all for coming. Please read the research study information sheet and let
me know if you have any questions.

Today we are going to look at two features – lights and sounds - that we’d like to add
to the Assistive Robotic Table. This line of research comes from social robotics and
linguistics. It is exploratory and will help us as we continue to develop the
communication aspect in future research projects. We’d like your answers today to
focus on a specific population - stroke patients. The middle 50%. Are there any
questions?

Before we begin I’ll ask you some questions concerning communication and stroke
patients as it relates to ART.
Tony will ask the questions – Kylie, Joe, Jeremy will record answers per participant.

If ART had the ability to “communicate,” would you communicate with it?

What would you want ART to communicate?
What information should ART communicate to patients?
What information should ART communicate to clinicians?
What information would you communicate to ART?
What type of information would be communicated by lights?
What type of information would be communicated by sounds?
What type of information would be communicated by lights and sounds?

How would you want ART to communicate with you?
How would you communicate with ART?

In your experience with stroke patients, what would be the difficulties of this
type of communication system and stroke patients?

If ART had the ability to “communicate,” would you communicate with it?

Now we’ll look at some prototype sound configurations for the different movements
ART may utilize. But, before we begin…

110

Johnell had difficulties distinguishing between the sounds created due to
hearing loss – so because of this - Do you know if you have any hearing loss?

I’ll demonstrate each action first and then I will go through each action and its
corresponding sound individually.

Forced choice A/B sounds. Tony will play each sound group – the participants will
respond their answers to recorders.

Finally we’d like to look at a prototype lighting configuration. The lighting in this
scenario is used to communicate different movements ART may take. This is not
reading or task lighting that might be applied to ART.

Forced choice A/B lights. Tony will play a lighting animation – the participants will
respond their answers to recorders.

On the sheet provided, please draw where you would locate the lights.

What would you customize about the lighting configuration you chose?

I have two final questions for you.

If ART had the ability to “communicate” the way we proposed, would you use
our system?
Do you think stroke patients would use the system we proposed?
**What would you say the difference is between the communication system
you proposed and the one we presented?

I thank you for participating today. Between now and May we will be conducting
regular interactions with you. Our research team will be in touch with you soon to
schedule your next interaction. I thank you again for participating. Have a great day.

111

Appendix G

Phase I: Data Template

Participant XParticipant X Participant X

Open ended questionsOpen ended questionsOpen ended questionsOpen ended questions
If ART had the ability to
"communicate," would you
communicate with it?

What would you want ART to
communicate?
What information should ART
communicate to patients?
What information should ART
communicate to clinicians?
What information would you
communicate to ART?
What type of information would be
communicated by lights?
What type of information would be
communicated by sounds?
What type of information would be
communicated by lights and sounds?

How would you want ART to
communicate with you?
How would you communicate with
ART?

In your experience with stroke
patients, what would be the difficulties
of this type of communication system
and stroke patients?

If ART had the ability to
"communicate," would you
communicate with it?

112

Forced Choice : SoundsForced Choice : SoundsForced Choice : SoundsForced Choice : Sounds

Up
Down
Come
Go
Stop
Tilt forward
Tilt back
Bend out
Bend in
Emergency
Confirm request
Do not understand request
Pet
Reprimand
Can't do
I'm thinking
Something in the way
Swipe
Drag
Select

Forced Choice : LightsForced Choice : LightsForced Choice : LightsForced Choice : Lights

Lighting display

What would you customize about the
lighting configuration you chose?

Open ended questionsOpen ended questionsOpen ended questionsOpen ended questions
If ART had the ability to
"communicate" the way we proposed,
would you use our system?
Do you think stroke patients would use
the system we proposed?

113

**What would you say the difference
is between the communication system
you proposed and the one we
presented?

114

Appendix H

Phase I: Light Panel

115

Appendix I

Phase I: Distributed Lights

116

Appendix J

Phase I: Lighting Data Collection Sheet

117

Appendix K

Phase I: Light Heatmap
C

u
st

o
m

iz
e

co
lo

rs

In
d

iv
id

u
al

 L
ED

lig

h
t

p
la

ce
m

en
t

strin
g lig

hts

su
rf

ac
e

lig
h

t
fo

r
vi

si
b

ili
ty

P
at

ie
n

t
re

la
te

d

D
ia

g
n

o
st

ic
 c

o
n

tr
o

l
lig

h
t

p
an

el

U
n

d
er

 s
id

e
lig

h
t

co
n

tr
o

l b
u

tt
o

n
s

lit
 fo

r
st

a!

B
as

e
lig

h
t

P
at

ie
n

t
lig

h
t

co
n

tr
o

l p
an

el

ye
llo

w
b

lu
e

g
re

en

3
-4

 li
g

h
ts

 c
o

m
b

in
ed

@

 e
ac

h
 lo

ca
ti

o
n

A
ls

o
 o

n
 R

ev
er

se

si
d

e

118

Appendix L

Phase II: Script

Thank you for participating in our next phase of the Assistive Robotic Table study. In
front of you will see the research study information sheet please review it and let me
know when you are finished. Do you have any questions?

Answer any questions

Today you will be evaluating the nonverbal communication feature of the Assistive
Robotic Table. You will evaluate the sounds and the lights that make up the
communication system.

Part I

In the first part you will evaluate the sounds. I want you to evaluate the sounds based
on our medium persona, Ginny.

Hand over the persona.

For each sound played, please tell us either A, B or Neither. If you choose Neither -
please tell us why and what the sound should be. Do you have any questions?

There are two types of communication with the sounds - either gesture or button
based. The gesture that I make is arbitrary but it shows you the possibility of the
system. We intend in the future to have a vocabulary of movements. Due to the
nature of our system, I want you to be aware that there will be some down time in
between sounds as Jessica loads each program.

The first type is __________. The first light is ______. Are you ready to begin.

Part II

In the second part you will evaluate the lights. I want you to evaluate the sounds
based on our medium persona, Ginny.

For each sound played, please tell us either A, B or Neither. If you choose Neither -
please tell us why and what the sound should be. Do you have any questions?

119

There are two types of communication with the sounds - either gesture or button
based.

The first type is __________. The first light is ______. Are you ready to begin.

120

Appendix M

Phase II: Sample Data Collection Template

Participant XParticipant X

Forced Choice : SoundsForced Choice : Sounds
ButtonButton

Up

Down
Tilt forward
Tilt back
Emergency
Pet
Reprimand

GestureGesture

Come

Go
Stop
Confirm request
Do not understand request
Can't do
I'm thinking
Something in the way

Open Ended : SoundsOpen Ended : Sounds

If ART could "communicate" the way we proposed, would you use the sounds?

Are the proposed sounds appropriate for the hospital setting? Why?

Are the proposed sounds communicating what you would expect them to
communicate? Why?

121

Are the sounds proposed easy to use?

Are the sounds proposed easy to understand?

When would the sounds be used?

What would you want to customize about the sounds?

Do you think stroke patients would use the system we proposed?
Could you please describe the characteristics of a patient who might use the sounds?

Forced Choice : LightsForced Choice : Lights

GesturesGestures

Come
Go
Stop
Confirm request
Do not understand request
Can't do
I'm thinking
Something in the way

ButtonButton

Up

Down
Tilt forward
Tilt back
Emergency
Pet

122

Reprimand
Bend out

Bend in

Open Ended : LightsOpen Ended : Lights

If ART could "communicate" the way we proposed, would you use the lights?

Are the proposed lights appropriate for the hospital setting? Why?

Are the proposed lights communicating what you would expect them to
communicate? Why?

Are the lights proposed easy to use?
Are the lights proposed easy to understand?
When would the lights be used?
What would you want to customize about the lights?

Do you think stroke patients would use the system we proposed?
Could you please describe the characteristics of a patient who might use the lights?
If there were ambient monitoring in the room, where would it be placed?
If there were ambient monitoring on the table, where would it be placed to best
serve you as a clinician?

123

Appendix N

Phase II: Final sound and light sequence pairings

ButtonButtonButton GestureGestureGesture

Sound Lighting
Sequence Sound Lighting

Sequence

Bend In ^A Can’t Do B

Bend Out Come ^B

Down A Confirm Request

Emergency A Do not understand
request B B

Pet Go A ^B

Reprimand B I’m Thinking A

Tilt Back A ^B Something in the
Way B A

Tilt Forward A ^B Stop A

Up

Table 4.2: Presented are the clinicians’ sound and light sequence preferences3 during phase II and
tested during phase III. The carrots show specific actions that had a 58% majority and 33% or less

than second preference. The intention of the researchers was to test a complete platform.

124

3A full description of the phase II sounds and light sequence results can be viewed here (link is
available as of 7/26/2013).
http://www.youtube.com/watch?
v=kR2JMkhJBJw&feature=share&list=UUwzcR9h7R6m5B_zQ5E2AHog

Appendix O

Phase III: Script

Thank you for participating in our next phase of the Assistive Robotic Table study. In
front of you will see the research study information sheet please review it and let me
know when you are finished. Do you have any questions?

Answer any questions

Today you will be evaluating the final phase of the nonverbal communication feature
of the Assistive Robotic Table. There will be three parts to today’s session. During
the first part you will confirm the sounds and the lights assigned to each ART
communication action. During the second part you will complete a System Usability
Scale Survey. Finally, we will go over your answers and discuss them more in-depth.
Do you have any questions?

Part I

In the first part you will confirm the sounds, lights or sound and lights assigned to
each of the 13 ART communication actions - either a button or a gesture may actuate
each action. You may use this sheet that shows you all of the possible actions. You
may write on the sheet if that will help you in your decision process. I will tell you
what the actuation method is and if the action has a sound, light, or a sound and light.
For instance, if this were action one I may say a button actuates it and it only has a
sound. After you tell me what the action is, I will ask you a few follow up questions.
Reprimand is a negative reprimand. Do you have any questions about part I?

Begin part I.

Part II

Now that we have completed part I. Please fill out the System Usability Scale
Survey. Since you did not interact with the system, I want you to answer the survey
based on my interaction with the system and your impressions of the system
demonstrated to you.

Hand out SUS.
Collect SUS.

Part III

125

Thank you for completing the SUS. Now we will look at your answers from Part I
and discuss them.

Tell them – how many they answered incorrectly, what actions they missed,
demonstrate the action, and ask why?

If given a period of training, do you think that this communication method is
appropriate for this action?

Closing

Thank you for participating in today’s session. We will be contacting you soon about
next month’s session. We ask that you not speak with your colleagues about today’s
session as it may invalidate our results. Do you have any questions?

Answer any questions

Thanks again for participating. Have a great day.

126

Appendix P

Phase III: Sample Data Collection Template

Participant XParticipant XParticipant X

Forced ChoiceForced Choice
Explanation of
Answers

GL ComeCome

What is ART communicating?

Why?

BA Tilt BackTilt Back

What is ART communicating?

Which mode best describes what ART is
communicating?

Why?

GA Something in the waySomething in the way

What is ART communicating?

Which mode best describes what ART is
communicating?

Why?

GL EmergencyEmergency

What is ART communicating?

Why?

BL ReprimandReprimand

What is ART communicating?

Why?

127

GL I'm thinkingI'm thinking

What is ART communicating?

Why?

GS Can't DoCan't Do

What is ART communicating?

Why?

BS DownDown

What is ART communicating?

Why?

BL Bend InBend In

What is ART communicating?

Why?

GA GoGo

What is ART communicating?

Which mode best describes what ART is
communicating?

Why?

BA Tilt ForwardTilt Forward

What is ART communicating?

Which mode best describes what ART is
communicating?

Why?

GA Do not understand requestDo not understand request

What is ART communicating?

128

Which mode best describes what ART is
communicating?

Why?

GS StopStop

What is ART communicating?

Why?

129

Appendix Q

NVC communication actions

ART
Communication

No.
Corre

ct

With
trainin

g

Mode that describes
the action

Other suggestions

Emergency 7/10 3/3 Can’t do (2)

I’m thinking 6/9 3/3 Come (2)

Something in the
way

5/10 5/5 Both (2), Sound (8),
Light (0)

Stop (2)

Can’t Do 3/10 7/7 Something in the way (3), Do not
understand (3)

Down 3/10 7/7 Emergency (2), Tilt Back (2)

Tilt Back 3/10 7/7 Both (3), Sound (7),
Light (0)

Down (2), Tilt Forward (2)

Go 2/10 Y: 7/8
N: 1/8

Both (2), Sound (3),
Light (5)

Bend In (5)

Stop 2/10 Y: 7/8
N: 1/8

Do not understand request (4),
Down (2)

Come 1/10 9/9 Thinking (2), Reprimand (2)

Reprimand 1/10 Y: 5/9
N: 4/9

Go (3), Come (2), Stop (2),
Thinking (2)

Tilt Forward 1/10 Y: 8/9
N: 1/9

Both (5), Sound (5),
Light (0)

Something in the way (3), Come
(2), Tilt Back (2)

Do not understand
request

0/9 9/9 Both (5), Sound (3),
Light (1)

Something in the way (4), Can’t do
(2), Reprimand (2)

Bend In 0/10 Y:
6/10
N:

4/10

I’m thinking (3), Go (2), Tilt
Forward (2)

Table 4.3: Clinician responses during phase III for each of the NVC actions. Without training,
clinicians chose the action presented, described what mode best described the action, and after an

explanation of the action was given were asked if given training if they could understand the action.

130

Appendix R

ART communication action themes frequency content analysis

ART
Communicati

on

No.
Corre

ct

Explanation of choice Participants thoughts after given
the correct action

Emergency 7/10 Needs a sound (2), Fast light flash
(3), An alarm (2), It is signaling
something (1), Light pattern (1),
Indicates a problem (1)

Needs a sound (2), Fast light
flash (2), Implies a problem (1)

I’m thinking 6/9 Directional Movement of the
lights (5), Pace of lights (4),
Something will happen over a
period of time (1), Light pattern like
an hour glass (1), It’s like “Dun
Dun” (1), I don’t know (1)

The lights looked like ... (2), Pace
of lights (1), Understand
afterwards (1)

Something in
the way

5/10 Sounded like car horn (3),
Sounded like stop (2), The sound
is cultural intuitive (2), It was
gesture command (1), Seemed like
answer would fit (1), The noise (1)

Understand afterwards (2), I
don’t know (1), Seems to be more
permanent (1), Sounded like a car
horn (1), Sounded like “uh
huh” (1), The lights didn’t help
(1),

Can’t do 3/10 Sounded like a mistake (3), The
sound (2), Something in the way
(2), “I don’t know what you
want” (1), Redo the command (1),
There’s a problem (1)

Something in the way (3),
Negative indication (2), Sounded
like a question (2), There’s a
problem (1)

Down 3/10 Inflection of sound (4), Similar to
expected tilt back sound (2), Only
choice left (2), It’s a negative
sound (2)

Out of choices (3), Understand
afterwards (3), Inflection goes
down (1), Reprimand needs a
sound (1)

Tilt back 3/10 Expectations of movement (3),
Sounded like it was going down
(3), Best Choice (1), Light and
sound together (1), Light brings
attention to movement (1), Sounded
like it was coming closer (1)

Understand afterwards (4), Not
associated the sound with
movement (1), People would
associate with actual action (1),
Sounded like coming towards you
(1), Sound needs to be little higher
or lower to distinguish (1)

Go 2/10 Light Pattern (5), Sounded like
moving (3), Doesn’t fit any other
options (1), Sounded like ...
(1),Only choice left (1), Not
because of sound (1)

Light pattern doesn’t make
sense (5), The sound doesn’t
make sense (3), Sounded like its
moving (2), Understand
afterwards (2), The lights don’t
make sense (1)

131

ART
Communicati

on

No.
Corre

ct

Explanation of choice Participants thoughts after given
the correct action

Stop 2/10 Sounded like ... (3), Deeper sound
(2), It was a brief sound (1), Short
and halting sound (1), Sounded like
backward (1), Only choice left (1)

Sound needs to be stronger (5),
Understand afterward (2),
Already used stop (1), Could be do
not understand(1), Sounded like ...
(1), Need for lights (1), Sounded
like a movement (1)

Come 1/10 Only choice left (4), Light pattern
(3), Looks like processing (2),
Wasn’t sure of choices (1), Use of a
hand gesture (1)

Random light pattern was not
correct (5), Light pattern needs
direction (2), Looks like ART
will move (2), Looks like request
(1), Could be “I’m thinking” (1),
Faster light pace (1), Participant
was confused (1)

Reprimand 1/10 The lights look like ... (7), Light
Pattern (3), Pace of lights (2),
Submissive light (1), Light pattern
is simple (1), Doesn’t need an
auditory signal (1)

Perceived lights as a movement
(3), Lights were positive, not
negative (3), The lights looked
like ... (3), I don’t understand
“Reprimand” (2)

Tilt Forward 1/10 There will be movement (4),
Alarming (2), The lights look
like ... (2), It’s intuitive (1), Seemed
negative (1)

A different tone needed (3), The
lights looked like ... (3), Sounded
like ... (3), Understand afterwards
(1), I don’t know (1)

Do not
understand
request

0/9 Sounded like ... (5), The lights
look like ... (4), It’s not an
emergency (3), Negative
connotation (2), Only choice left
(1), Something is wrong (1), It hit
something (1), It sounded like “I
can’t” (1)

Interpreted a stronger command
(2), Negative connotation (2),
Similar to another option (1),
Participant had “no idea” (1),
Implied something is wrong (1),
Interpreted the pace of the sound
(1)

Bend In 0/10 Directional movement of the
lights (6), Pace of lights (2),
Constant movement of lights (1),
No sound (1), Only choice left (1)

Direction of light movement (6),
Pace of lights (3), Need for
different colors (1), Why this
pattern of lights? (1), Didn’t know
bend in (1)

132

Appendix S

ART communication action themes frequency content analysis

Times
mentioned

Explanation of choice Times
mentioned

Participants thoughts after given the
correct action

23 Sounded like ... 15 Understand afterwards

14 Light pattern 11 Sounded like ...

13 The lights look like ... 8 The lights looked like ...

11 Directional Movement of the lights 6 Direction of light movement

10 Only choice left 5 Light pattern doesn’t make sense

8 Pace of lights 5 Random light pattern was not correct

4 Inflection of sound 5 Sound needs to be stronger

4 There will be movement 4 Pace of lights

3 Expectations of movement 3 A different tone needed

3 Fast light flash 3 Lights were positive, not negative

3 It’s not an emergency 3 Out of choices

3 Sounded like a mistake 3 Perceived lights as a movement

3 Sounded like car horn 3 Something in the way

3 Sounded like it was going down 3 The sound doesn’t make sense

3 Sounded like moving 2 Fast light flash

2 Alarming 2 I don’t know

2 An alarm 2 I don’t understand “Reprimand”

2 Deeper sound 2 Interpreted a stronger command

2 I don’t know 2 Light pattern needs direction

2 It’s a negative sound 2 Looks like ART will move

2 Looks like Processing 2 Needs a sound

2 Needs a sound 2 Negative connotation

2 Negative connotation 2 Negative indication

133

Times
mentioned

Explanation of choice Times
mentioned

Participants thoughts after given the
correct action

2 Similar to expected tilt back sound 2 Sounded like a question

2 Something in the way 2 Sounded like its moving

2 Sounded like stop 1 Already used stop

2 The sound 1 Could be “I’m thinking”

2 The sound is cultural intuitive 1 Could be do not understand

1 Best choice 1 Didn’t know bend in

1 Constant movement of lights 1 Faster light pace

1 Doesn’t fit any other options 1 Implied something is wrong

1 Doesn’t need an auditory signal 1 Implies a problem

1 Indicates a problem 1 Inflection goes down

1 It hit something 1 Interpreted the pace of the sound

1 It is signaling something 1 Looks like request

1 It was a brief sound 1 Need for different colors

1 It was gesture command 1 Need for lights

1 It’s intuitive 1 Not associated the sound with movement

1 It’s like “Dun Dun” 1 Participant had “no idea”

1 Light and sound together 1 People would associate with actual action

1 Light brings attention to movement 1 Seems to be more permanent

1 Light pattern is simple 1 Similar to another option

1 Light pattern like an hour glass 1 Sound needs to be little higher or lower
to distinguish

1 No sound 1 Sounded like “uh huh”

1 Not because of sound 1 Sounded like a car horn

1 Redo the command 1 Sounded like coming towards you

1 Seemed like answer would fit 1 Reprimand needs a sound

1 Seemed negative 1 The lights didn’t help

134

Times
mentioned

Explanation of choice Times
mentioned

Participants thoughts after given the
correct action

1 Short and halting sound 1 The lights don’t make sense

1 Something is wrong 1 There’s a problem

1
Something will
happen over a period
of time

1
Why this pattern of lights?

1 Sounded like backward

1 Sounded like “I can’t”

1 Sounded like it was coming closerSounded like it was coming closer

1 Submissive light

1 The noise

1 There’s a problem

1 Use of a hand gesture

1 Wasn’t sure of choices

135

Appendix T

Patient personas

Low Functioning Patient
Ted is a 71 year old male with hypertension, admitted 1 week ago after suffering a
severe ischemic stroke. Ted has no movement in his left arm and has “tunnel vision”.

Medium Functioning Patient
Ginny is a 64 year old female with diabetes, admitted 2 weeks ago after suffering an
ischemic stroke. She has no fine motor control in right arm and forgets recent events.

High Functioning Patient
Bob is a 52 year old male with a family history of hypertension, admitted 1 week ago
after suffering a mild ischemic stroke. He lacks full fine motor control.

136

Appendix U

Final usability testing: Script

Thank you for participating in our last phase of the Assistive Robotic Table study. In
front of you will see the research study information sheet please review it and let me
know when you are finished. Do you have any questions?

Answer any questions

Today you will be evaluating the usability of the Assistive Robotic Table. There will
be three parts to today’s session. During the first part you will use ART around the
bed, during the second part you will use ART around a chair, and finally you use a
gesture control system. During each part you will answer questions related to that
part. Do you have any questions?

Part I

With ART against the wall please move ART over the bed.

Participant should wheel ART next to bed; press the up button [Emergency lights will
go off].

What do you think has occurred?
How do you know?
If you had to pick from this list, what do you think has occurred?

Participant should press the up button again and then wheel ART over the bed.
Participant might press the down button [Something in the Way lights].

What do you think has occurred?
How do you know?
If you had to pick from this list, what do you think has occurred?

Please move the flip-up surface in position so the patient can read. The flip-up up
surface does not flip-up so tell me when you can go no further.

Participant should push back the top surface and tell you they can go no further.

What are your thoughts about your experience positioning ART over the bed?

137

Now that we have completed part I, please fill out the System Usability Scale Survey.

Hand out SUS.
Collect SUS.

Part II

Now please move ART in front of the chair to conduct therapy on the patient’s left
upper extremity. Please also move the therapy surface and mechanical column in
place to conduct therapy.

What are your thoughts about your experience positioning ART for therapy?

Now that we have completed part II, please fill out the System Usability Scale
Survey.

Hand out SUS.
Collect SUS.

Part II : B
Please move ART and the mechanical column to their original position. You’re going
to evaluate ART using two scales and while you are doing that Jessica is going to set
up for Part III.

Please look at this list and select 5 words to describe ART or your experience with
ART.

Now you’ll evaluate each feature of ART using the LIKE, NEED and EASY TO USE
scales.

Part III

Our final activity is to use and evaluate the gesture interface. The first gesture is up
and down. I’ll demonstrate it for you, have you practice the gesture and then you’ll
interact with ART. Are you ready?

Demonstrate the up/down gestures. Have participant practice the gesture and then
have them complete the gesture. Have patient sweep hands being their back when
they are complete.

138

1. Did you like ART’s response to the gestured command?
2. What did you like about it?
3. What would you like to change about this response?

Please rate the communication system you used today using the LIKE, NEED, and
EASY TO USE scale.

Demonstrate the Therapy gesture. Have participant practice the gesture and then
have them complete the gesture. Participants were told to imagine that they
conducted therapy with the same patient each day and at the same height and would
use the gesture to control ART.

1. Did you like ART’s response to the gestured command?
2. What did you like about it?
3. What would you like to change about this response?

Please rate the communication system you used today using the LIKE, NEED, and
EASY TO USE scale.

5.Demonstrate the Rest gesture. Have participant practice the gesture and then have
them complete the gesture. Participants were told to imagine the patient had finished
eating and pushed ART away from the bed and wanted ART at a specific height next
to the bed.

1. Did you like ART’s response to the gestured command?
2. What did you like about it?
3. What would you like to change about this response?

Please rate the communication system you used today using the LIKE, NEED, and
EASY TO USE scale.

4. If ART did not respond in the manner you would prefer, how might you
convey to ART that the response was not satisfactory?

5. If you wanted ART to do more or less of a given response, how might you
indicate that desire to ART?

6. Would you prefer that ART be preprogrammed to understand a few
common gesture commands, or would you prefer to define your own
commands?

7. If you were teaching ART a set of gesture commands, how would you
want to convey your satisfaction or dissatisfaction with ART’s responses
as it learned?

139

8. How many teaching intervals (response and feedback) would you be
willing to go through before you would expect ART to learn a given
gesture command?

Now that we have completed part III, please fill out the System Usability Scale
Survey.

Hand out SUS.
Collect SUS.

Thank you. We have a few final questions.

If ART had the ability to "communicate" the way we proposed, would you use our
system? Why?

In your estimation, how long would it take you to learn how to use the
communication platform you used today?

Do you think this is a productive line of research? Why?

Would you have preferred to simply speak to ART and ART speak to you? Why?

Please rate the communication system you used today using the LIKE, NEED, and
EASY TO USE scale.

Closing

Thank you for participating in today’s session. We ask that you not speak with your
colleagues about today’s session as it may invalidate our results. Do you have any
questions?

Answer any questions

Thanks again for participating this past year. Have a great day.

140

Appendix V

Final usability testing: Data Collection Template

Items:Items:Items:Items:Items:Items:Items:Items:

Adjustable LegsAdjustable Legs Shape of table top
surface

Shape of table top
surface

Flip-up table top
surface

Flip-up table top
surface 10. Table Controls10. Table Controls

Like Like Like Like

Need Need Need Need

Easy to Use Easy to Use Easy to Use Easy to Use

2. Up/down
mechanism
2. Up/down
mechanism

Lip on table top
surface
Lip on table top
surface

11. Therapy Surface11. Therapy Surface

Like Like Like

Need Need Need

Easy to Use Easy to Use Easy to Use

Level table topLevel table top 9. Cup holders9. Cup holders Mechanical Column
for Therapy Surface
Mechanical Column
for Therapy Surface

Like Like Like

Need Need Need

Easy to Use Easy to Use Easy to Use

Part IPart I

What do you think has occurred?

How do you know?

If you had to pick from this list, what do you think has occurred?

141

What do you think has occurred?

How do you know?

If you had to pick from this list, what do you think has occurred?

What are your thoughts about your experience positioning ART over the bed?

SUSSUS

Part IIPart II

What are your thoughts about your experience positioning ART for therapy?

SUSSUS

WordsWords

LIKE / NEED / EASY TO USELIKE / NEED / EASY TO USE

Up/DownUp/Down

Did you like ART’s response to the gestured command?

What did you like about it?

 What would you like to change about this response?

Please rate the communication system you used today using the LIKE, NEED, and
EASY TO USE scale.

LIKE

NEED

EASY TO USE

Read

Did you like ART’s response to the gestured command?

What did you like about it?

 What would you like to change about this response?

142

Please rate the communication system you used today using the LIKE, NEED, and
EASY TO USE scale.

LIKE

NEED

EASY TO USE

SleepSleep

Did you like ART’s response to the gestured command?

What did you like about it?

 What would you like to change about this response?

Please rate the communication system you used today using the LIKE, NEED, and
EASY TO USE scale.

LIKE

NEED

EASY TO USE

If ART did not respond in the manner you would prefer, how might you convey to
ART that the response was not satisfactory?

If you wanted ART to do more or less of a given response, how might you indicate
that desire to ART?

Would you prefer that ART be preprogrammed to understand a few common gesture
commands, or would you prefer to define your own commands?

If you were teaching ART a set of gesture commands, how would you want to
convey your satisfaction or dissatisfaction with ART’s responses as it learned?

How many teaching intervals (response and feedback) would you be willing to go
through before you would expect ART to learn a given gesture command?

If ART had the ability to "communicate" the way we proposed, would you use our
system? Why?

Please rate the communication system you used today using the LIKE, NEED, and
EASY TO USE scale.

143

LIKE

NEED

EASY TO USE

144

Appendix W

Clinician preferences for gesture command interface

Did you like ART’s response to the gestured command?Did you like ART’s response to the gestured command?Did you like ART’s response to the gestured command?Did you like ART’s response to the gestured command?

Yes Maybe No

Up/Down 10 1 0

Therapy 7 2 2

Rest 10 0 1

Table 6.2: Presented are the clinician preferences for each of the gesture commands. Compared with
the other two gesture commands, the clinicians were reticent about accepting the Therapy command.

They cited the desire to use conventional rehabilitation practices.

145

Appendix X

Clinician subjective scale ratings for the overall NVC platform and each of the
gesture commands

Up/Down Therapy Rest Overall

Like 4.18 3.82 3.82 3.82

Need 3.73 3.18 3.73 3.82

Easy to Use 4.00 3.64 3.45 3.45

Table 6.3: Presented are the subjective ratings for the overall NVC platform and each of the gesture
commands. Similar to the results of Table 6.2, the Therapy command scored the lowest for the Need

rating.

146

Appendix Y

Clinician estimation of time to learn the NVC platform

In your estimation, how long would it take
you to learn how to use the communication
platform you used today?

In your estimation, how long would it take
you to learn how to use the communication
platform you used today?

30 Minutes 3

1 Hour 2

1-2 hours 1

A couple of days 1

A few days - consistently 1

1 week - consistently 1

2 weeks 2

Table 6.4: Presented are the clinicians’ estimation of time to learn the presented NVC platform. It is
disconcerting that the current platform may require up to two weeks to learn. Given the time sensitive

nature of healthcare it would be necessary to learn the platform in under one hour.

147

Appendix Z

NVC electrical diagram

148

Appendix AA

Steel manufacturer contact information

Sargent Metal

Steps for fabricating with them:

1. If at all possible, provide them shop drawings with an .stp file
(Solidworks, Alibre, or Geomagic). This will eliminate the time and cost
of having them redraw our work.

2. The first point of contact is Bobby Weir, in Sales
(bweir@sargentmetal.com).

3. Once we have an understanding with Bobby, we should email our request
to quotes@sargentmetal.com. Our email is then sent to multiple heads at
SM.

4. Push for a Point of Order - or “PO” (i.e. a quote) ASAP. Without the PO,
our order it is NOT in the system.

5. Our contact in the fabrication process is Wayne Haynes, an engineer at
SM.

149

Appendix BB

Phase II Code: Arduino - Sound

Button: Up & Down

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int output1=6;
int input1=7;
int valDown=0;
int valUp=0;

static int press=0;
int waiting=0;

int dataPin = 2;
int clockPin = 3;

static int countDown=0;
static int countUp=0;

LPD8806 strip = LPD8806(52, dataPin, clockPin);

void setup() {

 pinMode(output1, OUTPUT);
 pinMode(input1,INPUT);
 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();

 Serial.begin(9600);
}

void loop(){

 digitalWrite(output1, HIGH);
 valDown=analogRead(A0);
 valUp=analogRead(A5);

 float voltageDown=valDown*(0.5/1024.0);
 float voltageUp=valUp*(0.5/1024.0);

 //Serial.println(voltageDown);
 //Serial.println(voltageUp);

 while(voltageDown>0.4){
 press++;
 if(press==1){
 if(countDown==0){
 Serial.write(1);
 countDown++;

150

 }
 else{
 Serial.write(2);
 countDown=0;
 }
 }
 valDown=analogRead(A0);
 voltageDown=valDown*(0.5/1024.0);
 //Serial.println(press);
 //Serial.println(voltageDown);
 //Serial.println(voltageUp);

 }

 //while(voltageDown<0.4 && voltageUp<0.4){
 //waiting++;
 //valDown=analogRead(A0);
 //voltageDown=valDown*(0.5/1024.0);
 //}
 //if(waiting>200){
 //press=0;
 //waiting=0;
 //}

 //Serial.println(press);

 //press=0;

 while(voltageUp>0.4){
 press++;
 if(press==1){
 if(countUp==0){
 Serial.write(3);
 countUp++;
 }
 else{
 Serial.write(4);
 countUp=0;
 }
 }
 valUp=analogRead(A5);
 voltageUp=valUp*(0.5/1024.0);
 //Serial.println(voltageDown);
 //Serial.println(voltageUp);
 }
 while(voltageDown<0.4 && voltageUp<0.4){
 waiting++;
 valUp=analogRead(A5);
 voltageUp=valUp*(0.5/1024.0);
 valDown=analogRead(A0);
 voltageDown=valDown*(0.5/1024.0);
 //Serial.println(voltageDown);
 //Serial.println(voltageUp);
 }
 if(waiting>200){
 press=0;
 waiting=0;
 }
 //press=0;

 }

151

Button: Tilt Forward

int valPress = 7; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

static int count = 0;
static int press=0;
int waiting=0;
static int countPress=0;

void setup() {

 pinMode(valPress, INPUT);

 Serial.begin(9600);
}

void loop(){

 valPress=digitalRead(7);

 while(valPress == HIGH){
 press++;
 if(press==1){
 if(countPress==0){
 Serial.write(1);
 countPress++;
 }
 else{
 Serial.write(2);
 countPress=0;
 }
 }
 valPress=digitalRead(7);

 }

 while(valPress == LOW){
 waiting++;
 valPress=digitalRead(7);
 }
 if(waiting>200){
 press=0;
 waiting=0;
 }
}

152

Button: Tilt Back

int valPress = 7; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

static int count = 0;
static int press=0;
int waiting=0;
static int countPress=0;

void setup() {

 pinMode(valPress, INPUT);

 Serial.begin(9600);
}

void loop(){

 valPress=digitalRead(7);

 while(valPress == HIGH){
 press++;
 if(press==1){
 if(countPress==0){
 Serial.write(1);
 countPress++;
 }
 else{
 Serial.write(2);
 countPress=0;
 }
 }
 valPress=digitalRead(7);

 }

 while(valPress == LOW){
 waiting++;
 valPress=digitalRead(7);
 }
 if(waiting>200){
 press=0;
 waiting=0;
 }
}

Button: Emergency

int valPress = 7; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

static int count = 0;
static int press=0;
int waiting=0;
static int countPress=0;

void setup() {

153

 pinMode(valPress, INPUT);

 Serial.begin(9600);
}

void loop(){

 valPress=digitalRead(7);

 while(valPress == HIGH){
 press++;
 if(press==1){
 if(countPress==0){
 Serial.write(1);
 countPress++;
 }
 else{
 Serial.write(2);
 countPress=0;
 }
 }
 valPress=digitalRead(7);

 }

 while(valPress == LOW){
 waiting++;
 valPress=digitalRead(7);
 }
 if(waiting>200){
 press=0;
 waiting=0;
 }
}

Button: Pet

int valSoft = A3; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

static int count = 0;
static int press=0;
int waiting=0;
static int countSoft=0;

void setup() {

 pinMode(valSoft, INPUT);

 Serial.begin(9600);
}

void loop(){

 valSoft=analogRead(A3);

 while(valSoft >= 900){

154

 press++;
 if(press==1){
 if(countSoft==0){
 Serial.write(1);
 countSoft++;
 }
 else{
 Serial.write(2);
 countSoft=0;
 }
 }
 valSoft=analogRead(A3);

 }

 while(valSoft < 900){
 waiting++;
 valSoft=analogRead(A3);
 }
 if(waiting>200){
 press=0;
 waiting=0;
 }
}

Button: Reprimand

int valPress = 7; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

static int count = 0;
static int press=0;
int waiting=0;
static int countPress=0;

void setup() {

 pinMode(valPress, INPUT);

 Serial.begin(9600);
}

void loop(){

 valPress=digitalRead(7);

 while(valPress == HIGH){
 press++;
 if(press==1){
 if(countPress==0){
 Serial.write(1);
 countPress++;
 }
 else{
 Serial.write(2);
 countPress=0;
 }
 }
 valPress=digitalRead(7);

155

 }

 while(valPress == LOW){
 waiting++;
 valPress=digitalRead(7);
 }
 if(waiting>200){
 press=0;
 waiting=0;
 }
}

156

Appendix CC

Phase II Code: Processing - Sound

Button: Up & Down

import SimpleOpenNI.*;
//import java.util.Iterator;
//import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Serial port; // Create object from Serial class
int val=0; // Data received from the serial port
int test=214;

Minim minim;
AudioPlayer downsound1;
AudioPlayer down2;
AudioPlayer up1;
AudioPlayer up2;

void setup()
{

 println(Serial.list()); //This shows the various serial port options
 String portName = Serial.list()[0]; //The serial port should match the one the Arduino is hooked to
 port = new Serial(this, portName, 9600); //Establish the connection rate

 minim = new Minim(this);
 downsound1=minim.loadFile("Down1.wav");
 down2=minim.loadFile("Down2.wav");
 up1=minim.loadFile("Up1.wav");
 up2=minim.loadFile("Up2.wav");

}

void draw()
{

 if (port.available() > 0) {
 val = port.read();
 println(val);
 }

 if(val==1){
 //down2.play();
 //down2.rewind();
 downsound1.play();
 downsound1.rewind();
 println(214);

 }
 else if(val==2){
 down2.play();
 down2.rewind();
 }

157

 else if(val==3){
 up1.play();
 up1.rewind();
 }
 else if(val==4){
 up2.play();
 up2.rewind();
 }
 val=0;

}

Button: Tilt Forward

//import SimpleOpenNI.*;
//import java.util.Iterator;
//import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Serial port; // Create object from Serial class
int val=0; // Data received from the serial port
int test=214;

Minim minim;
AudioPlayer tiltforward1;
AudioPlayer tiltforward2;

void setup()
{

 println(Serial.list()); //This shows the various serial port options
 String portName = Serial.list()[0]; //The serial port should match the one the Arduino is hooked to
 port = new Serial(this, portName, 9600); //Establish the connection rate

 minim = new Minim(this);
 tiltforward1=minim.loadFile("TiltForward1.wav");
 tiltforward2=minim.loadFile("TiltForward2.wav");

}

void draw()
{

 if (port.available() > 0) {
 val = port.read();
 println(val);
 }

 if(val==1){
 tiltforward1.play();
 tiltforward1.rewind();

 }
 else if(val==2){
 tiltforward2.play();
 tiltforward2.rewind();

158

 }

 val=0;

}

Button: Tilt Back

//import SimpleOpenNI.*;
//import java.util.Iterator;
//import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Serial port; // Create object from Serial class
int val=0; // Data received from the serial port
int test=214;

Minim minim;
AudioPlayer tiltback1;
AudioPlayer tiltback2;

void setup()
{

 println(Serial.list()); //This shows the various serial port options
 String portName = Serial.list()[0]; //The serial port should match the one the Arduino is hooked to
 port = new Serial(this, portName, 9600); //Establish the connection rate

 minim = new Minim(this);
 tiltback1=minim.loadFile("TiltBack1.wav");
 tiltback2=minim.loadFile("TiltBack2.wav");

}

void draw()
{

 if (port.available() > 0) {
 val = port.read();
 println(val);
 }

 if(val==1){
 tiltback1.play();
 tiltback1.rewind();

 }
 else if(val==2){
 tiltback2.play();
 tiltback2.rewind();
 }

 val=0;

}

159

Button: Emergency

//import SimpleOpenNI.*;
//import java.util.Iterator;
//import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Serial port; // Create object from Serial class
int val=0; // Data received from the serial port
int test=214;

Minim minim;
AudioPlayer emergency1;
AudioPlayer emergency2;

void setup()
{

 println(Serial.list()); //This shows the various serial port options
 String portName = Serial.list()[0]; //The serial port should match the one the Arduino is hooked to
 port = new Serial(this, portName, 9600); //Establish the connection rate

 minim = new Minim(this);
 emergency1=minim.loadFile("Emergency1.wav");
 emergency2=minim.loadFile("Emergency2.wav");

}

void draw()
{

 if (port.available() > 0) {
 val = port.read();
 println(val);
 }

 if(val==1){
 emergency1.play();
 emergency1.rewind();

 }
 else if(val==2){
 emergency2.play();
 emergency2.rewind();
 }

 val=0;
}
Button: Pet

//import SimpleOpenNI.*;
//import java.util.Iterator;
//import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Serial port; // Create object from Serial class
int val=0; // Data received from the serial port

160

int test=214;

Minim minim;
AudioPlayer pet1;
AudioPlayer pet2;

void setup()
{

 println(Serial.list()); //This shows the various serial port options
 String portName = Serial.list()[0]; //The serial port should match the one the Arduino is hooked to
 port = new Serial(this, portName, 9600); //Establish the connection rate

 minim = new Minim(this);
 pet1=minim.loadFile("Pet1.wav");
 pet2=minim.loadFile("Pet2.wav");

}

void draw()
{

 if (port.available() > 0) {
 val = port.read();
 println(val);
 }

 if(val==1){
 pet1.play();
 pet1.rewind();

 }
 else if(val==2){
 pet2.play();
 pet2.rewind();
 }

 val=0;

}

Button; Reprimand

//import SimpleOpenNI.*;
//import java.util.Iterator;
//import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Serial port; // Create object from Serial class
int val=0; // Data received from the serial port
int test=214;

Minim minim;
AudioPlayer Reprimand1;
AudioPlayer Reprimand2;

void setup()
{

161

 println(Serial.list()); //This shows the various serial port options
 String portName = Serial.list()[0]; //The serial port should match the one the Arduino is hooked to
 port = new Serial(this, portName, 9600); //Establish the connection rate

 minim = new Minim(this);
 Reprimand1=minim.loadFile("Reprimand1.wav");
 Reprimand2=minim.loadFile("Reprimand2.wav");

}

void draw()
{

 if (port.available() > 0) {
 val = port.read();
 println(val);
 }

 if(val==1){
 Reprimand1.play();
 Reprimand1.rewind();

 }
 else if(val==2){
 Reprimand2.play();
 Reprimand2.rewind();
 }

 val=0;

}

Gesture: Come

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Minim minim;
AudioPlayer sound1;
AudioPlayer sound2;

static int time=0;
int check=0;
float xcoord0, xcoord99, diff;

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

PrintWriter output;

162

void setup()
{

 minim = new Minim(this);
 sound1=minim.loadFile("Come1.wav");
 sound2=minim.loadFile("Come2.wav");

 output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation
 if(context.enableDepth() == false)
 {
 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{
 background(200,0,0);
 // update the cam
 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

 // draw the list
 pointDrawer.draw();
}

void keyPressed()
{
 switch(key)
 {
 case 'e':

163

 // end sessions
 sessionManager.EndSession();
 println("end session");
 break;
 }
}

///
// session callbacks

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
}

void onEndSession()
{
 println("onEndSession: ");
}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);
}

///
// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {
 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

 public void OnPointDestroy(long nID)
 {
 println("OnPointDestroy, handId: " + nID);

164

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))
 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;
 }

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

 output.println(handPoint);
 if(handPoint.x>150){
 xcoord0=handPoint.x;
 //output.println("START");
 check=0;
 }
 else if(handPoint.x<-200){

 if(check==0){
 //output.println("TRIGGER");

 if(time==0){
 sound1.play();
 sound1.rewind();
 time=1;
 }
 else{
 sound2.play();
 sound2.rewind();
 time=0;
 }

 }
 check=1;

 }

 //count++;
 //output.println(handPoint);

165

 }

 public void draw()
 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())
 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line
 firstVec = null;
 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);
 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);
 point(screenPos.x,screenPos.y);
 }
 colorIndex++;
 }

 popStyle();
 }

}

void stop(){
 minim.stop();
 super.stop();
 output.flush();
 output.close();
}

166

Gesture: Go

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Minim minim;
AudioPlayer sound1;
AudioPlayer sound2;

static int time=0;
int check=0;
float xcoord0, xcoord99, diff;

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

PrintWriter output;

void setup()
{

 minim = new Minim(this);
 sound1=minim.loadFile("Go1.wav");
 sound2=minim.loadFile("Go2.wav");

 output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation
 if(context.enableDepth() == false)
 {
 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

167

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{
 background(200,0,0);
 // update the cam
 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

 // draw the list
 pointDrawer.draw();
}

void keyPressed()
{
 switch(key)
 {
 case 'e':
 // end sessions
 sessionManager.EndSession();
 println("end session");
 break;
 }
}

///
// session callbacks

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
}

void onEndSession()
{
 println("onEndSession: ");
}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);
}

///
// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

168

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {
 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

 public void OnPointDestroy(long nID)
 {
 println("OnPointDestroy, handId: " + nID);

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))
 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;
 }

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

 output.println(handPoint);
 if(handPoint.x>150){
 xcoord0=handPoint.x;
 //output.println("START");
 check=0;
 }
 else if(handPoint.x<-200){

169

 if(check==0){
 //output.println("TRIGGER");

 if(time==0){
 sound1.play();
 sound1.rewind();
 time=1;
 }
 else{
 sound2.play();
 sound2.rewind();
 time=0;
 }

 }
 check=1;

 }

 //count++;
 //output.println(handPoint);

 }

 public void draw()
 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())
 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line
 firstVec = null;
 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);

170

 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);
 point(screenPos.x,screenPos.y);
 }
 colorIndex++;
 }

 popStyle();
 }

}

void stop(){
 minim.stop();
 super.stop();
 output.flush();
 output.close();
}

Gesture: Stop

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Minim minim;
AudioPlayer sound1;
AudioPlayer sound2;

static int time=0;
int check=0;
float xcoord0, xcoord99, diff;

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

PrintWriter output;

void setup()
{

 minim = new Minim(this);
 sound1=minim.loadFile("Stop1.wav");
 sound2=minim.loadFile("Stop2.wav");

171

 output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation
 if(context.enableDepth() == false)
 {
 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{
 background(200,0,0);
 // update the cam
 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

 // draw the list
 pointDrawer.draw();
}

void keyPressed()
{
 switch(key)
 {
 case 'e':
 // end sessions
 sessionManager.EndSession();
 println("end session");
 break;
 }
}

///
// session callbacks

172

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
}

void onEndSession()
{
 println("onEndSession: ");
}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);
}

///
// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {
 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

 public void OnPointDestroy(long nID)
 {
 println("OnPointDestroy, handId: " + nID);

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))

173

 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;
 }

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

 output.println(handPoint);
 if(handPoint.x>150){
 xcoord0=handPoint.x;
 //output.println("START");
 check=0;
 }
 else if(handPoint.x<-200){

 if(check==0){
 //output.println("TRIGGER");

 if(time==0){
 sound1.play();
 sound1.rewind();
 time=1;
 }
 else{
 sound2.play();
 sound2.rewind();
 time=0;
 }

 }
 check=1;

 }

 //count++;
 //output.println(handPoint);

 }

 public void draw()
 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

174

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())
 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line
 firstVec = null;
 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);
 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);
 point(screenPos.x,screenPos.y);
 }
 colorIndex++;
 }

 popStyle();
 }

}

void stop(){
 minim.stop();
 super.stop();
 output.flush();
 output.close();
}

Gesture: Confirm Request

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Minim minim;

175

AudioPlayer sound1;
AudioPlayer sound2;

static int time=0;
int check=0;
float xcoord0, xcoord99, diff;

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

PrintWriter output;

void setup()
{

 minim = new Minim(this);
 sound1=minim.loadFile("ConfirmRequest1.wav");
 sound2=minim.loadFile("ConfirmRequest2.wav");

 output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation
 if(context.enableDepth() == false)
 {
 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{
 background(200,0,0);
 // update the cam

176

 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

 // draw the list
 pointDrawer.draw();
}

void keyPressed()
{
 switch(key)
 {
 case 'e':
 // end sessions
 sessionManager.EndSession();
 println("end session");
 break;
 }
}

///
// session callbacks

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
}

void onEndSession()
{
 println("onEndSession: ");
}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);
}

///
// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list

177

 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {
 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

 public void OnPointDestroy(long nID)
 {
 println("OnPointDestroy, handId: " + nID);

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))
 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;
 }

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

 output.println(handPoint);
 if(handPoint.x>150){
 xcoord0=handPoint.x;
 //output.println("START");
 check=0;
 }
 else if(handPoint.x<-200){

 if(check==0){
 //output.println("TRIGGER");

 if(time==0){
 sound1.play();
 sound1.rewind();
 time=1;
 }
 else{

178

 sound2.play();
 sound2.rewind();
 time=0;
 }

 }
 check=1;

 }

 //count++;
 //output.println(handPoint);

 }

 public void draw()
 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())
 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line
 firstVec = null;
 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);
 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);

179

 point(screenPos.x,screenPos.y);
 }
 colorIndex++;
 }

 popStyle();
 }

}

void stop(){
 minim.stop();
 super.stop();
 output.flush();
 output.close();
}

Gesture: Do Not Understand Request

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Minim minim;
AudioPlayer sound1;
AudioPlayer sound2;

static int time=0;
int check=0;
float xcoord0, xcoord99, diff;

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

PrintWriter output;

void setup()
{

 minim = new Minim(this);
 sound1=minim.loadFile("DoNotUnderstand1.wav");
 sound2=minim.loadFile("DoNotUnderstand2.wav");

 output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation
 if(context.enableDepth() == false)
 {

180

 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{
 background(200,0,0);
 // update the cam
 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

 // draw the list
 pointDrawer.draw();
}

void keyPressed()
{
 switch(key)
 {
 case 'e':
 // end sessions
 sessionManager.EndSession();
 println("end session");
 break;
 }
}

///
// session callbacks

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
}

void onEndSession()
{
 println("onEndSession: ");

181

}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);
}

///
// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {
 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

 public void OnPointDestroy(long nID)
 {
 println("OnPointDestroy, handId: " + nID);

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))
 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;
 }

182

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

 output.println(handPoint);
 if(handPoint.x>150){
 xcoord0=handPoint.x;
 //output.println("START");
 check=0;
 }
 else if(handPoint.x<-200){

 if(check==0){
 //output.println("TRIGGER");

 if(time==0){
 sound1.play();
 sound1.rewind();
 time=1;
 }
 else{
 sound2.play();
 sound2.rewind();
 time=0;
 }

 }
 check=1;

 }

 //count++;
 //output.println(handPoint);

 }

 public void draw()
 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())

183

 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line
 firstVec = null;
 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);
 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);
 point(screenPos.x,screenPos.y);
 }
 colorIndex++;
 }

 popStyle();
 }

}

void stop(){
 minim.stop();
 super.stop();
 output.flush();
 output.close();
}

Gesture: Can’t Do

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Minim minim;
AudioPlayer sound1;
AudioPlayer sound2;

static int time=0;
int check=0;
float xcoord0, xcoord99, diff;

184

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

PrintWriter output;

void setup()
{

 minim = new Minim(this);
 sound1=minim.loadFile("CantDo1.wav");
 sound2=minim.loadFile("CantDo2.wav");

 output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation
 if(context.enableDepth() == false)
 {
 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{
 background(200,0,0);
 // update the cam
 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

185

 // draw the list
 pointDrawer.draw();
}

void keyPressed()
{
 switch(key)
 {
 case 'e':
 // end sessions
 sessionManager.EndSession();
 println("end session");
 break;
 }
}

///
// session callbacks

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
}

void onEndSession()
{
 println("onEndSession: ");
}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);
}

///
// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {

186

 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

 public void OnPointDestroy(long nID)
 {
 println("OnPointDestroy, handId: " + nID);

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))
 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;
 }

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

 output.println(handPoint);
 if(handPoint.x>150){
 xcoord0=handPoint.x;
 //output.println("START");
 check=0;
 }
 else if(handPoint.x<-200){

 if(check==0){
 //output.println("TRIGGER");

 if(time==0){
 sound1.play();
 sound1.rewind();
 time=1;
 }
 else{
 sound2.play();
 sound2.rewind();
 time=0;
 }

 }
 check=1;

187

 }

 //count++;
 //output.println(handPoint);

 }

 public void draw()
 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())
 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line
 firstVec = null;
 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);
 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);
 point(screenPos.x,screenPos.y);
 }
 colorIndex++;
 }

 popStyle();
 }

188

}

void stop(){
 minim.stop();
 super.stop();
 output.flush();
 output.close();
}

Gesture: I’m thinking

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Minim minim;
AudioPlayer sound1;
AudioPlayer sound2;

static int time=0;
int check=0;
float xcoord0, xcoord99, diff;

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

PrintWriter output;

void setup()
{

 minim = new Minim(this);
 sound1=minim.loadFile("Thinking1.wav");
 sound2=minim.loadFile("Thinking2.wav");

 output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation
 if(context.enableDepth() == false)
 {
 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

189

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{
 background(200,0,0);
 // update the cam
 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

 // draw the list
 pointDrawer.draw();
}

void keyPressed()
{
 switch(key)
 {
 case 'e':
 // end sessions
 sessionManager.EndSession();
 println("end session");
 break;
 }
}

///
// session callbacks

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
}

void onEndSession()
{
 println("onEndSession: ");
}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);
}

190

///
// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {
 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

 public void OnPointDestroy(long nID)
 {
 println("OnPointDestroy, handId: " + nID);

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))
 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;
 }

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

191

 output.println(handPoint);
 if(handPoint.x>150){
 xcoord0=handPoint.x;
 //output.println("START");
 check=0;
 }
 else if(handPoint.x<-200){

 if(check==0){
 //output.println("TRIGGER");

 if(time==0){
 sound1.play();
 sound1.rewind();
 time=1;
 }
 else{
 sound2.play();
 sound2.rewind();
 time=0;
 }

 }
 check=1;

 }

 //count++;
 //output.println(handPoint);

 }

 public void draw()
 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())
 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line
 firstVec = null;

192

 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);
 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);
 point(screenPos.x,screenPos.y);
 }
 colorIndex++;
 }

 popStyle();
 }

}

void stop(){
 minim.stop();
 super.stop();
 output.flush();
 output.close();
}

Gesture: Something in the Way

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Minim minim;
AudioPlayer sound1;
AudioPlayer sound2;

static int time=0;
int check=0;
float xcoord0, xcoord99, diff;

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

193

PrintWriter output;

void setup()
{

 minim = new Minim(this);
 sound1=minim.loadFile("SomethingInTheWay1.wav");
 sound2=minim.loadFile("SomethingInTheWay2.wav");

 output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation
 if(context.enableDepth() == false)
 {
 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{
 background(200,0,0);
 // update the cam
 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

 // draw the list
 pointDrawer.draw();
}

void keyPressed()
{
 switch(key)
 {

194

 case 'e':
 // end sessions
 sessionManager.EndSession();
 println("end session");
 break;
 }
}

///
// session callbacks

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
}

void onEndSession()
{
 println("onEndSession: ");
}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);
}

///
// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {
 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

 public void OnPointDestroy(long nID)
 {
 println("OnPointDestroy, handId: " + nID);

195

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))
 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;
 }

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

 output.println(handPoint);
 if(handPoint.x>150){
 xcoord0=handPoint.x;
 //output.println("START");
 check=0;
 }
 else if(handPoint.x<-200){

 if(check==0){
 //output.println("TRIGGER");

 if(time==0){
 sound1.play();
 sound1.rewind();
 time=1;
 }
 else{
 sound2.play();
 sound2.rewind();
 time=0;
 }

 }
 check=1;

 }

 //count++;
 //output.println(handPoint);

196

 }

 public void draw()
 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())
 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line
 firstVec = null;
 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);
 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);
 point(screenPos.x,screenPos.y);
 }
 colorIndex++;
 }

 popStyle();
 }

}

void stop(){
 minim.stop();
 super.stop();
 output.flush();
 output.close();
}

197

Appendix DD

Phase II Code: Arduino - Light

Button: Up/Down

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int output1=6;
int input1=7;
int valDown=0;
int valUp=0;

int dataPin = 2;
int clockPin = 3;

static int countDown=0;
static int countUp=0;

LPD8806 strip = LPD8806(52, dataPin, clockPin);

void setup() {

 pinMode(output1, OUTPUT);
 pinMode(input1,INPUT);
 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();

 Serial.begin(9600);
}

void loop(){

 digitalWrite(output1, HIGH);
 valDown=analogRead(A0);
 valUp=analogRead(A5);

 float voltageDown=valDown*(0.5/1024.0);
 float voltageUp=valUp*(0.5/1024.0);

 Serial.println(voltageDown);
 Serial.println(voltageUp);

 if(voltageDown>0.4){

 if(countDown==0){
 colorChasedown(strip.Color(127,127,127), 20);
 Clear(1000);
 countDown++;
 }
 else{
 GradientDown(80);

198

 Clear(1000);
 countDown=0;
 }
 }

 if(voltageUp>0.4){
 if(countUp==0){
 colorChase(strip.Color(127,127,127), 20);
 Clear(1000);
 countUp++;
 }
 else{
 GradientUp(80);
 Clear(1000);
 countUp=0;
 }
 }

 else{
 for(int i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }
 }

}

void colorChasedown(uint32_t c, uint8_t wait) {
 int i;
 int j;

for (j=0; j < 4; j++){

 for (i=strip.numPixels()-1; i >= 0; i--) {
 strip.setPixelColor(i, 0); // turn all pixels off
 }

 for (i=strip.numPixels()-1; i >=0; i--) {
 strip.setPixelColor(i, c); // set one pixel
 strip.show(); // refresh strip display
 delay(wait); // hold image for a moment
 strip.setPixelColor(i, 0); // erase pixel (but don't refresh yet)
 }
 strip.show(); // for last erased pixel
}
}

#define PI 3.14159265
void GradientDown(int8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 int m=floor(127/nLeEDs);
 if(x==0){
 r=x*m;
 g=x*m;
 b=x*m;}

 else if(x%4==2){

199

 r=x*m;
 g=x*m;
 b=x*m;
 }

 strip.setPixelColor(i, -r, -g, -b);
 }
 strip.show();
 if(x==0){
 delay(500);
 }
 else{
 delay(wait);
 }
 }
}

void colorChase(uint32_t c, uint8_t wait) {
 int i;
 int j;

for (j=0; j < 4; j++){

 for (i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // turn all pixels off
 }

 for (i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, c); // set one pixel
 strip.show(); // refresh strip display
 delay(wait); // hold image for a moment
 strip.setPixelColor(i, 0); // erase pixel (but don't refresh yet)
 }
 strip.show(); // for last erased pixel
}
}

#define PI 3.14159265
void GradientUp(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 int m=floor(127/nLeEDs);
 if(x==0){
 r=x*m;
 g=x*m;
 b=x*m;}

 else if(x%4==2){
 r=x*m;
 g=x*m;
 b=x*m;
 }

200

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 if(x==0){
 delay(500);
 }
 else{
 delay(wait);
 }
 }
}

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

Button: Tilt Forward

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

int inPin = 7; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

static int count = 0;

LPD8806 strip = LPD8806(52, dataPin, clockPin);

void setup() {
 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();

 pinMode(inPin, INPUT);
}

void loop(){

val = digitalRead(inPin);

 if (val == HIGH) {

201

 if (count == 0) {

 On(80);

 Clear(80);

 count += 1;

 }

 else if (count == 1){

 Half(80);

 Clear(80);

 count = 0;
 }

}
}

void On(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x>=0){
 r=127;
 g=127;
 b=127;}

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

void Half(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {

202

 if(x<16){
 if (i>16){
 r=127;
 g=127;
 b=127;
 }

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 else {
 if (i<=16){
 r=127;
 g=127;
 b=127;
 }

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

Button: Tilt Back

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

int inPin = 7; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

static int count = 0;

LPD8806 strip = LPD8806(52, dataPin, clockPin);

void setup() {
 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();

 pinMode(inPin, INPUT);

203

}

void loop(){

 val = digitalRead(inPin);

 if (val == HIGH) {

 if (count == 0) {

 On(80);

 Clear(80);

 count += 1;

 }

 else if (count == 1){

 Half(80);

 Clear(80);

 count = 0;
 }

}
}

void On(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x>=0){
 r=127;
 g=127;
 b=127;}

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

204

void Half(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x<16){
 if (i<16){
 r=127;
 g=127;
 b=127;
 }

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 else {
 if (i>=16){
 r=127;
 g=127;
 b=127;
 }

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

Button: Emergency

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

int inPin = 7; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

static int count = 0;

LPD8806 strip = LPD8806(52, dataPin, clockPin);

205

void setup() {
 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();

 pinMode(inPin, INPUT);
}

void loop(){

 val = digitalRead(inPin);

 if (val == HIGH) {

 if (count == 0) {

 OnOff(80);

 Clear(80);

 count += 1;

 }

 else if (count == 1){

 wave(2, 40);

 Clear(80);

 count = 0;
 }

}
}

void OnOff(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<strip.numPixels(); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {

 if(x%2==0){
 r=32;
 g=32;
 b=32;}

 else if(x%2==1){
 r=0;
 g=0;
 b=0;
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }

206

 }

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

 #define PI 3.14159265
void wave(int cycles, uint8_t wait) {
 float y;
 byte r, g, b, r2, g2, b2;

 // Need to decompose color into its r, g, b elements
 g = 32;
 r = 32;
 b = 32;

 for(int x=0; x<(strip.numPixels()*5); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 y = sin(PI * (float)cycles * (float)(x + i) / (float)strip.numPixels());
 if(y >= 0.0) {
 // Peaks of sine wave are white
 y = 1.0 - y; // Translate Y to 0.0 (top) to 1.0 (center)
 r2 = 127 - (byte)((float)(127 - r) * y);
 g2 = 127 - (byte)((float)(127 - g) * y);
 b2 = 127 - (byte)((float)(127 - b) * y);
 } else {
 // Troughs of sine wave are black
 y += 1.0; // Translate Y to 0.0 (bottom) to 1.0 (center)
 r2 = (byte)((float)r * y);
 g2 = (byte)((float)g * y);
 b2 = (byte)((float)b * y);
 }
 strip.setPixelColor(i, r2, g2, b2);
 }
 strip.show();
 delay(wait);
 }
}

Button: Reprimand

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

int inPin = 7; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

207

static int count = 0;

LPD8806 strip = LPD8806(52, dataPin, clockPin);

void setup() {
 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();

 pinMode(inPin, INPUT);
}

void loop(){

 val = digitalRead(inPin);

 if (val == HIGH) {

 if (count == 0) {

 GradientUp(80);

 GradientDown(80);

 count += 1;

 }

 else if (count == 1){

 ReprimandWompWomp(80);

 count = 0;
 }

}
}

#define PI 3.14159265
void GradientUp(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 int m=floor(127/nLeEDs);
 if(x==0){
 r=x*m;
 g=x*m;
 b=x*m;}

 else if(x%4==2){
 r=x*m;
 g=x*m;
 b=x*m;

208

 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 if(x==0){
 delay(500);
 }
 else{
 delay(wait);
 }
 }
}

#define PI 3.14159265
void GradientDown(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 int m=floor(127/nLeEDs);
 if(x==strip.numPixels()-1){
 r=0;
 g=0;
 b=0;}

 else if(x%4==2){
 r=x*m;
 g=x*m;
 b=x*m;
 }

 strip.setPixelColor(i, -r, -g, -b);
 }
 strip.show();
 if(x==strip.numPixels()-1){
 delay(500);
 }
 else{
 delay(wait);
 }
 }
}

void ReprimandWompWomp(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<68; x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {

 if(x<15){
 r=127;
 g=127;
 b=127;}

 else if(x>15 && x<23){
 r=0;
 g=0;
 b=0;

209

 }

 else if(x>23 && x<61){
 r=127;
 g=127;
 b=127;}

 else if(x>61){
 r=0;
 g=0;
 b=0;
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

Button: Bend Out

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

int inPin = 7; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

static int count = 0;

LPD8806 strip = LPD8806(52, dataPin, clockPin);

void setup() {
 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();

 pinMode(inPin, INPUT);
}

void loop(){
 val = digitalRead(inPin);

 if (val == HIGH) {

 if (count == 0) {

 BendOutScan(80);

 BendOutScan(80);

210

 Clear(80);

 count += 1;

 }

 else if (count == 1){

 On(80);

 Clear(80);

 count = 0;
 }

}
}

// "Larson scanner" = Cylon/KITT bouncing light effect
void BendOutScan(uint8_t wait) {
 int i, j, pos, dir;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 pos = 0;
 dir = 1;

 for(i=0; i<((strip.numPixels()-1)); i++) {
 // Draw 5 pixels centered on pos. setPixelColor() will clip
 // any pixels off the ends of the strip, no worries there.
 // we'll make the colors dimmer at the edges for a nice pulse
 // look
 strip.setPixelColor(pos - 2, strip.Color(r/8, g/8, b/8));
 strip.setPixelColor(pos - 1, strip.Color(r/4, g/4, b/4));
 strip.setPixelColor(pos, strip.Color(r, g, b));
 strip.setPixelColor(pos + 1, strip.Color(r/4, g/4, b/4));
 strip.setPixelColor(pos + 2, strip.Color(r/8, g/8, b/8));

 strip.show();
 delay(wait);
 // If we wanted to be sneaky we could erase just the tail end
 // pixel, but it's much easier just to erase the whole thing
 // and draw a new one next time.
 for(j=-2; j<= 2; j++)
 strip.setPixelColor(pos+j, strip.Color(0,0,0));

 pos += dir;
 if(pos < 0) {
 pos = 1;
 dir = -dir;
 }
 }
}

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {

211

 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

void On(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x>=0){
 r=127;
 g=127;
 b=127;}

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

Button: Bend In

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

int inPin = 7; // choose the input pin (for a pushbutton)
int val = 0; // variable for reading the pin status

static int count = 0;

LPD8806 strip = LPD8806(52, dataPin, clockPin);

void setup() {
 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();

 pinMode(inPin, INPUT);
}

void loop(){

 val = digitalRead(inPin);

 if (val == HIGH) {

 if (count == 0) {

212

 BendIn(80); // red, slow

 BendIn(80);

 Clear(80);

 count += 1;

 }

 else if (count == 1){

 On(80);

 Clear(80);

 count = 0;
 }

}
}

void BendIn(uint8_t wait) {
 int i, j, pos, dir;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 pos = (strip.numPixels()-1);
 dir = 1;

 for(i=(strip.numPixels()-1); i<((strip.numPixels()-1)*2); i++) {
 // Draw 5 pixels centered on pos. setPixelColor() will clip
 // any pixels off the ends of the strip, no worries there.
 // we'll make the colors dimmer at the edges for a nice pulse
 // look
 strip.setPixelColor(pos - 2, strip.Color(r/4, g/4, b/4));
 strip.setPixelColor(pos - 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos, strip.Color(r, g, b));
 strip.setPixelColor(pos + 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos + 2, strip.Color(r/4, g/4, b/4));

 strip.show();
 delay(wait);
 // If we wanted to be sneaky we could erase just the tail end
 // pixel, but it's much easier just to erase the whole thing
 // and draw a new one next time.
 for(j=-2; j<= 2; j++)
 strip.setPixelColor(pos+j, strip.Color(0,0,0));
 // Bounce off ends of strip
 pos += dir;
 if(pos < 0) {
 pos = 1;
 dir = -dir;
 } else if(pos >= strip.numPixels()) {
 pos = strip.numPixels() - 2;
 dir = -dir;
 }
 }

213

}

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

void On(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x>=0){
 r=127;
 g=127;
 b=127;}

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

Gesture: Come

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

char val; //Data received from serial port

LPD8806 strip = LPD8806(nLeEDs, dataPin, clockPin);

void setup() {

 Serial.begin(9600);

 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();
}

void loop(){

214

 if(Serial.available()){
 val=Serial.read();
 }

 if(val=='O'){
 Half(80);
 Clear(500);
 }

 else if(val=='T'){
 dither(80);
 Clear(500);
 }

 else{
 for (int i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0, 0, 0);
 }
 strip.show();
 }

}

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

void Half(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x<16){
 if (i<16){
 r=127;
 g=127;
 b=127;
 }

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 else {
 if (i>=16){
 r=127;
 g=127;

215

 b=127;
 }

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

 void dither(uint8_t wait) {

 // Determine highest bit needed to represent pixel index
 int hiBit = 0;
 int n = strip.numPixels() - 1;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 for(int bit=1; bit < 0x8000; bit <<= 1) {
 if(n & bit) hiBit = bit;
 }

 int bit, reverse;
 for(int i=0; i<(hiBit << 1); i++) {
 // Reverse the bits in i to create ordered dither:
 reverse = 0;
 for(bit=1; bit <= hiBit; bit <<= 1) {
 reverse <<= 1;
 if(i & bit) reverse |= 1;
 }
 strip.setPixelColor(reverse, r, g, b);
 strip.show();
 delay(wait);
 }
 delay(250); // Hold image for 1/4 sec
}

Gesture: Go

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

char val; //Data received from serial port

LPD8806 strip = LPD8806(nLeEDs, dataPin, clockPin);

216

void setup() {

 Serial.begin(9600);

 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();
}

void loop(){

 if(Serial.available()){
 val=Serial.read();
 }

 if(val=='O'){
 Half(80);
 Clear(500);
 }

 else if(val=='T'){
 On (5);
 Go(80);
 Clear(500);
 }

 else{
 for (int i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0, 0, 0);
 }
 strip.show();
 }

}

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

void Half(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x<16){
 if (i>16){
 r=127;
 g=127;
 b=127;

217

 }

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 else {
 if (i<=16){
 r=127;
 g=127;
 b=127;
 }

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

 void Go(uint8_t wait) {

 // Determine highest bit needed to represent pixel index
 int hiBit = 0;
 int n = strip.numPixels() - 1;
 byte r, g, b;
 r=0;
 g=0;
 b=0;

 for(int bit=1; bit < 0x8000; bit <<= 1) {
 if(n & bit) hiBit = bit;
 }

 int bit, reverse;
 for(int i=0; i<(hiBit << 1); i++) {
 // Reverse the bits in i to create ordered dither:
 reverse = 0;
 for(bit=1; bit <= hiBit; bit <<= 1) {
 reverse <<= 1;
 if(i & bit) reverse |= 1;
 }
 strip.setPixelColor(reverse, r, g, b);
 strip.show();
 delay(wait);
 }
 delay(250); // Hold image for 1/4 sec
}

void On(uint8_t wait) {
 byte r, g, b;

218

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x>=0){
 r=127;
 g=127;
 b=127;}

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

Gesture: Stop

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

char val; //Data received from serial port

LPD8806 strip = LPD8806(nLeEDs, dataPin, clockPin);

void setup() {

 Serial.begin(9600);

 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();
}

void loop(){

 if(Serial.available()){
 val=Serial.read();
 }

 if(val=='O'){
 ReprimandWompWomp(80);
 Clear(1000);
 }

 else if(val=='T'){
 GradientDown(80);
 Clear(1000);
 }

 else{
 for (int i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0, 0, 0);

219

 }
 strip.show();
 }

}

void ReprimandWompWomp(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<80; x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {

 if(x<10){
 r=127;
 g=127;
 b=127;}

 else if(x>10 && x<20){
 r=0;
 g=0;
 b=0;
 }

 else if(x>20 && x<30){
 r=127;
 g=127;
 b=127;}

 else if(x>30 && x<40){
 r=0;
 g=0;
 b=0;
 }

 else if(x>40 && x<50){
 r=127;
 g=127;
 b=127;}

 else if(x>50 && x<60){
 r=0;
 g=0;
 b=0;
 }

 else if(x>60 && x<70){
 r=127;
 g=127;
 b=127;}

 else if(x>70){
 r=0;
 g=0;
 b=0;}

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }

220

 }

 void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

 #define PI 3.14159265
void GradientDown(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 int m=floor(127/nLeEDs);
 if(x==strip.numPixels()-1){
 r=0;
 g=0;
 b=0;}

 else if(x%4==2){
 r=x*m;
 g=x*m;
 b=x*m;
 }

 strip.setPixelColor(i, -r, -g, -b);
 }
 strip.show();
 if(x==strip.numPixels()-1){
 delay(500);
 }
 else{
 delay(wait);
 }
 }
}

Gesture: Confirm Request

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

char val; //Data received from serial port

LPD8806 strip = LPD8806(nLeEDs, dataPin, clockPin);

221

void setup() {

 Serial.begin(9600);

 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();
}

void loop(){

 if(Serial.available()){
 val=Serial.read();
 }

 if(val=='O'){
 Confirm(80);
 Clear(1000);
 }

 else if(val=='T'){
 wave(2, 40);
 Clear(1000);
 }

 else{
 for (int i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0, 0, 0);
 }
 strip.show();
 }

}

void Confirm(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<18; x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {

 if(x<3){
 r=127;
 g=127;
 b=127;}

 else if(x>3 && x<6){
 r=0;
 g=0;
 b=0;
 }

 else if(x>6 && x<9){
 r=127;
 g=127;
 b=127;}

 else if(x>9 && x<12){

222

 r=0;
 g=0;
 b=0;
 }

 else if(x>12 && x<15){
 r=127;
 g=127;
 b=127;}

 else if(x>15){
 r=0;
 g=0;
 b=0;
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

 void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

#define PI 3.14159265
void wave(int cycles, uint8_t wait) {
 float y;
 byte r, g, b, r2, g2, b2;

 // Need to decompose color into its r, g, b elements
 g = 0;
 r = 0;
 b = 0;

 for(int x=0; x<(strip.numPixels()*5); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 y = sin(PI * (float)cycles * (float)(x + i) / (float)strip.numPixels());
 if(y >= 0.0) {
 // Peaks of sine wave are white
 y = 1.0 - y; // Translate Y to 0.0 (top) to 1.0 (center)
 r2 = 127 - (byte)((float)(127 - r) * y);
 g2 = 127 - (byte)((float)(127 - g) * y);
 b2 = 127 - (byte)((float)(127 - b) * y);
 } else {
 // Troughs of sine wave are black
 y += 1.0; // Translate Y to 0.0 (bottom) to 1.0 (center)
 r2 = (byte)((float)r * y);
 g2 = (byte)((float)g * y);

223

 b2 = (byte)((float)b * y);
 }
 strip.setPixelColor(i, r2, g2, b2);
 }
 strip.show();
 delay(wait);
 }
}

Gesture: Do not Understand Request

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

char val; //Data received from serial port

LPD8806 strip = LPD8806(nLeEDs, dataPin, clockPin);

void setup() {

 Serial.begin(9600);

 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();
}

void loop(){

 if(Serial.available()){
 val=Serial.read();
 }

 if(val=='O'){
 colorWipe(60);
 Clear(1000);
 }

 else if(val=='T'){
 OnOff(175);
 Clear(1000);
 }

 else{
 for (int i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0, 0, 0);
 }
 strip.show();
 }

}

void colorWipe(uint8_t wait) {

224

 int i, x;
 byte r, g, b;

 for (x=0; x<(strip.numPixels()); x++)
 {
 for (i=0; i < strip.numPixels(); i++) {

 if (x%2==0){
 r=32;
 g=32;
 b=32;
 }

 else if (x%2==1){
 r=0;
 g=0;
 b=0;
 }

 strip.setPixelColor(i, r, g, b);
 strip.show();
 }
 delay(wait);
}
}

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

void OnOff(uint8_t wait){
 int i, x;
 byte r, g, b;

 for (x=0; x<strip.numPixels(); x++)
 {
 for (i=0; i<strip.numPixels(); i++){

 if(x%2==0){

 if(i%2==0){
 r=127;
 g=127;
 b=127;
 }

 else if(i%2==1){
 r=0;
 g=0;
 b=0;
 }
 }
 else if(x%2==1){

225

 if(i%2==0){
 r=0;
 g=0;
 b=0;
 }

 else if(i%2==1){
 r=127;
 g=127;
 b=127;
 }
 }

 strip.setPixelColor(i, r, g, b);
 }

 strip.show();
 delay(wait);
 }

}

Gesture: Can’t Do

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

char val; //Data received from serial port

LPD8806 strip = LPD8806(nLeEDs, dataPin, clockPin);

void setup() {

 Serial.begin(9600);

 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();
}

void loop(){

 if(Serial.available()){
 val=Serial.read();
 }

 if(val=='O'){
 CantDo(80);
 Clear(1000);
 }

226

 else if(val=='T'){
 Thinking(10);
 Clear(1000);
 }

 else{
 for (int i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0, 0, 0);
 }
 strip.show();
 }

}

void CantDo(uint8_t wait) {
 int i, x, pos, dir, pos2, dir2;
 byte r, g, b;
 r=32;
 g=32;
 b=32;

 pos = ((strip.numPixels()/2)-1);
 pos2 = ((strip.numPixels()/2)-1);
 dir = 1;
 dir2 = -1;

 for(i=0; i<strip.numPixels(); i++) {
 // Draw 5 pixels centered on pos. setPixelColor() will clip
 // any pixels off the ends of the strip, no worries there.
 // we'll make the colors dimmer at the edges for a nice pulse
 // look

 strip.setPixelColor(pos - 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos, strip.Color(r, g, b));
 strip.setPixelColor(pos + 1, strip.Color(r/2, g/2, b/2));

 strip.setPixelColor(pos2 - 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos2, strip.Color(r, g, b));
 strip.setPixelColor(pos2 + 1, strip.Color(r/2, g/2, b/2));

 strip.show();
 delay(wait);
 // If we wanted to be sneaky we could erase just the tail end
 // pixel, but it's much easier just to erase the whole thing
 // and draw a new one next time.
 int j=-2;
 for(x=-2; x<= 2; x++){
 strip.setPixelColor(pos+x, strip.Color(0,0,0));
 strip.setPixelColor(pos2-x, strip.Color(0,0,0));
 }

 j+=-1;
 // Bounce off ends of strip
 pos += dir;
 pos2 += dir2;
 if(pos < 0) {
 pos = 1;
 dir = -dir;
 }

227

 else if (pos2 < 0){
 pos2 = 1;
 dir2 = -dir2;
 }

 if(pos >= strip.numPixels()) {
 pos = strip.numPixels() - 2;
 dir = -dir;
 }

 else if(pos2 >= strip.numPixels()) {
 pos2 = strip.numPixels() - 2;
 dir2 = -dir2;
 }
 }
}

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

void Thinking(uint8_t wait) {
 int i, j, pos, dir;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 pos = 0;
 dir = 1;

 for(i=0; i<((strip.numPixels()-1) * 8); i++) {
 // Draw 5 pixels centered on pos. setPixelColor() will clip
 // any pixels off the ends of the strip, no worries there.
 // we'll make the colors dimmer at the edges for a nice pulse
 // look
 strip.setPixelColor(pos - 2, strip.Color(r/4, g/4, b/4));
 strip.setPixelColor(pos - 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos, strip.Color(r, g, b));
 strip.setPixelColor(pos + 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos + 2, strip.Color(r/4, g/4, b/4));

 strip.show();
 delay(wait);
 // If we wanted to be sneaky we could erase just the tail end
 // pixel, but it's much easier just to erase the whole thing
 // and draw a new one next time.
 for(j=-2; j<= 2; j++)
 strip.setPixelColor(pos+j, strip.Color(0,0,0));
 // Bounce off ends of strip
 pos += dir;
 if(pos < 0) {
 pos = 1;

228

 dir = -dir;
 } else if(pos >= strip.numPixels()) {
 pos = strip.numPixels() - 2;
 dir = -dir;
 }
 }
}

Gesture: I’m thinking

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

char val; //Data received from serial port

LPD8806 strip = LPD8806(nLeEDs, dataPin, clockPin);

void setup() {

 Serial.begin(9600);

 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();
}

void loop(){

 if(Serial.available()){
 val=Serial.read();
 }

 if(val=='O'){
 Thinking(80);
 Clear(1000);
 }

 else if(val=='T'){
 GradientUp(80);
 GradientDown(80);
 Clear(1000);
 }

 else{
 for (int i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0, 0, 0);
 }
 strip.show();
 }

}

void Thinking(uint8_t wait) {

229

 int i, j, pos, dir;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 pos = 0;
 dir = 1;

 for(i=0; i<((strip.numPixels()-1) * 3); i++) {
 // Draw 5 pixels centered on pos. setPixelColor() will clip
 // any pixels off the ends of the strip, no worries there.
 // we'll make the colors dimmer at the edges for a nice pulse
 // look
 strip.setPixelColor(pos - 2, strip.Color(r/4, g/4, b/4));
 strip.setPixelColor(pos - 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos, strip.Color(r, g, b));
 strip.setPixelColor(pos + 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos + 2, strip.Color(r/4, g/4, b/4));

 strip.show();
 delay(wait);
 // If we wanted to be sneaky we could erase just the tail end
 // pixel, but it's much easier just to erase the whole thing
 // and draw a new one next time.
 for(j=-2; j<= 2; j++)
 strip.setPixelColor(pos+j, strip.Color(0,0,0));
 // Bounce off ends of strip
 pos += dir;
 if(pos < 0) {
 pos = 1;
 dir = -dir;
 } else if(pos >= strip.numPixels()) {
 pos = strip.numPixels() - 2;
 dir = -dir;
 }
 }
}

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

#define PI 3.14159265
void GradientUp(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 int m=floor(127/nLeEDs);
 if(x==0){
 r=x*m;

230

 g=x*m;
 b=x*m;}

 else if(x%4==2){
 r=x*m;
 g=x*m;
 b=x*m;
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 if(x==0){
 delay(500);
 }
 else{
 delay(wait);
 }
 }
}

#define PI 3.14159265
void GradientDown(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 int m=floor(127/nLeEDs);
 if(x==strip.numPixels()-1){
 r=0;
 g=0;
 b=0;}

 else if(x%4==2){
 r=x*m;
 g=x*m;
 b=x*m;
 }

 strip.setPixelColor(i, -r, -g, -b);
 }
 strip.show();
 if(x==strip.numPixels()-1){
 delay(500);
 }
 else{
 delay(wait);
 }
 }
}

Gesture: Something in the Way

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

231

char val; //Data received from serial port

LPD8806 strip = LPD8806(nLeEDs, dataPin, clockPin);

void setup() {

 Serial.begin(9600);

 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'
 strip.show();
}

void loop(){

 if(Serial.available()){
 val=Serial.read();
 }

 if(val=='O'){
 OnOff(80);
 Clear(1000);
 }

 else if(val=='T'){
 dither(80);
 Go(80);
 Clear(1000);
 }

 else{
 for (int i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0, 0, 0);
 }
 strip.show();
 }

}

void OnOff(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<strip.numPixels()+1; x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {

 if(x%5==0){
 r=32;
 g=32;
 b=32;}

 else if(x%5==1){
 r=0;
 g=0;
 b=0;
 }

232

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

 void dither(uint8_t wait) {

 // Determine highest bit needed to represent pixel index
 int hiBit = 0;
 int n = strip.numPixels() - 1;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 for(int bit=1; bit < 0x8000; bit <<= 1) {
 if(n & bit) hiBit = bit;
 }

 int bit, reverse;
 for(int i=0; i<(hiBit << 1); i++) {
 // Reverse the bits in i to create ordered dither:
 reverse = 0;
 for(bit=1; bit <= hiBit; bit <<= 1) {
 reverse <<= 1;
 if(i & bit) reverse |= 1;
 }
 strip.setPixelColor(reverse, r, g, b);
 strip.show();
 delay(wait);
 }
 delay(250); // Hold image for 1/4 sec
}

void Go(uint8_t wait) {

 // Determine highest bit needed to represent pixel index
 int hiBit = 0;
 int n = strip.numPixels() - 1;
 byte r, g, b;
 r=0;
 g=0;
 b=0;

 for(int bit=1; bit < 0x8000; bit <<= 1) {
 if(n & bit) hiBit = bit;
 }

233

 int bit, reverse;
 for(int i=0; i<(hiBit << 1); i++) {
 // Reverse the bits in i to create ordered dither:
 reverse = 0;
 for(bit=1; bit <= hiBit; bit <<= 1) {
 reverse <<= 1;
 if(i & bit) reverse |= 1;
 }
 strip.setPixelColor(reverse, r, g, b);
 strip.show();
 delay(wait);
 }
 delay(250); // Hold image for 1/4 sec
}

void On(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x>=0){
 r=127;
 g=127;
 b=127;}

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

234

Appendix EE

Phase II Code: Processing - Light

/* --
 * SimpleOpenNI NITE Hands
 * --
 * Processing Wrapper for the OpenNI/Kinect library
 * http://code.google.com/p/simple-openni
 * --
 * prog: Max Rheiner / Interaction Design / zhdk / http://iad.zhdk.ch/
 * date: 03/19/2011 (m/d/y)
 * --
 * This example works with multiple hands, to enable mutliple hand change
 * the ini file in /usr/etc/primesense/XnVHandGenerator/Nite.ini:
 * [HandTrackerManager]
 * AllowMultipleHands=1
 * TrackAdditionalHands=1
 * on Windows you can find the file at:
 * C:\Program Files (x86)\Prime Sense\NITE\Hands\Data\Nite.ini
 * --
 */

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import processing.serial.*;

Serial port; // Create object from Serial class
int val; // Data received from the serial port

static int time=0;
int check=0;
float xcoord0, xcoord99, diff;

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

PrintWriter output;

void setup()
{

 println(Serial.list()); //This shows the various serial port options
 String portName = Serial.list()[0]; //The serial port should match the one the Arduino is hooked to
 port = new Serial(this, portName, 9600); //Establish the connection rate

 //output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation

235

 if(context.enableDepth() == false)
 {
 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{
 background(200,0,0);
 // update the cam
 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

 // draw the list
 pointDrawer.draw();
}

void keyPressed()
{
 switch(key)
 {
 case 'e':
 // end sessions
 sessionManager.EndSession();
 println("end session");
 break;
 }
}

///
// session callbacks

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
}

void onEndSession()

236

{
 println("onEndSession: ");
}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);
}

///
// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {
 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

 public void OnPointDestroy(long nID)
 {
 println("OnPointDestroy, handId: " + nID);

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))
 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;

237

 }

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

//If hand gesture detected, activate lights from Arduino
 //output.println(handPoint);
 if(handPoint.x>150){
 xcoord0=handPoint.x;
 //output.println("START");
 port.write('N'); //send an N to deactivate light sequence
 check=0;
 }
 else if(handPoint.x<-200){
 if(check==0){
 //output.println("TRIGGER");

 if(time==0){
 port.write('O'); //send an O to activate the first light sequence
 time=1;
 }
 else{
 port.write('T'); //send an T to activate the second light sequence
 time=0;
 }
 }
 check=1;
 port.write('N');

 }

 }

 public void draw()
 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())
 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line

238

 firstVec = null;
 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);
 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);
 point(screenPos.x,screenPos.y);
 }
 colorIndex++;
 }

 popStyle();
 }

}

void stop(){

 super.stop();
 output.flush();
 output.close();
}

239

Appendix FF

Phase III Code: Arduino

Day_1:

#include "LPD8806.h"
#include "SPI.h"

int nLeEDs = 52;

int dataPin = 2;
int clockPin = 3;

//variables for DOWN actuator button
static int press=0;
static int waiting=0;
int output1=6;
int valDown=0;

static int switch_mode_b=0;
static int switch_mode_f=0;

//variables for pushbuttons
int ReprimandPin = 7; // choose the input pin (for a pushbutton)
int Reprimandval = 0; // variable for reading the pin status

int TiltForwardPin = 8; // choose the input pin (for a pushbutton)
int TiltForwardval = 0; // variable for reading the pin status

int TiltBackPin = 9; // choose the input pin (for a pushbutton)
int TiltBackval = 0; // variable for reading the pin status

int BendInPin = 12; // choose the input pin (for a pushbutton)
int BendInval = 0; // variable for reading the pin status

int DownPin = 13; // choose the input pin (for a pushbutton)
int Downval = 0;

char gesture_triggered; //Data received from serial port

LPD8806 strip = LPD8806(nLeEDs, dataPin, clockPin);

void setup() {

 pinMode(output1, OUTPUT);
 pinMode(ReprimandPin, INPUT);
 pinMode(TiltForwardPin, INPUT);
 pinMode(TiltBackPin, INPUT);
 pinMode(BendInPin, INPUT);
 pinMode(DownPin, INPUT);

 Serial.begin(9600);

 // Start up the LED strip
 strip.begin();

 // Update the strip, to start they are all 'off'

240

 strip.show();
}

void loop(){

 Reprimandval = digitalRead(ReprimandPin);
 TiltForwardval = digitalRead(TiltForwardPin);
 TiltBackval = digitalRead(TiltBackPin);
 BendInval = digitalRead(BendInPin);
 Downval = digitalRead(DownPin);

 if(Serial.available()){
 gesture_triggered=(char)Serial.read();
 }

 //If the Reparimand pushbutton is pressed, play the corresponding light sequence
 if(Reprimandval==LOW){
 //Serial.write('R');
 ReprimandWompWomp(80);
 Clear(80);
 }

// if(BendInval==LOW){
// BendIn(80); // red, slow
// BendIn(80);
// Clear(80);
// }

 //If the Tilt Forward or Tilt Back pushbuttons are pressed, play their corresponding light sequences
 //and send a signal to processing to play the corresponding sounds
 if(TiltForwardval==LOW){
 Serial.println(switch_mode_f);
 if(switch_mode_f==0){
 Serial.write('F');
 switch_mode_f++;
 }
 else if(switch_mode_f==1){
 Serial.println('flag');
 On(80);
 Clear(80);
 switch_mode_f++;
 }
 else{
 Serial.write('F');
 On(80);
 Clear(80);
 switch_mode_f=0;
 }
 delay(200);
 }

if(TiltBackval==LOW){
 if(switch_mode_b==0){
 Serial.write('B');
 switch_mode_b++;
 }
 else if(switch_mode_b==1){
 On(80);
 Clear(80);
 switch_mode_b++;

241

 }
 else{
 Serial.write('B');
 On(80);
 Clear(80);
 switch_mode_b=0;
 }
 delay(500);
 }

 if(BendInval==LOW){
 //Serial.write('R');
 BendIn(80);
 Clear(80);
 }

 if(Downval==LOW){
 Serial.write('D');
 delay(500);
 }

 ///
 //Send signal to Processing to play the sound corresponding to the Down button
// digitalWrite(output1, HIGH);
// valDown=analogRead(A0);
//
// float voltageDown=valDown*(0.5/1024.0);
// //Serial.println(voltageDown);
//
// if(voltageDown>0.4){
// press++;
// if(press==1){
// Serial.write('D');
// //Serial.println("Pressed!");
// }
// valDown=analogRead(A0);
// voltageDown=valDown*(0.5/1024.0);
// //Serial.println(press);
// //Serial.println(voltageDown);
//
// }
//
// else if(voltageDown<0.4){
// waiting++;
// valDown=analogRead(A0);
// voltageDown=valDown*(0.5/1024.0);
// //Serial.println(voltageDown);
// //Serial.println(voltageUp);
// }
// if(waiting>200){
// press=0;
// waiting=0;
// }
// //press=0;

 //

242

 if(gesture_triggered=='C'){
 dither(80);
 Clear(500);
 }

 else if(gesture_triggered=='E'){
 OnOff(80);
 Clear(80);
 }

 //I'm Thinking Lights
 else if(gesture_triggered=='T'){
 Thinking(80);
 Clear(1000);
 }

 else if(gesture_triggered=='G'){
 Half(80);
 Clear(500);
 }

 else if(gesture_triggered=='U'){
 OnOff(175);
 Clear(1000);
 }

 else if(gesture_triggered=='W'){
 dither(80);
 Go(80);
 Clear(1000);
 }

}

BendIn:

void BendIn(uint8_t wait) {
 int i, j, pos, dir;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 pos = (strip.numPixels()-1);
 dir = 1;

 for(i=(strip.numPixels()-1); i<((strip.numPixels()-1)*2); i++) {
 // Draw 5 pixels centered on pos. setPixelColor() will clip
 // any pixels off the ends of the strip, no worries there.
 // we'll make the colors dimmer at the edges for a nice pulse
 // look
 strip.setPixelColor(pos - 2, strip.Color(r/4, g/4, b/4));
 strip.setPixelColor(pos - 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos, strip.Color(r, g, b));
 strip.setPixelColor(pos + 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos + 2, strip.Color(r/4, g/4, b/4));

 strip.show();

243

 delay(wait);
 // If we wanted to be sneaky we could erase just the tail end
 // pixel, but it's much easier just to erase the whole thing
 // and draw a new one next time.
 for(j=-2; j<= 2; j++)
 strip.setPixelColor(pos+j, strip.Color(0,0,0));
 // Bounce off ends of strip
 pos += dir;
 if(pos < 0) {
 pos = 1;
 dir = -dir;
 } else if(pos >= strip.numPixels()) {
 pos = strip.numPixels() - 2;
 dir = -dir;
 }
 }
}

Clear:

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

Dither:

 void dither(uint8_t wait) {

 // Determine highest bit needed to represent pixel index
 int hiBit = 0;
 int n = strip.numPixels() - 1;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 for(int bit=1; bit < 0x8000; bit <<= 1) {
 if(n & bit) hiBit = bit;
 }

 int bit, reverse;
 for(int i=0; i<(hiBit << 1); i++) {
 // Reverse the bits in i to create ordered dither:
 reverse = 0;
 for(bit=1; bit <= hiBit; bit <<= 1) {
 reverse <<= 1;
 if(i & bit) reverse |= 1;
 }
 strip.setPixelColor(reverse, r, g, b);
 strip.show();
 delay(wait);
 }
 delay(250); // Hold image for 1/4 sec

244

}

Go:

void Go(uint8_t wait) {

 // Determine highest bit needed to represent pixel index
 int hiBit = 0;
 int n = strip.numPixels() - 1;
 byte r, g, b;
 r=0;
 g=0;
 b=0;

 for(int bit=1; bit < 0x8000; bit <<= 1) {
 if(n & bit) hiBit = bit;
 }

 int bit, reverse;
 for(int i=0; i<(hiBit << 1); i++) {
 // Reverse the bits in i to create ordered dither:
 reverse = 0;
 for(bit=1; bit <= hiBit; bit <<= 1) {
 reverse <<= 1;
 if(i & bit) reverse |= 1;
 }
 strip.setPixelColor(reverse, r, g, b);
 strip.show();
 delay(wait);
 }
 delay(250); // Hold image for 1/4 sec
}

Half:

void Half(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x<16){
 if (i>16){
 r=127;
 g=127;
 b=127;
 }

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 else {
 if (i<=16){
 r=127;
 g=127;
 b=127;
 }

245

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

On:

void On(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x>=0){
 r=127;
 g=127;
 b=127;}

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

OnOff:

void OnOff(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<strip.numPixels(); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {

 if(x%2==0){
 r=32;
 g=32;
 b=32;}

 else if(x%2==1){
 r=0;
 g=0;
 b=0;
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
}

246

ReprimandWompWomp:

void ReprimandWompWomp(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<68; x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {

 if(x<15){
 r=127;
 g=127;
 b=127;}

 else if(x>15 && x<23){
 r=0;
 g=0;
 b=0;
 }

 else if(x>23 && x<61){
 r=127;
 g=127;
 b=127;}

 else if(x>61){
 r=0;
 g=0;
 b=0;
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
}

Thinking:

void Thinking(uint8_t wait) {
 int i, j, pos, dir;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 pos = 0;
 dir = 1;

 for(i=0; i<((strip.numPixels()-1) * 3); i++) {
 // Draw 5 pixels centered on pos. setPixelColor() will clip
 // any pixels off the ends of the strip, no worries there.
 // we'll make the colors dimmer at the edges for a nice pulse
 // look
 strip.setPixelColor(pos - 2, strip.Color(r/4, g/4, b/4));
 strip.setPixelColor(pos - 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos, strip.Color(r, g, b));

247

 strip.setPixelColor(pos + 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos + 2, strip.Color(r/4, g/4, b/4));

 strip.show();
 delay(wait);
 // If we wanted to be sneaky we could erase just the tail end
 // pixel, but it's much easier just to erase the whole thing
 // and draw a new one next time.
 for(j=-2; j<= 2; j++)
 strip.setPixelColor(pos+j, strip.Color(0,0,0));
 // Bounce off ends of strip
 pos += dir;
 if(pos < 0) {
 pos = 1;
 dir = -dir;
 } else if(pos >= strip.numPixels()) {
 pos = strip.numPixels() - 2;
 dir = -dir;
 }
 }
}

TurnOff:

void TurnOff(uint8_t wait) {
 for (int i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0, 0, 0);
 }
 strip.show();
}

248

Appendix GG

Phase III Code: Processing

Day 1:

/* --
 * SimpleOpenNI NITE Hands
 * --
 * Processing Wrapper for the OpenNI/Kinect library
 * http://code.google.com/p/simple-openni
 * --
 * prog: Max Rheiner / Interaction Design / zhdk / http://iad.zhdk.ch/
 * date: 03/19/2011 (m/d/y)
 * --
 * This example works with multiple hands, to enable mutliple hand change
 * the ini file in /usr/etc/primesense/XnVHandGenerator/Nite.ini:
 * [HandTrackerManager]
 * AllowMultipleHands=1
 * TrackAdditionalHands=1
 * on Windows you can find the file at:
 * C:\Program Files (x86)\Prime Sense\NITE\Hands\Data\Nite.ini
 * --
 */

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Serial port; // Create object from Serial class
int button_trigger; // Data received from the serial port

///Order of Operations
int stop = 2;
int cantdo=5;
int come=0;
int emergency=3;
int imthinking=6;
int go=1;
int understand=4;
int somethingway=7;
int numberofgestures=8;

static int switch_mode_g=0;
static int switch_mode_u=0;
static int switch_mode_w=0;

Minim minim1;
Minim minim2;
Minim minim3;
Minim minim4;
Minim minim5;
Minim minim6;
Minim minim7;
Minim minim8;

249

AudioPlayer downsound1;
AudioPlayer Stop1;
AudioPlayer CantDo2;
AudioPlayer TiltForward2;
AudioPlayer TiltBack2;
AudioPlayer Go2;
AudioPlayer DoNotUnderstand2;
AudioPlayer SomethingInTheWay1;

static int time=0;
int check=0;
int checky=0;
float xcoord0, xcoord99, diff;

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

PrintWriter output;

void setup()
{

 println(Serial.list()); //This shows the various serial port options
 String portName = Serial.list()[0]; //The serial port should match the one the Arduino is hooked to
 port = new Serial(this, portName, 9600); //Establish the connection rate

 minim1 = new Minim(this);
 minim2 = new Minim(this);
 minim3 = new Minim(this);
 minim4 = new Minim(this);
 minim5 = new Minim(this);
 minim6 = new Minim(this);
 minim7 = new Minim(this);
 minim8 = new Minim(this);
 downsound1=minim1.loadFile("Down1.wav");
 Stop1=minim2.loadFile("Stop1.wav");
 CantDo2=minim3.loadFile("CantDo2.wav");
 TiltForward2=minim4.loadFile("TiltForward2.wav");
 TiltBack2=minim5.loadFile("TiltBack2.wav");
 Go2=minim6.loadFile("Go2.wav");
 DoNotUnderstand2=minim7.loadFile("DoNotUnderstand2.wav");
 SomethingInTheWay1=minim8.loadFile("SomethingInTheWay1.wav");

 //output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation
 if(context.enableDepth() == false)
 {
 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

250

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{

 if (port.available() > 0) {
 button_trigger = port.read();
 //println(val);

 if(button_trigger=='D'){
 //println("Play Sound!");
 downsound1.play();
 downsound1.rewind();
 }

 else if(button_trigger=='F'){
 //println("Play Forward!");
 TiltForward2.play();
 TiltForward2.rewind();
 }

 else if(button_trigger=='B'){
 TiltBack2.play();
 TiltBack2.rewind();
 }
 }

 background(200,0,0);
 // update the cam
 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

 // draw the list
 pointDrawer.draw();
}

251

Point Drawer:

// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {
 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

 public void OnPointDestroy(long nID)
 {
 //println("OnPointDestroy, handId: " + nID);

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))
 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;
 }

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

252

//If hand gesture detected, activate lights from Arduino
 //output.println(handPoint);
 if(handPoint.x>150){
 xcoord0=handPoint.x;
 //output.println("START");
 port.write('N'); //send an N to deactivate light sequence
 check=0;

 }
 else if(handPoint.x<-200){
 checky=0;
 if(check==0){
 //output.println("TRIGGER");

 //port.write sends signal to Arduino to activate corresponding light sequence
 //.play plays the corresponding sound from Processing

 //Stop ****Sound Only****
 if(time==stop){
 Stop1.play();
 Stop1.rewind();
 }

 //Can't Do ****Sound Only****
 else if(time==cantdo){
 CantDo2.play();
 CantDo2.rewind();
 }

 //Come ****Lights Only****
 else if(time==come){
 port.write('C'); //send an T to activate the second light sequence
 }

 //Emergency ****Lights Only****
 else if(time==emergency){
 port.write('E'); //send an T to activate the second light sequence
 }

 //I'm Thinking ****Lights Only****
 else if(time==imthinking){
 port.write('T'); //send an T to activate the second light sequence
 }

 //Go ****Lights and Sound****
 else if(time==go){
 if(switch_mode_g==0){
 port.write('G'); //send an T to activate the second light sequence
 switch_mode_g++;
 }
 else if(switch_mode_g==1){
 Go2.play();
 Go2.rewind();
 switch_mode_g++;
 }
 else{
 port.write('G');
 Go2.play();
 Go2.rewind();
 switch_mode_g=0;

253

 }

 }

 //Do Not Understand ****Lights and Sound****
 else if(time==understand){
 if(switch_mode_u==0){
 port.write('U'); //send an T to activate the second light sequence
 switch_mode_u++;
 }
 else if(switch_mode_u==1){
 DoNotUnderstand2.play();
 DoNotUnderstand2.rewind();
 switch_mode_u++;
 }
 else{
 port.write('U');
 DoNotUnderstand2.play();
 DoNotUnderstand2.rewind();
 switch_mode_u=0;
 }
 }

 //Something in the Way ****Lights and Sound****
 else if(time==somethingway){
 if(switch_mode_w==0){
 port.write('W'); //send an T to activate the second light sequence
 switch_mode_w++;
 }
 else if(switch_mode_w==1){
 SomethingInTheWay1.play();
 SomethingInTheWay1.rewind();
 switch_mode_w++;
 }
 else{
 port.write('W');
 SomethingInTheWay1.play();
 SomethingInTheWay1.rewind();
 switch_mode_w=0;
 }
 }

 }
 check=1;
 port.write('N');

 }

 else if(handPoint.y>500){
 println("Reached");
 if(checky==0){
 time++;
 checky=1;
 }
 if(time==numberofgestures) time=0;
 }
 println(time);

 }

 public void draw()

254

 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())
 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line
 firstVec = null;
 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);
 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);
 point(screenPos.x,screenPos.y);
 }
 colorIndex++;
 }

 popStyle();
 }

}

keyPressed:

void keyPressed()
{
 switch(key)
 {
 case 'e':
 // end sessions
 sessionManager.EndSession();
 println("end session");

255

 break;
 }
}

onStartSession:

///
// session callbacks

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
}

void onEndSession()
{
 println("onEndSession: ");
}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);
}

///
stop:

void stop(){

 super.stop();
 output.flush();
 output.close();
}

256

Appendix HH

Usability Study Code: Processing

PG_altered

/* --
 * SimpleOpenNI NITE Hands
 * --
 * Processing Wrapper for the OpenNI/Kinect library
 * http://code.google.com/p/simple-openni
 * --
 * prog: Max Rheiner / Interaction Design / zhdk / http://iad.zhdk.ch/
 * date: 03/19/2011 (m/d/y)
 * --
 * This example works with multiple hands, to enable mutliple hand change
 * the ini file in /usr/etc/primesense/XnVHandGenerator/Nite.ini:
 * [HandTrackerManager]
 * AllowMultipleHands=1
 * TrackAdditionalHands=1
 * on Windows you can find the file at:
 * C:\Program Files (x86)\Prime Sense\NITE\Hands\Data\Nite.ini
 * --
 */

import SimpleOpenNI.*;
import java.util.Iterator;
import java.util.Map;
import ddf.minim.*;
import processing.serial.*;

Serial port; // Create object from Serial class
int button_trigger; // Data received from the serial port
int startsession=0;

///Order of Operations
int stop = 2;
int cantdo=5;
int come=0;
int emergency=3;
int imthinking=6;
int go=1;
int understand=4;
int somethingway=7;
int numberofgestures=8;

static int switch_mode_g=0;
static int switch_mode_u=0;
static int switch_mode_w=0;

int xboundary=100;
int yboundary=100;
int yboundaryupdown=0;
int yupdownmax=250;
int yboundaryrest=200;
int gesturexUB=150;
int gesturexLB=-200;

257

int starttimegesture, endtimegesture, starttimerest, endtimerest, starttimetherapy, endtimetherapy;
int timerequirement=4000;
int timediffgesture, timediffrest, timedifftherapy;
int br=30; //br=broundary range
int countchangegesture=0;

static int updown=0;
static int actuatoron=0;
static int first=1;
float ycoord0;
static int count=0;

Minim minim1;
Minim minim2;
Minim minim3;
Minim minim4;
Minim minim5;
Minim minim6;
Minim minim7;
Minim minim8;
Minim minim9;
AudioPlayer downsound1;
AudioPlayer Stop1;
AudioPlayer CantDo2;
AudioPlayer TiltForward2;
AudioPlayer TiltBack2;
AudioPlayer Go2;
AudioPlayer DoNotUnderstand2;
AudioPlayer SomethingInTheWay1;
AudioPlayer learn;

static int time=0;
int gesture=0;
int therapygesture=0;
int halfcomplete=0;
int restgesture=0;
static int restgestureacting=0;
int changegesture=0;
float xcoord0, xcoord99, diff;
static int gesturemode=0; //Allows to change between Do Not Understand and Up Movement for UP/DOWN
Gesture
int incident=0;

SimpleOpenNI context;

// NITE
XnVSessionManager sessionManager;
XnVFlowRouter flowRouter;

PointDrawer pointDrawer;

PrintWriter output;

void setup()
{

 println(Serial.list()); //This shows the various serial port options
 String portName = Serial.list()[6]; //The serial port should match the one the Arduino is hooked to
 port = new Serial(this, portName, 9600); //Establish the connection rate

 minim1 = new Minim(this);

258

 minim2 = new Minim(this);
 minim3 = new Minim(this);
 minim4 = new Minim(this);
 minim5 = new Minim(this);
 minim6 = new Minim(this);
 minim7 = new Minim(this);
 minim8 = new Minim(this);
 minim9 = new Minim(this);
 downsound1=minim1.loadFile("Down1.wav");
 Stop1=minim2.loadFile("Stop1.wav");
 CantDo2=minim3.loadFile("CantDo2.wav");
 TiltForward2=minim4.loadFile("TiltForward2.wav");
 TiltBack2=minim5.loadFile("TiltBack2.wav");
 Go2=minim6.loadFile("Go2.wav");
 DoNotUnderstand2=minim7.loadFile("DoNotUnderstand2.wav");
 SomethingInTheWay1=minim8.loadFile("SomethingInTheWay1.wav");
 learn=minim9.loadFile("learn.wav");

 //output = createWriter("out.txt");
 context = new SimpleOpenNI(this);

 // mirror is by default enabled
 context.setMirror(true);

 // enable depthMap generation
 if(context.enableDepth() == false)
 {
 println("Can't open the depthMap, maybe the camera is not connected!");
 exit();
 return;
 }

 // enable the hands + gesture
 context.enableGesture();
 context.enableHands();

 // setup NITE
 sessionManager = context.createSessionManager("Click,Wave", "RaiseHand");

 pointDrawer = new PointDrawer();
 flowRouter = new XnVFlowRouter();
 flowRouter.SetActive(pointDrawer);

 sessionManager.AddListener(flowRouter);

 size(context.depthWidth(), context.depthHeight());
 smooth();
}

void draw()
{

 if (port.available() > 0) {
 button_trigger = port.read();
 //println(val);

 if(button_trigger=='D'){
 //println("Play Sound!");
 //downsound1.play();
 //downsound1.rewind();

259

 }

 else if(button_trigger=='F'){
 //println("Play Forward!");
 //TiltForward2.play();
 //TiltForward2.rewind();
 }

 else if(button_trigger=='B'){
 //TiltBack2.play();
 //TiltBack2.rewind();
 }
 }

 background(200,0,0);
 // update the cam
 context.update();

 // update nite
 context.update(sessionManager);

 // draw depthImageMap
 image(context.depthImage(),0,0);

 // draw the list
 pointDrawer.draw();
}

PointDrawer

// PointDrawer keeps track of the handpoints

class PointDrawer extends XnVPointControl
{
 HashMap _pointLists;
 int _maxPoints;
 color[] _colorList = { color(255,0,0),color(0,255,0),color(0,0,255),color(255,255,0)};

 public PointDrawer()
 {
 _maxPoints = 30;
 _pointLists = new HashMap();
 }

 public void OnPointCreate(XnVHandPointContext cxt)
 {
 // create a new list
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));

 println("OnPointCreate, handId: " + cxt.getNID());
 }

 public void OnPointUpdate(XnVHandPointContext cxt)
 {
 //println("OnPointUpdate " + cxt.getPtPosition());
 addPoint(cxt.getNID(),new
PVector(cxt.getPtPosition().getX(),cxt.getPtPosition().getY(),cxt.getPtPosition().getZ()));
 }

260

 public void OnPointDestroy(long nID)
 {
 //println("OnPointDestroy, handId: " + nID);

 // remove list
 if(_pointLists.containsKey(nID))
 _pointLists.remove(nID);
 }

 public ArrayList getPointList(long handId)
 {
 ArrayList curList;
 if(_pointLists.containsKey(handId))
 curList = (ArrayList)_pointLists.get(handId);
 else
 {
 curList = new ArrayList(_maxPoints);
 _pointLists.put(handId,curList);
 }
 return curList;
 }

 public void addPoint(long handId,PVector handPoint)
 {
 ArrayList curList = getPointList(handId);

 curList.add(0,handPoint);
 if(curList.size() > _maxPoints)
 curList.remove(curList.size() - 1);

 //println(handPoint.y);
 //*if hand is in top right quadrant*\\
 if(handPoint.x>gesturexUB && handPoint.y>yboundary){

 //*Add in boundary to rest gesture if it's not completed*\\
 if(handPoint.x>(gesturexUB+br)) gesture=0;

 restgesture=0;
 restgestureacting=0;

 //*if the hand is moving to make the general gesture*\\
 if(gesture==0){
 if(handPoint.x<(gesturexUB+br)){
 //*record the time the gesture began and set the trigger for the general gesture*\\
 starttimegesture=millis();
 gesture=1;
 println("Start Gesture");
 }
 }
 //if gesture was triggered by accident, reset
 //else gesture=0;

 ////////////////////////END BEGIN GESTURE////////////////////////

 ////////////////////////START THERAPY MOVEMENT//////////////////
 //*if the hand is moving ot make the therapy gesture*\\
 if(therapygesture==0 && halfcomplete==0){
 if(handPoint.y<(yboundary+br)){
 println("Start Therapy");

261

 for(int c=0; c<50; c++) port.write('R');

 //*record the time the therapy gesture began and set the trigger for the therapy gesture*\\
 starttimetherapy=millis();
 therapygesture=1;
 }
 port.write('O');
 port.write('Q');
 }
 //if therapy gesture was triggered by accident, reset
 //else if(therapygesture!=2) therapygesture=0;

 //*if the second half of the therapy movement is in progress*\\
 if(halfcomplete==1){
 if(handPoint.y<(yboundary+br)){
 //*record the time the second swipe began and set the trigger for the therapy gesture*\\
 starttimetherapy=millis();
 timedifftherapy=starttimetherapy-endtimetherapy;
 }
 //*if the gesture wasn't completed in time, don't do anything and reset the therapy gesture*\\
 else timedifftherapy=timerequirement+1;

 if(timedifftherapy<timerequirement){
 println("Therapy Two Begin");
 therapygesture=2;
 println(therapygesture);
 halfcomplete=0;
 }
 else if(timedifftherapy>timerequirement && handPoint.y>(yboundary+br)){
 println("Alert");
 therapygesture=0;
 halfcomplete=0;
 }
 }
 if(therapygesture==2){
 if(handPoint.y<(yboundary+br)){
 println("Start Therapy Two");
 //*record the time the second swipe began and set the trigger for the therapy gesture*\\
 starttimetherapy=millis();

 }
 }

 }

 ///////////////////////END BEGIN THERAPY////////////////

 //////////////////////BEGIN END GESTURE/////////////////

 //*if the hand has reached the top left quadrant*\\
 else if(handPoint.x<gesturexLB && handPoint.y>yboundary && restgestureacting==0){
 //*Add in boundary to rest gesture if it's not completed*\\
// if(handPoint.x<(gesturexLB-br)){
// gesture=0;
// }

 therapygesture=0;

262

 halfcomplete=0;

 if(handPoint.x>(gesturexLB-br)){
 endtimegesture=millis();
 timediffgesture=endtimegesture-starttimegesture;
 }
 else timediffgesture=timerequirement+1;
 if(timediffgesture<timerequirement){
 println("End Gesture");
 println(gesture);
 changegesture=0;
 if(gesture==1){

 //*port.write sends signal to Arduino to activate corresponding light sequence*\\
 //*.play plays the corresponding sound from Processing*\\

 //Stop ****Sound Only****
 if(time==stop){
 println("Stop Sending");
 port.write('S');
 }

 //Can't Do ****Sound Only****
 else if(time==cantdo){
 port.write('X');
 }

 //Come ****Lights Only****
 else if(time==come){
 port.write('C');
 }

 //Emergency ****Lights Only****
 else if(time==emergency){
 port.write('E');
 }

 //I'm Thinking ****Lights Only****
 else if(time==imthinking){
 port.write('T');
 }

 //Go ****Lights and Sound****
 else if(time==go){
 port.write('G');
 }

 //Do Not Understand ****Lights and Sound****
 else if(time==understand){
 port.write('N');
 }

 //Something in the Way ****Lights and Sound****
 else if(time==somethingway){
 port.write('W');
 }

 }
 gesture=0;
 port.write('Q');

263

 }
 else gesture=0;
 }

 ///////////////////////END END GESTURE///////////////////

 ///////////////////////BEGIN CHANGE GESTURE MODE////////////////

 else if(handPoint.y>500){

 if(countchangegesture>100){
 if(changegesture==0){
 time++;
 changegesture=1;
 println("Gesture Changed");
 println(time);
 }
 if(time==numberofgestures) time=0;
 }
 countchangegesture++;
 }

// println("Reached");
// if(changegesture==0){
// time++;
// changegesture=1;
// println(time);
// }
// if(time==numberofgestures) time=0;
// }

 ///////////////////////END CHANGE GESTURE MODE//////////////////

 /////////////CODE FOR SECOND HALF OF THERAPY MOVEMENT/////////////
 //*if hand reaches bottom right quadrant*\\
 else if(handPoint.y<-yboundary && handPoint.x>xboundary){

 //*record the end time of the downward swipe of the first therapy movement*\\
 //*or record the start time of the upward swipe to start the second therapy movement*\\
 if(handPoint.y>(-yboundary-br)){
 endtimetherapy=millis();
 timedifftherapy=endtimetherapy-starttimetherapy;
 }
 //*if the hand settles in the quadrant, don't do anything*\\
 else timedifftherapy=timerequirement+1;

 //*if the therapy gesture has been triggered, flag that it is half completed*\\
 if(therapygesture==1 && halfcomplete==0){
 println("Half Complete");
 if(timedifftherapy<timerequirement){
 println("End First Therapy");
 halfcomplete=1;
 println(halfcomplete);
 }
 else {
 therapygesture=0;
 halfcomplete=0;
 }
 }

264

 //*if gesture is complete, engage social interaction*\\
 else if(therapygesture==2){
 if(timedifftherapy<timerequirement){
 println("End Therapy");
 for(int i=0; i<200; i++){
 port.write('D');
 }
 port.write('Q');
 //learn.play();
 //learn.rewind();
 halfcomplete=0;
 therapygesture=0;
 }
 else{
 therapygesture=0;
 halfcomplete=0;
 }
 }

 //*if the hand settles in the quadrant, don't do anything*\\
 else timedifftherapy=timerequirement+1;
 }

 ////////////CODE FOR REST MOVEMENT////////////

 //*hand is in bottom left quadrant*\\
 else if(handPoint.y<-yboundaryrest && handPoint.x<-xboundary){
 therapygesture=0;
 halfcomplete=0;
 gesture=0;

 //*Add in boundaries to rest gesture if they're not completed*\\
 if(handPoint.y<(-yboundaryrest-br)){
 restgesture=0;
 restgestureacting=0;
 }

 //*hand has started making the gesture*\\
 if(restgesture==0){
 if(handPoint.y>(-yboundaryrest-br)){
 println("Start Rest");
 for(int c=0; c<50; c++) port.write('R');

 //*set the flag that will keep the up/down movement from being triggered*\\
 restgestureacting=1;
 //*record the time the gesture started*\\
 starttimerest=millis();
 //*set the flag saying that the rest gesture has begun*\\
 restgesture=1;
 }
 port.write('O');
 port.write('Q');
 }
 //if the gesture was triggered by accident or the user didn't follow through, restart the gesture
// else{
// restgesture=0;
// restgestureacting=0;
// }
 }

265

 //*if the hand has reached the top left quadrant*\\
 else if(handPoint.y>yboundaryrest && handPoint.x<-xboundary){

 println("Above Rest boundary!");
 therapygesture=0;
 halfcomplete=0;

 //*if the rest gesture was in progress and it was completed in the required time*\\
 if(restgesture==1){
 println("Trying to Rest");
 if(handPoint.y<(yboundaryrest+br)){
 println("Almost End Rest");
 //*record the time the gesture started*\\
 endtimerest=millis();
 timediffrest=endtimerest-starttimerest;
 }
 else timediffrest=timerequirement+1;

 if(timediffrest<timerequirement){
 println("End Rest");
 restgestureacting=0;
 //*complete the social interaction and reset the gesture*\\
 for(int i=0; i<200; i++){
 port.write('U');
 }
 port.write('Q');
 //learn.play();
 //learn.rewind();
 restgesture=0;
 }
 //*if the gesture wasn't complete in the time given or if the gesture hadn't been started, reset the gesture*\\
 else{
 restgesture=0;
 restgestureacting=0;
 }
 }
 }

 /////////////////////CODE FOR UP/DOWN MOVEMENTS///////////////////////

 //*If hand is between the start up/down boundaries and the rest gesture is not currently in action*\\
 if(handPoint.y>yboundaryupdown && handPoint.y<yupdownmax && handPoint.x<-xboundary){
 therapygesture=0;
 halfcomplete=0;
 gesture=0;

 if(count>50){
 println("Triggering Up/Down");
 for(int c=0; c<50; c++) port.write('R');

 restgesture=0;
 restgestureacting=0;

 if(first==1){
 ycoord0=handPoint.y;

266

 actuatoron=1;
 }

 first++;
 count=0;
 }
 port.write('O');
 port.write('Q');
 count++;
 }

 //*If the hand is above the maxium boundary and the rest gesture is not in action*\\
 else if(handPoint.y>yupdownmax+100 && handPoint.x<-xboundary && restgestureacting==0){
 therapygesture=0;
 halfcomplete=0;

 updown=1;
 actuatoron=0;
 first=1;

 port.write('Q');
 //println("SEND DON'T MOVE COMMAND");

 }

 //*If the hand is below the minimum boundary and the rest gesture is not in action*\\
 else if(handPoint.y<yboundaryupdown-100 && handPoint.x<-xboundary && restgestureacting==0){
 therapygesture=0;
 halfcomplete=0;
 gesture=0;

 //println("Stop");
 updown=0;
 actuatoron=0;
 first=1;

 port.write('Q');
 //println("SEND DON'T MOVE COMMAND");

 }

 //*If the hand is moving upward and the rest gesture is not in action*\\
 else if(handPoint.y-ycoord0 < 0 && handPoint.x<-xboundary && restgestureacting==0){
 therapygesture=0;
 halfcomplete=0;
 gesture=0;

 updown=0;
 if(actuatoron==1){

 port.write('U');
 println("SENDING DOWN COMMAND");
 }

 }

 //*If the hadn is moving downward and the rest gesture is not in action*\\

267

 else if(handPoint.y-ycoord0 > 0 && handPoint.y>yboundaryupdown && handPoint.x<-xboundary &&
restgestureacting==0){
 therapygesture=0;
 halfcomplete=0;
 gesture=0;

 updown=1;
 if(actuatoron==1){

 port.write('D'); //send an T to activate the second light sequence
 println("SENDING UP COMMAND");
 }

 }

 }

 public void draw()
 {
 if(_pointLists.size() <= 0)
 return;

 pushStyle();
 noFill();

 PVector vec;
 PVector firstVec;
 PVector screenPos = new PVector();
 int colorIndex=0;

 // draw the hand lists
 Iterator<Map.Entry> itrList = _pointLists.entrySet().iterator();
 while(itrList.hasNext())
 {
 strokeWeight(2);
 stroke(_colorList[colorIndex % (_colorList.length - 1)]);

 ArrayList curList = (ArrayList)itrList.next().getValue();

 // draw line
 firstVec = null;
 Iterator<PVector> itr = curList.iterator();
 beginShape();
 while (itr.hasNext())
 {
 vec = itr.next();
 if(firstVec == null)
 firstVec = vec;
 // calc the screen pos
 context.convertRealWorldToProjective(vec,screenPos);
 vertex(screenPos.x,screenPos.y);
 }
 endShape();

 // draw current pos of the hand
 if(firstVec != null)
 {
 strokeWeight(8);
 context.convertRealWorldToProjective(firstVec,screenPos);
 point(screenPos.x,screenPos.y);

268

 }
 colorIndex++;
 }

 popStyle();
 }

}

keyPressed

void keyPressed()
{
 switch(key)
 {
 case 'e':
 // end sessions
 sessionManager.EndSession();
 println("end session");
 break;
 }
}

onStartSession

///
// session callbacks

void onStartSession(PVector pos)
{
 println("onStartSession: " + pos);
 for(int c=0; c<50; c++) port.write('L');

}

void onEndSession()
{
 println("onEndSession: ");

}

void onFocusSession(String strFocus,PVector pos,float progress)
{
 port.write('O');
 port.write('Q');
 println("onFocusSession: focus=" + strFocus + ",pos=" + pos + ",progress=" + progress);

}

///

stop
void stop(){

 super.stop();
 output.flush();
 output.close();
}

269

Appendix II

Usability Study Code: Arduino

Arduino_1

#include "LPD8806.h"
#include "SPI.h"
#include <SdFat.h>
#include <SdFatUtil.h>
#include <SFEMP3Shield.h>
#include <Wire.h>

//Required for MP3 Player
SdFat sd;
SFEMP3Shield MP3player;
int trackdelay = 4000;
//int track;

void setup() {

 //Serial.begin(9600);

 //start the shield
 sd.begin(SD_SEL, SPI_HALF_SPEED);
 MP3player.begin();
 MP3player.setVolume(0, 0); // commit new volume

 //Read data sent from Arduino 2 telling which sound to play
 Wire.begin(4); // join i2c bus with address #4
 Wire.onReceive(receiveEvent); // register event
 receiveEvent(2);

}

void loop(){
// MP3player.playTrack(1);
// delay(7000);
// Serial.print("Got Signal");
 //receiveEvent(2);
 //MP3player.playTrack(x);

}

receiveEvent

// function that executes whenever data is received from master
// this function is registered as an event, see setup()
void receiveEvent(int howMany)
{
 while(1 < Wire.available()) // loop through all but the last
 {
 char c = Wire.read(); // receive byte as a character
 Serial.print(c); // print the character
 }
 int x = Wire.read(); // receive byte as an integer
 Serial.println(x); // print the integer
 MP3player.playTrack(x);
}

270

Arduino_2_Final

#include "LPD8806.h"
#include "SPI.h"
#include <SdFat.h>
#include <SdFatUtil.h>
#include <SFEMP3Shield.h>
#include <Wire.h>

//Required for Up/Down Actuator Control of Relays
int MotorRelay = 13;
int OnOffRelay = 12;
int UserMicroRelay1 = 11;
int UserMicroRelay2 = 10;
int val1 = 0;
int val2 = 0;
int val3 = 0;
int microtakeover = 0;
int MicroOnOff = 0;
int UpDown = 0;
char val;

int processing=0;

int forwardincident=0;
int backincident=0;

static int enteredDown=0;
static int enteredUp=0;

//Required for Light Strips
int nLeEDs = 52;
int dataPin = 4;
int clockPin = 5;
LPD8806 strip = LPD8806(52, dataPin, clockPin);

//variables for UP and DOWN actuator buttons
static int pressUp=0;
static int pressDown=0;
static int waiting=0;
int output1=6;
int input1=7;
int valDown=0;
int valUp=0;

static int countDown=0;
static int countUp=0;

static int switch_mode_b=0;
static int switch_mode_f=0;
static int switch_mode_w=0;
static int switch_mode_u=0;
static int switch_mode_g=0;

//variables for buttons
int TiltForwardPin = 2; // choose the input pin (for a pushbutton)
int TiltForwardval = 0; // variable for reading the pin status

int TiltBackPin = 3; // choose the input pin (for a pushbutton)

271

int TiltBackval = 0; // variable for reading the pin status

int UpPin = 0; // choose the input pin (for a pushbutton)
int Upval = 0; // variable for reading the pin status

int DownPin = 1; // choose the input pin (for a pushbutton)
int Downval = 0;

char serial_signal; //Data received from serial port

void setup() {

 Wire.begin();

 Serial.begin(9600);

 //Initialize Pins for Up/Down Actuator Control
 pinMode(MotorRelay,OUTPUT);
 pinMode(OnOffRelay, OUTPUT);
 pinMode(UserMicroRelay1, OUTPUT);
 pinMode(UserMicroRelay2, OUTPUT);

 //Initialize pins for Buttons
 //pinMode(output1, OUTPUT);
 pinMode(TiltForwardPin, INPUT);
 pinMode(TiltBackPin, INPUT);
 pinMode(UpPin, INPUT);
 pinMode(DownPin, INPUT);

 //LED strip variables
 // Start up the LED strip
 strip.begin();
 // Update the strip, to start they are all 'off'
 strip.show();

 //Actuator Control Variables
 pinMode(output1, OUTPUT);
 pinMode(input1,INPUT);

}

void loop(){

//
 //delay(200);
 TiltForwardval = analogRead(TiltForwardPin);
 //Serial.print("Tilt forward is ");
 //Serial.print(TiltForwardval);
 //Serial.print('\n');
 TiltBackval = analogRead(TiltBackPin);
 //Serial.print("Tilt back is ");
 //Serial.print(TiltBackval);
 //Serial.print('\n');
 //delay(1000);

 //delay(1000);

 //Wire.beginTransmission(4); // transmit to device #4

272

 //Wire.write(12); // sends one byte
 //Wire.endTransmission(); // stop transmitting
//
 //delay(5000);

//digitalWrite(UserMicroRelay1, LOW);
//delay(2000);
//digitalWrite(UserMicroRelay1, HIGH);
//delay(2000);
//digitalWrite(UserMicroRelay1, LOW);
//delay(2000);

 if(Serial.available()){
 //The Arduino can receive multiple types of signals from Processing
 //Gestures will send signals from Processing to activate lights and audioboard:
 //Come = C
 //Emergency = E
 //I'm Thinking = T
 //Go = G
 //Do Not Understand = N
 //Something in the Way = W
 //Up (Do Not Understand) = N
 //Up = U

 //Stop = S
 //Can't Do = X

 serial_signal=(char)Serial.read();
 Serial.println(serial_signal);

 //if(serial_signal=='U' || serial_signal=='D') processing=1;
 //else processing=0;
 }

 //If the Tilt Forward or Tilt Back pushbuttons are pressed, play their corresponding light sequences
 //and send a signal to processing to play the corresponding sounds
 while(TiltForwardval==1023){
 //forwardincident=1;
 Serial.println("Tilting Forward");
 //Serial.println();
 //Serial.print(TiltForwardval);
 //Serial.println();
 //if(switch_mode_f==0){
 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(12); // sends one byte
 Wire.endTransmission(); // stop transmitting
 //delay(500);

 //This delay does not allow any other signals to trigger the system for 4 seconds
 //delay(trackdelay);
 //}
// else if(switch_mode_f==1){
// //Serial.println('flag');
// On(80);
// Clear(80);
// //switch_mode_f++;

273

// }
 //else if(switch_mode_f==2){
 //Use I2C to send track to play to Audioboard
 //Wire.beginTransmission(4); // transmit to device #4
 //Wire.write(12); // sends one byte
 //Wire.endTransmission(); // stop transmitting
 //delay(500);

 //This delay does not allow any other signals to trigger the system for 4 seconds
 //delay(trackdelay);
 On(80);
 Clear(80);
 //switch_mode_f=0;
 //}
 //delay(200);
 TiltForwardval=analogRead(TiltForwardPin);

 }
// if(forwardincident==1){
// switch_mode_f++;
// forwardincident=0;
// if(switch_mode_f==3) switch_mode_f=0;
// }

while(TiltBackval==1023){
// backincident=1;
 Serial.println("Tilting Back");
 //Serial.println();
 Serial.print(TiltBackval);
 //Serial.println();
// if(switch_mode_b==0){
// //Use I2C to send track to play to Audioboard
// Wire.beginTransmission(4); // transmit to device #4
// Wire.write(14); // sends one byte
// Wire.endTransmission(); // stop transmitting
// //delay(500);
// //This delay does not allow any other signals to trigger the system for 4 seconds
// //delay(trackdelay);
// //switch_mode_b++;
// }
// else if(switch_mode_b==1){
// On(80);
// Clear(80);
// //switch_mode_b++;
// }
 //else{
 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(14); // sends one byte
 Wire.endTransmission(); // stop transmitting
 //delay(500);

 //This delay does not allow any other signals to trigger the system for 4 seconds
 //delay(trackdelay);
 On(80);
 Clear(80);
 //switch_mode_b=0;
 //}
 //delay(500);

274

 TiltBackval=analogRead(TiltBackPin);
 }
// if(backincident==1){
// switch_mode_b++;
// backincident=0;
// if(switch_mode_b==3) switch_mode_b=0;
// }

// if(Downval==1023){
// //Use I2C to send track to play to Audioboard
// Wire.beginTransmission(4); // transmit to device #4
// Wire.write(3); // sends one byte
// Wire.endTransmission(); // stop transmitting
// //delay(500);

 //This delay does not allow any other signals to trigger the system for 4 seconds
 //delay(trackdelay);
 //delay(500);
 //}

///

///////////////////////////////////BEGIN GESTURE LIGHT AND SOUND CONTROL////////////////////////////////////

 //Come
 if(serial_signal=='C'){
 dither(80);
 Clear(500);
 }

 //Emergency
 else if(serial_signal=='E'){
 OnOff(80);
 Clear(80);
 }

 //I'm Thinking Lights
 else if(serial_signal=='T'){
 Thinking(80);
 Clear(1000);
 }

 //Go
 else if(serial_signal=='G'){
 if(switch_mode_g==0){
 Half(80);
 Clear(500);
 switch_mode_g++;
 }
 else if(switch_mode_g==1){
 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(8); // sends one byte
 Wire.endTransmission(); // stop transmitting
 //delay(500);

275

 //This delay does not allow any other signals to trigger the system for 4 seconds
 //delay(trackdelay);
 switch_mode_g++;
 }
 else{
 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(8); // sends one byte
 Wire.endTransmission(); // stop transmitting
 //delay(500);

 Half(80);
 Clear(500);
 switch_mode_g=0;
 }
 }

 //Do Not Understand
 else if(serial_signal=='N'){
 if(switch_mode_u==0){
 OnOff(175);
 Clear(1000);
 switch_mode_u++;
 }
 else if(switch_mode_u==1){
 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(24); // sends one byte
 Wire.endTransmission(); // stop transmitting
 //delay(500);

 //This delay does not allow any other signals to trigger the system for 4 seconds
 //delay(trackdelay);
 switch_mode_u++;
 }
 else{
 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(24); // sends one byte
 Wire.endTransmission(); // stop transmitting
 //delay(500);

 OnOff(175);
 Clear(1000);
 switch_mode_u=0;
 }
 }

 //Something in the Way
 else if(serial_signal=='W'){
 if(switch_mode_w==0){
 dither(80);
 Go(80);
 Clear(1000);
 switch_mode_w++;
 }
 else if(switch_mode_w==1){
 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(33); // sends one byte

276

 Wire.endTransmission(); // stop transmitting
 //delay(500);

 //This delay does not allow any other signals to trigger the system for 4 seconds
 //delay(trackdelay);
 switch_mode_w++;
 }
 else{
 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(33); // sends one byte
 Wire.endTransmission(); // stop transmitting
 //delay(500);

 dither(80);
 Go(80);
 Clear(1000);
 switch_mode_w=0;
 }
 }

 //Stop
 else if(serial_signal=='S'){
 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(9); // sends one byte
 Wire.endTransmission(); // stop transmitting
 //delay(500);

 //This delay does not allow any other signals to trigger the system for 4 seconds
 //delay(trackdelay);
 }

 //Can't Do
 else if(serial_signal=='X'){
 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(29); // sends one byte
 Wire.endTransmission(); // stop transmitting
 //delay(500);

 //This does not allow any other signals to trigger the system for 4 seconds
 //delay(trackdelay);
 }

 else if(serial_signal=='L'){
 strip.setPixelColor(0, 255, 255, 255);
 strip.setPixelColor(15, 255, 255, 255);
 strip.setPixelColor(28, 255, 255, 255);
 strip.setPixelColor(41, 255, 255, 255);
 strip.show();
 }

 else if(serial_signal=='R'){
 strip.setPixelColor(20, 255, 255, 255);
 strip.setPixelColor(23, 255, 255, 255);
 strip.setPixelColor(33, 255, 255, 255);
 strip.setPixelColor(36, 255, 255, 255);
 strip.show();
 }

277

 else if(serial_signal=='O'){
 strip.setPixelColor(0, 0, 0, 0);
 strip.setPixelColor(15, 0, 0, 0);
 strip.setPixelColor(20, 0, 0, 0);
 strip.setPixelColor(23, 0, 0, 0);
 strip.setPixelColor(28, 0, 0, 0);
 strip.setPixelColor(33, 0, 0, 0);
 strip.setPixelColor(36, 0, 0, 0);
 strip.setPixelColor(41, 0, 0, 0);
 strip.show();
 }

///////////////////////////////////END GESTURE LIGHT AND SOUND CONTROL////////////////////////////////////

///////////////////////////////////BEGIN ACTUATOR CONTROL/////////////////////////////////////

 /////////////////BUTTONS////////////////
 //digitalWrite(output1, HIGH); //Turn the relays on

 //valDown=analogRead(A0);
 //valUp=analogRead(A5);
 //Downval=analogRead(DownPin);
 //Upval=analogRead(UpPin);

 //float voltageDown=valDown*(0.5/1024.0);
 //float voltageUp=valUp*(0.5/1024.0);

 //Serial.println(voltageDown);
 //Serial.println(voltageUp);

 //while(voltageDown>0.4){

 Upval = analogRead(UpPin);
 //Serial.print("Up is ");
 //Serial.print(Upval);
 //Serial.print('\n');
 Downval = analogRead(DownPin);
 //Serial.print("Down is ");
 //Serial.print(Downval);
 //Serial.print('\n');

 //while(Downval>500){
 while(Downval>300 && processing==0){
 //Serial.print("Going Down");
 //Serial.println();
 //Serial.print(Downval);
 //Serial.println();
 //Serial.println();
 enteredDown=1;
 //pressDown++;
 if(pressDown==0){
 //if(countDown==0){

 //First time down button is pressed, say Something in the Way and deactivate actuator
 digitalWrite(OnOffRelay, LOW);
 digitalWrite(MotorRelay, LOW);
 digitalWrite(UserMicroRelay1,HIGH);
 digitalWrite(UserMicroRelay2,HIGH);

278

 //Serial.print("Shouldn't Move!");

 //Use I2C to send track to play to Audioboard
 Wire.beginTransmission(4); // transmit to device #4
 Wire.write(33); // sends one byte
 Wire.endTransmission(); // stop transmitting
 //delay(500);

 dither(80);
 Go(80);
 Clear(1000);
 //countDown++;
 //}
 }
 else{
 //Serial.print("Should Move");
 //Serial.println();
 digitalWrite(MotorRelay, LOW);
 digitalWrite(UserMicroRelay1,LOW);
 digitalWrite(UserMicroRelay2,LOW);
 digitalWrite(OnOffRelay, LOW);
 //Serial.write(2);
 //countDown=0;

 }

 //valDown=analogRead(A0);
 Downval=analogRead(DownPin);
 //Serial.print(Downval);
 //Serial.println();
 //voltageDown=valDown*(0.5/1024.0);
 //Serial.println(press);
 //Serial.println(voltageDown);
 //Serial.println(voltageUp);

 }

 if(enteredDown==1) pressDown=1;

 //while(voltageUp>0.4){
 //pressUp++;
 //for power supply
 // while(Upval>500){
 while(Upval>300 && processing==0){
 //Serial.print("Going Up");
 //Serial.println();
 //Serial.print(Upval);
 //Serial.println();
 //Serial.println();
 //pressUp++;
 enteredUp=1;
 if(pressUp==0){
 //if(countUp==0){
 //First time Up buttom is pressed, say Emergency and deactivate actuator
 digitalWrite(OnOffRelay, LOW);
 digitalWrite(UserMicroRelay1,HIGH);

279

 digitalWrite(UserMicroRelay2,HIGH);
 OnOff(80);
 Clear(80);
 //countUp++;
 //}
 }
 else{
 digitalWrite(UserMicroRelay1,LOW);
 digitalWrite(UserMicroRelay2,LOW);
 digitalWrite(OnOffRelay, LOW);
 //Serial.write(4);
 //countUp=0;
 }

 //valUp=analogRead(A5);
 Upval=analogRead(UpPin);
 //voltageUp=valUp*(0.5/1024.0);
 //Serial.println(voltageDown);
 //Serial.println(voltageUp);
 }
 //countUp++;
 if(enteredUp==1) pressUp=1;

 //while(voltageDown<0.4 && voltageUp<0.4){
 if(Downval<300 && Upval<300){
 //Serial.print("Not Moving");
 //digitalWrite(OnOffRelay, LOW);
 waiting++;
 //valUp=analogRead(A5);
 Upval=analogRead(UpPin);
 //voltageUp=valUp*(0.5/1024.0);
 //Downval=analogRead(0);
 Downval=analogRead(DownPin);
 //voltageDown=valDown*(0.5/1024.0);
 //Serial.println(voltageDown);
 //Serial.println(voltageUp);
 }

 if(waiting>200){
 //pressDown=0;
 //pressUp=0;
 waiting=0;
 }

////////////////GESTURES////////////////
if(serial_signal=='U'){
 microtakeover=1;
 MicroOnOff=1;
 UpDown=0;

 processing=1;
 }

 else if(serial_signal=='D'){
 microtakeover=1;
 MicroOnOff=1;
 UpDown=1;

280

 processing=1;
 }

 else{
 microtakeover=0;
 MicroOnOff=0;
 UpDown=0;
 }

 //microtakeover=1; //The programmer controls the output to the linear actuator by switching the
UserMicroRelays (R2 and R3).
 //OnOff=1; //The OnOff Relay (R4) either supplies or does not supply the opposite 30 V signal.
 //UpDown=0; //The Motor Relay (R1) causes the actuator to move up or down when the microtakeover is active.
 //0 goes up and 1 goes down

 if (microtakeover==1){
 digitalWrite(UserMicroRelay1,HIGH);
 digitalWrite(UserMicroRelay2,HIGH);
 }
 else{
 digitalWrite(UserMicroRelay1,LOW);
 digitalWrite(UserMicroRelay2,LOW);
 }
 if (MicroOnOff == 1){
 digitalWrite(OnOffRelay,HIGH);
 }
 else{
 digitalWrite(OnOffRelay,LOW);
 }
 if (UpDown == 1){
 digitalWrite(MotorRelay, HIGH);
 }
 else{
 digitalWrite(MotorRelay, LOW);
 }

///////////////////////////////////END ACTUATOR CONTROL//////////////////////////////

}

BendIn

void BendIn(uint8_t wait) {
 int i, j, pos, dir;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 pos = (strip.numPixels()-1);
 dir = 1;

 for(i=(strip.numPixels()-1); i<((strip.numPixels()-1)*2); i++) {
 // Draw 5 pixels centered on pos. setPixelColor() will clip
 // any pixels off the ends of the strip, no worries there.
 // we'll make the colors dimmer at the edges for a nice pulse
 // look
 strip.setPixelColor(pos - 2, strip.Color(r/4, g/4, b/4));
 strip.setPixelColor(pos - 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos, strip.Color(r, g, b));
 strip.setPixelColor(pos + 1, strip.Color(r/2, g/2, b/2));

281

 strip.setPixelColor(pos + 2, strip.Color(r/4, g/4, b/4));

 strip.show();
 delay(wait);
 // If we wanted to be sneaky we could erase just the tail end
 // pixel, but it's much easier just to erase the whole thing
 // and draw a new one next time.
 for(j=-2; j<= 2; j++)
 strip.setPixelColor(pos+j, strip.Color(0,0,0));
 // Bounce off ends of strip
 pos += dir;
 if(pos < 0) {
 pos = 1;
 dir = -dir;
 } else if(pos >= strip.numPixels()) {
 pos = strip.numPixels() - 2;
 dir = -dir;
 }
 }
}

Clear

void Clear(uint8_t wait) {
 int i;

 for(i=0; i<strip.numPixels(); i++) {
 strip.setPixelColor(i, 0); // Erase pixel, but don't refresh!

 }

 strip.show(); // Refresh to turn off last pixel
 delay(wait);
}

Dither
 void dither(uint8_t wait) {

 // Determine highest bit needed to represent pixel index
 int hiBit = 0;
 int n = strip.numPixels() - 1;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 for(int bit=1; bit < 0x8000; bit <<= 1) {
 if(n & bit) hiBit = bit;
 }

 int bit, reverse;
 for(int i=0; i<(hiBit << 1); i++) {
 // Reverse the bits in i to create ordered dither:
 reverse = 0;
 for(bit=1; bit <= hiBit; bit <<= 1) {
 reverse <<= 1;
 if(i & bit) reverse |= 1;
 }
 strip.setPixelColor(reverse, r, g, b);
 strip.show();
 delay(wait);

282

 }
 delay(250); // Hold image for 1/4 sec
}

Go
void Go(uint8_t wait) {

 // Determine highest bit needed to represent pixel index
 int hiBit = 0;
 int n = strip.numPixels() - 1;
 byte r, g, b;
 r=0;
 g=0;
 b=0;

 for(int bit=1; bit < 0x8000; bit <<= 1) {
 if(n & bit) hiBit = bit;
 }

 int bit, reverse;
 for(int i=0; i<(hiBit << 1); i++) {
 // Reverse the bits in i to create ordered dither:
 reverse = 0;
 for(bit=1; bit <= hiBit; bit <<= 1) {
 reverse <<= 1;
 if(i & bit) reverse |= 1;
 }
 strip.setPixelColor(reverse, r, g, b);
 strip.show();
 delay(wait);
 }
 delay(250); // Hold image for 1/4 sec
}

Half
void Half(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x<16){
 if (i>16){
 r=127;
 g=127;
 b=127;
 }

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 else {
 if (i<=16){
 r=127;
 g=127;
 b=127;
 }

283

 else{
 r=0;
 g=0;
 b=0;
 }
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

On
void On(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<(strip.numPixels()); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {
 if(x>=0){
 r=127;
 g=127;
 b=127;}

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
 }

OnOff
void OnOff(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<strip.numPixels(); x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {

 if(x%2==0){
 r=32;
 g=32;
 b=32;}

 else if(x%2==1){
 r=0;
 g=0;
 b=0;
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
}

284

ReprimandWompWomp
void ReprimandWompWomp(uint8_t wait) {
 byte r, g, b;

 for(int x=0; x<68; x++)
 {
 for(int i=0; i<strip.numPixels(); i++) {

 if(x<15){
 r=127;
 g=127;
 b=127;}

 else if(x>15 && x<23){
 r=0;
 g=0;
 b=0;
 }

 else if(x>23 && x<61){
 r=127;
 g=127;
 b=127;}

 else if(x>61){
 r=0;
 g=0;
 b=0;
 }

 strip.setPixelColor(i, r, g, b);
 }
 strip.show();
 delay(wait);
 }
}

Thinking
void Thinking(uint8_t wait) {
 int i, j, pos, dir;
 byte r, g, b;
 r=127;
 g=127;
 b=127;

 pos = 0;
 dir = 1;

 for(i=0; i<((strip.numPixels()-1) * 3); i++) {
 // Draw 5 pixels centered on pos. setPixelColor() will clip
 // any pixels off the ends of the strip, no worries there.
 // we'll make the colors dimmer at the edges for a nice pulse
 // look
 strip.setPixelColor(pos - 2, strip.Color(r/4, g/4, b/4));
 strip.setPixelColor(pos - 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos, strip.Color(r, g, b));
 strip.setPixelColor(pos + 1, strip.Color(r/2, g/2, b/2));
 strip.setPixelColor(pos + 2, strip.Color(r/4, g/4, b/4));

285

 strip.show();
 delay(wait);
 // If we wanted to be sneaky we could erase just the tail end
 // pixel, but it's much easier just to erase the whole thing
 // and draw a new one next time.
 for(j=-2; j<= 2; j++)
 strip.setPixelColor(pos+j, strip.Color(0,0,0));
 // Bounce off ends of strip
 pos += dir;
 if(pos < 0) {
 pos = 1;
 dir = -dir;
 } else if(pos >= strip.numPixels()) {
 pos = strip.numPixels() - 2;
 dir = -dir;
 }
 }
}

TurnOff
void TurnOff(uint8_t wait) {
 for (int i=0; i < strip.numPixels(); i++) {
 strip.setPixelColor(i, 0, 0, 0);
 }
 strip.show();
}

286

REFERENCES

Angelopoulou, A., Psarrou, A., Garcia-Rodriguez, J., & Gupta, G. (2010). Tracking
gestures using a probabilistic self-organising network. Paper presented at the
International Joint Conference on Neural Networks.

Association, N. S. (2012a). National Stroke Association Retrieved July 21, 2012,
from www.stroke.org

Association, N. S. (2012b). Paralysis - Hemiparesis - National Stroke Association
Retrieved June 9, 2013, from http://www.stroke.org/site/PageServer?
pagename=hemiparesis

Association, N. S. (2012c). Stroke 101 Fact Sheet Retrieved July 21, 2012, from
http://www.stroke.org/site/DocServer/STROKE_101_Fact_Sheet.pdf?
docID=4541

Bartlett, M., Littlewort, G., Frank, M. G., Lainscsek, C., Fasel, I., & Movellan, J.
(2005). Recognizing facial expression: Machine learning and application to
spontaneous behavior. Paper presented at the IEEE International Conference
on Computer Vision and Pattern Recognition, Osaka, Japan.

Bartlett, M., Littlewort, G., Frank, M. G., Lainscsek, C., Fasel, I., & Movellan, J.
(2006). Fully automatic facial action recognition in spontaneous behavior.
Paper presented at the 7th International Conference on Automatic Face and
Gesture Recognition.

Beach, S., Schulz, R., Downs, J., Matthews, J., Barron, B., & Seelman, K. (2009).
Disability, age, and informational privacy attitudes in quality of life
technology applications: Results from a national Web survey. ACM
Transactions on Accessible Computing, 2(1), 1-21.

BenAbdelkader, C., Cutler, R. G., & Davis, L. S. (2004). Gait recognition using
image self-similarity. EURASIP Journal on Applied Signal Processing,
572-585.

Blumberg, B., Downie, M., Ivanov, Y., Berlin, M. P., Johnson, P., & Tomlinson, B.
(2002). Integrated learning for interactive synthetic characters. ACM
Transactions on Graphics, 21, 417-426.

287

Bobick, A. F. (1999). Movement, Activity and Action: The Role of Knowledge in the
Perception of Motion. Philosophical Transactions of the Royal Society B:
Biological Sciences, 352(1358), 1257-1266.

Breazeal, C. (2004). Social Interations in HRI: The Robot View. IEEE Transactions
on Systems, Man, and Cybernetics, 34(2).

Breazeal, C., Siegel, M., Berlin, M., Gray, J., Grupen, R., Deegan, P., . . . McBean, J.
(2008). Mobile, dexterous, social robots for mobile manipulation and human-
robot interaction. Paper presented at the SIGGRAPH '08, New York.

Brooks, J. O., Smolentzov, L., DeArment, A., Logan, W., Green, K. E., Walker, I., . . .
Yanik, P. (2011a). Toward a "Smart" Nightstand Prototype: An Examination of
Nightstand Table Contents and Preferences. Health Environments Research
and Design Journal, 4(2), 91-108.

Brooks, J. O., Smolentzov, L., DeArment, A., Logan, W., Green, K. E., Walker, I., . . .
Yanik, P. (2011b). Toward a "Smart" Nightstand Prototype: An Examination
of Nightstand Table Contents and Preferences. HERD, 4(2), 91-108.

Brooks, J. O., Smolentzov, L., Mossey, M. E., Carroll, C., Kendrick, K., Sprogis,
K., . . . Green, K. (2012). Group Differences in Preferences for a Novel
Nightstand. Health Environments Research and Design Journal, 5(4), 86-95.

Cassell, J. (1998). A Framework for Gesture Generation and Interpretation.
Cambridge and New York: Cambridge University Press.

Cassell, J., Bickmore, W. T., Billinghurst, M., Campbell, L., Chang, K., Vilhjalmsson,
H. H., & Yan, H. (1999). Embodiment in conversational interfaces: Rea.
Paper presented at the SIGCHI.

Chen, Q., Georganas, N. D., & Petriu, E. M. (2008). Hand gesture recognition using
Haar-like features and a stochastic context-free grammar. IEEE Transactions
on Instrumentation and Measurement, 57(8), 1562-1571.

Cheng, H. T., Chen, A. M., Razdan, A., & Buller, E. (2011). Contactless gesture
recognition system using proximity sensors. Paper presented at the IEEE
International Conference on Consumer Electronics (ICCE).

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied Multiple Regression/
Correlation Analysis for the Behavioral Sciences (Third ed.). Mahwah, New
Jersey: Lawrence Erlbaum Associates, Inc.

288

Cutler, R., & Davis, L. S. (2002). Robust real-time periodic motion detection,
analysis, and applications. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(8), 781-796.

Dalal, N., Triggs, B., Rhone-Alps, I., & Montbonnot, F. (2005). Histograms of
Oriented Gradients for Human Detection. Paper presented at the IEEE
Computer Society Conference on Computer Vision and Pattern Recognitio.

Dario, P., Guglielmelli, E., Allotta, B., & Carrozza, M. C. (1996). Robotics for
Medical Applications. IEEE Robotics and Automation Magazine, 3(3), 44-56.

Dautenhahn, K. (2007). Socially intelligent robots: Dimensions of human-robot
interaction. Philosophical Transactions of the Royal Society of London -
Series B: Biological Sciences, 362(1480), 679-704.

Dellon, B., & Matsuoka, Y. (2007). Prosthetics, Exoskeletons, and Rehabilitation.
IEEE Robotics and Automation Magazine, 14(1), 30-34.

Demeris, G., Hensel, B. K., Skubic, M., & Rantz, M. (2008). Senior residents’
perceived need of and preferences for ”smart home” sensor technologies.
International Journal of Technology Assessment in Health Care, 120-124.

Feil-Safer, D., & Mataric, M. J. (2005). Defining Socially Assistive Robotics. Paper
presented at the Internaitonal Conference on Rehabilitation Robots, Chicago,
IL.

Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive
robots. Robotics and Autonomous Systems, 42, 143-166.

Forlizzi, J. (2005). Robotic products to assist the aging population. Interactions,
12(2), 16-18.

Forlizzi, J., DiSalvo, C., & Gemperle, F. (2004). Assistive robotics and an ecology of
elders living independently in their homes. Human-Computer Interaction, 19,
25-59.

Fritzke, B. (1995). A Growing Neural Gas Network Learns Topologies. Advances in
Neural Information Processing Systems, 7(7), 625-632.

Gervain, J., & Mehler, J. (2007). Perceptual primitives in language acquisition: Near
infrared spectroscopy studies with neonates. Paper presented at the
Conference on Biolinguistics: Language Evolution and Variation, Venice.

289

Gonsior, B., Sosnowski, S., Buß, M., Wollherr, D., & Kuhnlenz, K. (2012, October
7-12). An emotional adaption approach to increased helpfulness towards a
robot. Paper presented at the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Viamoura, Algarve, Portugal.

Green, K. E. (2008). Back to the future: Three educational experiments in interactive
architecture as anticipated in 1960s visionary architecture. Paper presented at
the Association of Collegiate Schools of Architecture (ACSA) 2008 National
Conference, Houston.

Green, K. E., Gugerty, L., Walker, I. D., & Witte., J. (2006). Three robot-rooms/the
AWE project. Paper presented at the CHI'06: Extended Abstracts on Human
Factors in Computing Systems, Montreal.

Green, K. E., Gugerty, L. J., Walker, I. D., & Witte, J. C. (2005a). Architecture plus:
The collaborative Animated Work Environment design research project. Paper
presented at the Association of Collegiate Schools of Architecture National
Conference, Salt Lake City, UT.

Green, K. E., Gugerty, L. J., Walker, I. D., & Witte, J. C. (2005, September). AWE
(Animated Work Environment): Ambient intelligence in working life. Paper
presented at the 2005 Conference on Intelligent Ambience and Well-Being
(Ambience), Tampere, Finland.

Green, K. E., Gugerty, L. J., Walker, I. D., & Witte, J. C. (2005b). CREATING AWE:
Formulating a research process for an interdisciplinary effort to build an
Animated Work Environment (AWE). Paper presented at the International
Symposium on Intelligent Environments, Microsoft Research and Cambridge
University, Cambridge, England, UK.

Green, K. E., Walker, I. D., Brooks, J. O., Threatt, T., & Merino, J. (2011,
September). An Assistive Robotic Table (ART) Promoting Independent Living.
Paper presented at the IEEE/RSJ International Conference on Intelligent
Robots and Systems, workshop on New and Emerging Technologies in
Assistive Robotics, San Francisco, CA.

Gross, M., & Green, K. E. (2012). Architectural Robotics, Inevitably. Interactions,
xix(1), 28-33.

Health, N. I. o. (2011). Post-Stroke Rehabilitation Fact Sheet: National Institute of
Neurological Disorders and Stroke (NINDS) Retrieved June 9, 2013, from
http://www.ninds.nih.gov/disorders/stroke/poststrokerehab.htm#whatis

290

Holmstrom, J. (2002). Growing Neural Gas: Experiments with GNG, GNG with
Utility and Supervised GNG. (masters thesis), Uppsala University.

Houser, A., Fox-Grage, W., & Gibson, M. J. (2006). Across the states: Profiles of
long-term care and independent livingAARP Public Policy Institute (7th ed.).

Huang, Y., Huang, K., Tan, T., & Tao, D. (2009, September). A novel visual
organization based on topological perception. Paper presented at the 9th
Asian conference on Computer Vision.

IDEO. (2003). IDEO Method Cards: 51 Ways to Inspire Design. Palo Alto: IDEO and
William Stout.

Jin, S., Li, Y., Lu, G., Luo, J., Chen, W., & Zheng, X. (2011, March). SOM-based
hand gesture recognition for virtual interactions. Paper presented at the IEEE
International Symposium on VR Innovation (ISVRI).

Johansson, G. (1973). Visual perception of biological motion and a model for its
analysis. Perception and Psychophysics, 14(2), 201-211.

Junejo, I., Dexter, E., Laptev, I., & Perez, P. (2008). Cross-View Action Recognition
from Temporal Self-Similarities. Paper presented at the European Conference
on Computer Vision.

Kaplan, F., Oudeyer, P. Y., Kubinyi, E., & Miklosi, A. (2002). Robotic clicker
training. Robotics and Autonomous Systems, 38(3), 197–206.

Karahoca, A., & Nurullahoglu, M. (2008). Human motion analysis and action
recognition. Paper presented at the 1st WSEAS International Conference on
Multivariate Analysis and its Application in Science and Engineering.

Kirchner, N., & Alempijevic, A. (2012). A Robot Centric Perspective on the HRI.
Journal of Human-Robot Interaction, 1(2), 135-157. doi: 10.5898/
JHRI1.2Kirchner

Kleinsmith, A. (2004). Exploring Nonverbal Communication in Human-Machine
Interaction: A Categorical Approach to Affective Gesture Recognition.
(masters thesis), University of Aizu.

Klingspor, V., Demiris, J., & Kaiser, M. (1997). Human-robot-communication and
machine learning. Applied Artificial Intelligence Journal, 11, 719-746.

291

Komatsu, T. (2006). Audio subtle expressions affecting user’s perceptions. Paper
presented at the International Conference on Intelligent User Interface, San
Diego.

Kuno, Y., Murashima, T., Shimada, N., & Shirai, Y. (2000). Interactive gesture
interface for intelligent wheelchairs. Paper presented at the IEEE International
Conference on Multimedia and Expo.

Lallée, S., Lemaignan, S., Lenz, A., Melhuish, C., Natale, L., Skachek, S., . . .
Dominey, P. (2010). Towards a platform-independent cooperative human-
robot interaction system: I. perception. Paper presented at the IROS, Taipei.

Lamentec, J. C., & Bajcsy, P. (2004). Recognition of arm gestures using multiple
orientation sensors: gesture classification. Paper presented at the 7th IEEE
International Conference on Intelligent Transporation Systems.

Lazar, J., Feng, J. H., & Hochheiser, H. (2010). Research Methods in Human-
Computer Interaction. West Sussex, UK: John Wiley and Sons, Ltd.

Leifer, L. (1981). Rehabilitative Robots. Robotic Age.

Malizia, A., & Bellucci, A. (2012). The Artificiality of natural user interfaces.
Communications of the ACM, 55(3), 36-38.

Manganelli, J., Threatt, A., Brooks, J. O., Healy, S., Merino, J., Yanik, P., . . . Green,
K. E. (2013). Examination of how and why over-the-bed tables are used: Use
cases and needs from healthcare providers. Health Environments Research
and Design Journal, Manuscript submitted for publication.

Manganelli, J., Threatt, A., Brooks, J. O., Healy, S., Merino, J., Yanik, P., . . . Green,
K. E. (2013a). Examination of how and why over-the-bed tables are used: Use
cases and needs from healthcare providers. Health Environments Research
and Design Journal, Manuscript submitted for publication.

Manganelli, J., Threatt, A., Brooks, J. O., Merino, J., Yanik, P., Healy, S., . . . Green,
K. (2013b). Validating over-the-bed tables use cases & need statements:
Health care providers assessment. Health Environments Research and Design
Journal, Manuscript submitted for publicaton.

292

Manganelli, J., Threatt, A., Brooks, J. O., Smolentzov, L., Mossey, M., Healy, S., . . .
Green, K. (2012). Examination of overbed tables: Health care povider & user
preferences. Health Environments Research and Design Journal, Manuscript
submitted for publication.

Matsumoto, N., Fujii, H., Goan, M., & Okada, M. (2005, August). Minimal design
strategy for embodied communication agents. Paper presented at the 14th
IEEE International Workshop on Robot-Human Interaction, Nashville, TN.

McNamara, A. (2009, September). Exploring perceptual equivalence between real
and simulated imagery. Paper presented at the 9th Asian conference on
Computer Vision.

Merino, J., Threatt, A. L., Walker, I. D., & Green, K. E. (2012). Forward Kinematic
Model for Continuum Robotic Surfaces. Paper presented at the International
Conference on Intelligent Robotics Systems, Villamoura, Portugal.

Mezger, M., Winfried, I., & Giese, M. A. (2005). Trajectory synthesis by hierarchical
spatio-temporal correspondence: comparison of different methods. Paper
presented at the 2nd symposium on Applied perception in graphics and
visualizatio.

Microsoft. (2012). Microsoft Xbox 360 + Kinect Website Retrieved December 17,
2012, from http://www.xbox.com/en-US/kinect

Mitra, S., & Acharva, T. (2007). Gesture recognition: A survey. IEEE Transactions
on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(3),
311-324.

Molich, R., & Nielsen, J. (1990). Improving a Human-Computer Dialogue.
Communications of the ACM, 33(3), 338-348.

Moni, M. A., & Ali, A. B. M. S. (2009). HMM based hand gesture recognition: A
review on techniques and approaches. Paper presented at the IEEE
International Conference on Computer Science and Information Technology.

Mori, M. (1970). The Uncanny Valley. Energy, 7(4), 33-35.

Mutlu, B., Bartneck, C., Ham, J., Evers, V., & Kanda, T. (2011, November 24-25).
Social robotics. Paper presented at the Third International Conference on
Social Robotics, Amsterdam.

293

Nielsen, J. (1992). Finding Usability Problems Through Heuristic Evaluation. Paper
presented at the CHI, Monterey, CA.

Nielsen, J. (1993). Usability Engineering. London: Academic Press.

Okada, M., Sakamoto, S., & Suzuki, N. (2000, July). Muu: Artificial creatures as an
embodied interface. Paper presented at the 27th International Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH 2000), New
Orleans, LA.

Pain in non-verbal elderly largely undetected by family caregivers. (2011). The
Journal of Pain of the American Pain Society. Retrieved from http://
www.ampainsoc.org/press/2011/pain_non-verbal.htm.

Picard, R. (1995). Affective Computing (Vol. 321): MIT Technical Report.

Pineau, J., Montemerlo, M., Pollack, M., Roy, N., & Thrun, S. (2002, October).
Probabilistic control of humanrobot interaction: Experiments with a robotic
assistant for nursing homes. Paper presented at the The second IARP/IEEE/
RAS Joint Workshop on Technical Challenges for Robots in Human
Environments (DRHE).

Prasad, J. S., & Nandi, G. C. (2009). Clustering method evaluation for hidden markov
model based real-time gesture recognition. Paper presented at the
International Conference on Advances in Recent Technologies in
Communication and Computing.

Quenqua, D. (2012, December 4). Pushing Science’s Limits In Sign Language
Lexicon, The New York Times.

Rao, C., Yilmaz, A., & Shah, M. (2002). View-Invariant Representation and
Recognition of Actions. International Journal of Computer Vision, 50(2),
203-226.

Read, R., & Belpaeme, T. (2010, October 29). Interpreting non-linguistic utterances
by robots: Studying the influence of physical appearance. Paper presented at
the 3rd international workshop on Affective interaction in natural
environments, Firenze, Italy.

Reeves, B., & Nass, C. (1996). The media equation: How people treat computers,
television, and nwe media like real people and places. New York, NY:
Cambridge University Press.

294

Review of Hartfield, B. and Winograd, T. Bringing Design to Software. (1996). from
http://hci.stanford.edu/bds/8p-ideo.html

Rogers, Y., Sharp, H., & Preece, J. (2011). Interaction Design: Beyond Human-
Computer Interaction (3rd ed.). West Sussex, UK: John Wiley & Sons, Ltd.

Rosen, J., & Hannaford, B. (2006). Doc at a distance. IEEE Spectrum, 43(10), 34-39.

Rossini, N. (2012). Reinterpreting Gesture as Language. Language ”in Action.”.
Amsterdam: IOS Press.

Roy, N., Baltus, G., Fox, D., Gemperle, F., Goetz, J., Hirsch, T., . . . Thrun, S. (2000).
Towards Personal Service Robots for the Elderly. Paper presented at the
Workshop on Interactive Robots and Entertainment (WIRE 2000).

Ryu, D., Um, D., Tanofsky, P., Koh, D. H., Ryu, Y. S., & Kang, S. (2010). T-less: A
novel touchless human-machine interface based on infrared proximity
sensing. Paper presented at the IEEE/RJS International Conference on
Intelligent Robots and Systems.

Salter, K., Teasell, R., Bhogal, S., Zettler, L., & Foley, N. (2013). EBRSR - 14.
Aphasia, from http://www.ebrsr.com/uploads/Aphasia-SREBR-
SREBR-15_1.pdf

Scassellati, B., Admoni, H., & Mataric, M. (2012). Robots for Use in Autism
Research. The Annual Reviw of Biomedical Engineering, 14, 275-294.

Schlomer, T., Poppinga, B., Henze, N., & Boll, S. (2008). Gesture recognition with a
wii controller. Paper presented at the 2nd International Conference on
Tangible and Embedded Interaction.

Smolentzov, L. (2010). Desired Characteristics of 'Smart' Nightstands for Higher and
Lower Functioning Older Adults. (master's thesis), Clemson University,
Retrieved form ProQuest LLC.

Special Issue on Robots in Surgery. (1995). IEEE Engineering in Medicine and
Biology Magazine, 14(3).

Stergiopoulou, E., & Papamarkos, N. (2006, October). A new technique for hand
gesture recognition. Paper presented at the International Conference on Image
Processing.

295

Susskind, J., Hershey, J., & Movellan, J. (2004, October 20). Exact inference in
robots using topographical uncertaintymaps. Paper presented at the 2nd
International Conference on Development and Learning, The Salk Institute,
San Diego.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction (Vol.
1): Cambridge Univ Press.

Syrdal, D. S., Dautenhahn, K., Koay, K. L., & Walters, M. L. (2009). The negative
attitudes towards robots scale and reactions to robot behaviour in a live
human-robot interaction study. Paper presented at the New Frontiers in
Human-Robot Interaction, AISB 2009, Edinburgh, UK.

Tapus, A., Mataric, M., & Scassellati, B. (2007). Socially assistive robotics. IEEE
Robotics and Automation Magazine, 14(1), 35-42.

Teasell, R., McClure, A., Katherine, Salter, & Murie-Fernandez, M. (2013).
Evidence-Based Review of Stroke Rehabilitation - D. Cognitive Recovery
Post-Stroke Educational Supplement Retrieved August 1, 2012, from http://
www.ebrsr.com/~ebrsr/uploads/D_Cognitive_Disorders_(PR).pdf

Thomaz, A. L., & Breazeal, C. (2008). Teachable Robots: Understanign human
teaching behavior to build more effective robot learners. Artificial
Intelligence, 172, 716-737.

Threatt, A. L., Merino, J., Green, K. E., Walker, I. D., Brooks, J. O., Ficht, S., . . .
Yanik, P. (2012). A Vision of the Patient Room as an Architectural-Robotic
Ecosystem. Paper presented at the IROS, Villamoura, Portugal.

Touzet, C. F. (1997). Neural reinforcement learning for behaviour synthesis. Robotics
and Autonomous Systems, 22(3), 251-281.

Varkonyi-Koczy, A. R., & Tusor, B. (2011). Human–computer interaction for smart
environment applications using fuzzy hand posture and gesture models. IEEE
Transactions on Instrumentation and Measurement, 60(5), 1505-1514.

Wada, K., & Shibata, T. (2007). Living with seal robots – Its sociopsychological and
physiological influences on the elderly at a care house. IEEE Transactions on
Robotics, 23(5), 972-980.

296

Wade, E., Parnandi, A. R., & Mataric, M. J. (2011). Using Socially Assistive Robotics
to Augment Motor Task Performance in Individuals Post-Stroke. Paper
presented at the International Conference on Intelligent Robots and Systems,
San Francisco, CA.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3),
279-292.

Weiner, N. D. C., Boston. 1954. (1954). The human use of human beings: Cybernetics
and society. Boston: De Capo.

Weiser, M. (1991). The Computer for the 21st Century Retrieved December 5, 2010,
from http://sandbox.xerox.com/want/papers/ubi-sciam-sep91.pdf

Wilson, A. D., & Bobick, A. F. (2000). Realtime online adaptive gesture recognition.
Paper presented at the 15th International Conference on Pattern Recognition.

Yamada, S., & Komatsu, T. (2007). Designing Simple and Effective Expressions of
Robot’s Primitive Minds to a Human. In N. Sankar (Ed.), Human-Robot
Interaction. Vienna: Itech.

Yamato, J., Ohya, J., & Ishii, K. (1992). Recognizing human action in timesequential
images using hidden markov model. Paper presented at the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition.

Yanik, P. M., Manganelli, J., Merino, J., Threatt, A. L., Brooks, J. O., Green, K. E., &
Walker, I. D. (2012). Use of Kinect Depth Data and Growing Neural Gas for
Gesture Based Robot Control. Paper presented at the 6th International
Conference on Pervasive Computing Technologies for Healthcare
(PervasiveHealth2012), La Jolla, CA.

Yanik, P. M., Merino, J., Manganelli, J., Smolentzov, L., Walker, I. D., Brooks, J. O.,
& Green, K. E. (2011). Sensor placement for activity recognition: comparing
video data with motion sensor data. International Journal of Circuits, Systems
and Signal Processing(5), 279-286.

Yun, L., & Peng, Z. (2009). An automatic hand gesture recognition system based on
Viola-Jones method and SVMs. Paper presented at the 2nd International
Workshop on Computer Science and Engineering.

297

Zhou, S., Shan, Q., Fei, F., Li, W. J., Kwong, C. P., Wu, P. C. K., . . . Liou, J. Y. J.
(2009). Gesture recognition for interactive controllers using mems motion
sensors. Paper presented at the 4th IEEE International Conference on Nano/
Micro Engineered and Molecular Systems.

298

	Clemson University
	TigerPrints
	8-2013

	DESIGN AND EVALUATION OF A NONVERBAL COMMUNICATION PLATFORM BETWEEN ASSISTIVE ROBOTS AND THEIR USERS
	Anthony Threatt
	Recommended Citation

	tmp.1389118324.pdf.KueoT

