3 research outputs found

    Error analysis for full discretizations of quasilinear parabolic problems on evolving surfaces

    Full text link
    Convergence results are shown for full discretizations of quasilinear parabolic partial differential equations on evolving surfaces. As a semidiscretization in space the evolving surface finite element method is considered, using a regularity result of a generalized Ritz map, optimal order error estimates for the spatial discretization is shown. Combining this with the stability results for Runge--Kutta and BDF time integrators, we obtain convergence results for the fully discrete problems.Comment: -. arXiv admin note: text overlap with arXiv:1410.048

    A new compact finite difference scheme for solving the complex Ginzburg-Landau equation

    Get PDF
    a b s t r a c t The complex Ginzburg-Landau equation is often encountered in physics and engineering applications, such as nonlinear transmission lines, solitons, and superconductivity. However, it remains a challenge to develop simple, stable and accurate finite difference schemes for solving the equation because of the nonlinear term. Most of the existing schemes are obtained based on the Crank-Nicolson method, which is fully implicit and must be solved iteratively for each time step. In this article, we present a fourth-order accurate iterative scheme, which leads to a tri-diagonal linear system in 1D cases. We prove that the present scheme is unconditionally stable. The scheme is then extended to 2D cases. Numerical errors and convergence rates of the solutions are tested by several examples
    corecore