82 research outputs found

    Topological Interpretations of Lattice Gauge Field Theory

    Full text link
    We construct lattice gauge field theory based on a quantum group on a lattice of dimension 1. Innovations include a coalgebra structure on the connections, and an investigation of connections that are not distinguishable by observables. We prove that when the quantum group is a deformation of a connected algebraic group (over the complex numbers), then the algebra of observables forms a deformation quantization of the ring of characters of the fundamental group of the lattice with respect to the corresponding algebraic group. Finally, we investigate lattice gauge field theory based on quantum SL(2,C), and conclude that the algebra of observables is the Kauffman bracket skein module of a cylinder over a surface associated to the lattice.Comment: 35 pages, amslatex, epsfig, many figures; email addresses: [email protected], [email protected], [email protected]

    Ramified rectilinear polygons: coordinatization by dendrons

    Full text link
    Simple rectilinear polygons (i.e. rectilinear polygons without holes or cutpoints) can be regarded as finite rectangular cell complexes coordinatized by two finite dendrons. The intrinsic l1l_1-metric is thus inherited from the product of the two finite dendrons via an isometric embedding. The rectangular cell complexes that share this same embedding property are called ramified rectilinear polygons. The links of vertices in these cell complexes may be arbitrary bipartite graphs, in contrast to simple rectilinear polygons where the links of points are either 4-cycles or paths of length at most 3. Ramified rectilinear polygons are particular instances of rectangular complexes obtained from cube-free median graphs, or equivalently simply connected rectangular complexes with triangle-free links. The underlying graphs of finite ramified rectilinear polygons can be recognized among graphs in linear time by a Lexicographic Breadth-First-Search. Whereas the symmetry of a simple rectilinear polygon is very restricted (with automorphism group being a subgroup of the dihedral group D4D_4), ramified rectilinear polygons are universal: every finite group is the automorphism group of some ramified rectilinear polygon.Comment: 27 pages, 6 figure

    A New Large N Expansion for General Matrix-Tensor Models

    Full text link
    We define a new large NN limit for general O(N)R\text{O}(N)^{R} or U(N)R\text{U}(N)^{R} invariant tensor models, based on an enhanced large NN scaling of the coupling constants. The resulting large NN expansion is organized in terms of a half-integer associated with Feynman graphs that we call the index. This index has a natural interpretation in terms of the many matrix models embedded in the tensor model. Our new scaling can be shown to be optimal for a wide class of non-melonic interactions, which includes all the maximally single-trace terms. Our construction allows to define a new large DD expansion of the sum over diagrams of fixed genus in matrix models with an additional O(D)r\text{O}(D)^{r} global symmetry. When the interaction is the complete vertex of order R+1R+1, we identify in detail the leading order graphs for RR a prime number. This slightly surprising condition is equivalent to the complete interaction being maximally single-trace.Comment: 57 pages, 20 figures (additional discussion in Sec. 4.1.1. and additional figure (Fig. 5)

    Rearrangement Groups of Fractals

    Full text link
    We construct rearrangement groups for edge replacement systems, an infinite class of groups that generalize Richard Thompson's groups F, T, and V . Rearrangement groups act by piecewise-defined homeomorphisms on many self-similar topological spaces, among them the Vicsek fractal and many Julia sets. We show that every rearrangement group acts properly on a locally finite CAT(0) cubical complex, and we use this action to prove that certain rearrangement groups are of type F infinity.Comment: 48 pages, 37 figure

    Computing with space: a tangle formalism for chora and difference

    Get PDF
    What is space computing,simulation, or understanding? Converging from several sources, this seems to be something more primitive than what is meant nowadays by computation, something that was along with us since antiquity (the word "choros", "chora", denotes "space" or "place" and is seemingly the most mysterious notion from Plato, described in Timaeus 48e - 53c) which has to do with cybernetics and with the understanding of the front end visual system. It may have some unexpected applications, also. \ud \ud Here, inspired by Bateson (see Supplementary Material), I explore from the mathematical side the point of view that there is no difference between the map and the territory, but instead the transformation of one into another can be understood by using a formalism of tangle diagrams

    Weighted Modulo Orientations of Graphs

    Get PDF
    This dissertation focuses on the subject of nowhere-zero flow problems on graphs. Tutte\u27s 5-Flow Conjecture (1954) states that every bridgeless graph admits a nowhere-zero 5-flow, and Tutte\u27s 3-Flow Conjecture (1972) states that every 4-edge-connected graph admits a nowhere-zero 3-flow. Extending Tutte\u27s flows conjectures, Jaeger\u27s Circular Flow Conjecture (1981) says every 4k-edge-connected graph admits a modulo (2k+1)-orientation, that is, an orientation such that the indegree is congruent to outdegree modulo (2k+1) at every vertex. Note that the k=1 case of Circular Flow Conjecture coincides with the 3-Flow Conjecture, and the case of k=2 implies the 5-Flow Conjecture. This work is devoted to providing some partial results on these problems. In Chapter 2, we study the problem of modulo 5-orientation for given multigraphic degree sequences. We prove that a multigraphic degree sequence d=(d1,..., dn) has a realization G with a modulo 5-orientation if and only if di≤1,3 for each i. In addition, we show that every multigraphic sequence d=(d1,..., dn) with min{1≤i≤n}di≥9 has a 9-edge-connected realization that admits a modulo 5-orientation for every possible boundary function. Jaeger conjectured that every 9-edge-connected multigraph admits a modulo 5-orientation, whose truth would imply Tutte\u27s 5-Flow Conjecture. Consequently, this supports the conjecture of Jaeger. In Chapter 3, we show that there are essentially finite many exceptions for graphs with bounded matching numbers not admitting any modulo (2k+1)-orientations for any positive integers t. We additionally characterize all infinite many graphs with bounded matching numbers but without a nowhere-zero 3-flow. This partially supports Jaeger\u27s Circular Flow Conjecture and Tutte\u27s 3-Flow Conjecture. In 2018, Esperet, De Verclos, Le and Thomass introduced the problem of weighted modulo orientations of graphs and indicated that this problem is closely related to modulo orientations of graphs, including Tutte\u27s 3-Flow Conjecture. In Chapter 4 and Chapter 5, utilizing properties of additive bases and contractible configurations, we reduced the Esperet et al\u27s edge-connectivity lower bound for some (signed) graphs families including planar graphs, complete graphs, chordal graphs, series-parallel graphs and bipartite graphs, indicating that much lower edge-connectivity bound still guarantees the existence of such orientations for those graph families. In Chapter 6, we show that the assertion of Jaeger\u27s Circular Flow Conjecture with k=2 holds asymptotically almost surely for random 9-regular graphs

    The bidimensionality theory and its algorithmic applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.Includes bibliographical references (p. 201-219).Our newly developing theory of bidimensional graph problems provides general techniques for designing efficient fixed-parameter algorithms and approximation algorithms for NP- hard graph problems in broad classes of graphs. This theory applies to graph problems that are bidimensional in the sense that (1) the solution value for the k x k grid graph (and similar graphs) grows with k, typically as Q(k²), and (2) the solution value goes down when contracting edges and optionally when deleting edges. Examples of such problems include feedback vertex set, vertex cover, minimum maximal matching, face cover, a series of vertex- removal parameters, dominating set, edge dominating set, r-dominating set, connected dominating set, connected edge dominating set, connected r-dominating set, and unweighted TSP tour (a walk in the graph visiting all vertices). Bidimensional problems have many structural properties; for example, any graph embeddable in a surface of bounded genus has treewidth bounded above by the square root of the problem's solution value. These properties lead to efficient-often subexponential-fixed-parameter algorithms, as well as polynomial-time approximation schemes, for many minor-closed graph classes. One type of minor-closed graph class of particular relevance has bounded local treewidth, in the sense that the treewidth of a graph is bounded above in terms of the diameter; indeed, we show that such a bound is always at most linear. The bidimensionality theory unifies and improves several previous results.(cont.) The theory is based on algorithmic and combinatorial extensions to parts of the Robertson-Seymour Graph Minor Theory, in particular initiating a parallel theory of graph contractions. The foundation of this work is the topological theory of drawings of graphs on surfaces and our results regarding the relation (the linearity) of the size of the largest grid minor in terms of treewidth in bounded-genus graphs and more generally in graphs excluding a fixed graph H as a minor. In this thesis, we also develop the algorithmic theory of vertex separators, and its relation to the embeddings of certain metric spaces. Unlike in the edge case, we show that embeddings into L₁ (and even Euclidean embeddings) are insufficient, but that the additional structure provided by many embedding theorems does suffice for our purposes. We obtain an O[sq. root( log n)] approximation for min-ratio vertex cuts in general graphs, based on a new semidefinite relaxation of the problem, and a tight analysis of the integrality gap which is shown to be [theta][sq. root(log n)]. We also prove various approximate max-flow/min-vertex- cut theorems, which in particular give a constant-factor approximation for min-ratio vertex cuts in any excluded-minor family of graphs. Previously, this was known only for planar graphs, and for general excluded-minor families the best-known ratio was O(log n). These results have a number of applications. We exhibit an O[sq. root (log n)] pseudo-approximation for finding balanced vertex separators in general graphs.(cont.) Furthermore, we obtain improved approximation ratios for treewidth: In any graph of treewidth k, we show how to find a tree decomposition of width at most O(k[sq. root(log k)]), whereas previous algorithms yielded O(k log k). For graphs excluding a fixed graph as a minor, we give a constant-factor approximation for the treewidth; this via the bidimensionality theory can be used to obtain the first polynomial-time approximation schemes for problems like minimum feedback vertex set and minimum connected dominating set in such graphs.by MohammadTaghi Hajiaghayi.Ph.D
    corecore