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solving the equation because of the nonlinear term. Most of the existing schemes are obtained
based on the Crank-Nicolson method, which is fully implicit and must be solved iteratively for
each time step. In this article, we present a fourth-order accurate iterative scheme, which leads
toatri-diagonal linear system in 1D cases. We prove that the present scheme is unconditionally
stable. The scheme is then extended to 2D cases. Numerical errors and convergence rates of
the solutions are tested by several examples.
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1. Introduction

The complex Ginzburg-Landau equation is often encountered in physics and engineering applications, such as nonlinear
transmission lines [1-5], solitons [6-10], and superconductivity [11-17]. However, it remains a challenge to develop a simple,
stable and accurate finite difference scheme for solving this equation due to the nonlinear term, particularly in multi-dimensional
cases. There are many numerical schemes have been proposed for solving this equation [11-29]. In particular, Tsertsvadze [27]
proposed a second-order Crank-Nicolson type of finite difference scheme for a one-dimensional (1D) Ginzburg-Landau equation,
and Sun and Zhu [28] proved its unconditional convergence in the I, norm. Recently, Hu [29] developed several fourth-order
compact finite difference schemes by coupling the Crank-Nicolson method with the fourth-order compact finite difference
method [30]. The unconditional convergence in the l,, norm of these schemes was analyzed. However, these fourth-order
accurate finite difference schemes are implicit, particularly the implicit approximation for the nonlinear term in some schemes,
which must be solved iteratively for each time step. In this study, we present a fourth-order accurate iterative scheme which
is also obtained based on the compact finite difference method and Crank-Nicolson method, but leads to a tri-diagonal linear
system in 1D cases. We further prove the scheme to be unconditionally stable in the I, norm by using the discrete energy
techniques [28,29,31-38]. The obtained scheme is then extended to 2D cases. Finally, the numerical errors and convergence rates
of the solutions are tested by several examples.
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2. Finite difference schemes

We first consider the 1D complex Ginzburg-Landau equation with initial and periodic boundary conditions as follows:

gl: 1+ la) +Ru —(1+if)ul""u, xe(©,L).te (0T (2.1a)
u(x,0) = up(x), x¢e][0,L]; (2.1b)
u,t)=ux+1L,t), tel0,T] (2.1c)

where « and 8 are real constants, g > 3 is a positive integer, i = +/—1, the functions u(x, t) and ug (x) are complex valued functions,
R is a positive constant, and L is the period of u(x, t) with respect to x.

To develop a finite difference scheme for solving the above Ginzburg-Landau problem, we first divide spatial interval [0, L]
into M subintervals where the grid size is h = ﬁ and the time interval [0, T] is divided into N subintervals with a time step
T = % We denote u]’.‘ to be the numerical approximation of u(x;, t;), where x; = jh, tp =nt, 0 <j <M and 0 <n < N. It can be
seen from periodicity that uy, = ug, uj,, ; = uf and so on. Furthermore, we use the following first-order and second-order finite
difference operators:

n+1 n n+3 n+3
T — 1u; t—u,
8ru}1 =2 J p L, 8[”}1+2 =1 _J T i, (2.22)
ul . —ul
%? 0<j<M-1
Syull = (2.2b)
] un _un n_ n
M1~ Um _ U Uy j=M;
i = o ;
u71—2ug+u§’_u,’(,,7]—2ug+u'} ‘0
%) = %) , J=0,
— 2u" +u?!
Squfl = Jh—zJ“ 1<j<M-1, (2.2¢)
ut o —2ul +ul uf — 2up, + uj .
M+1 M 1\/1_1E M1 j=M.
h2 h2

For the discrete space, a fourth-order compact difference scheme [30] at all grid points, x;, 0 < j < M, can be written as:

1 |:32u(xj_1,t)+1082u(xj, ) 2u@,t)

ﬁ 0x2 0x2 Ox2 j| h2 [u(x] 1, t) zu(x]’ t) + u(xj+17 t)] + O(h4) (23)

which can be denoted using the second-order finite difference operator 82 as

%u (.
( 52) # — 82u(x;. ) + 0. (2.4)

We now rewrite Eq. (2.1) as (1 + 10:)3—2 =9 — Ru+ (1 +iB)[ul%"u at (x;, t), multiply it both sides by 1 + 1782, and then
use Eq. (2.4). This gives
du(x;, t)
at

(1 + i)32u(x;, €) = (1 + %33) [ — Rulxy. )+ (1 +iB) [ulx;, 07" ulx;, t)] + 0. (2.5)

Using the Crank-Nicolson technique to Eq. (2.5) with respect to time t at t,, L1, we obtain
2

h? i ta1) — U, t  B2ux;. t S2u(x;, t, h?
(l—l-ﬁS,%) u(x; n+1)T u, ta) _ a+ia) cux; n+1)2+ cUxj n)+R<1+ﬁ8£)u<xj, tn+%>

(1+1ﬂ)< 52)\ (x5t )| U (% sy ) + 02 1), (2.62)
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Note that u(x;, n+1) must be known in order to obtain u(x;, t;,1) in Eq. (2.6). We may use a similar argument in obtaining
Eq. (2.6) from Eq. (2 5)at t;,1 and obtain

h2 u@i, t . 3)—u@,t. 1) o 82ulxj, b, 3) + 82ulx;, t,, 1) h2
(1 ﬁfs)%) AR = J n+z —(l—i-lOl) X J0 5 5 X J0 Tt +R(1+ﬁ5)%)u(xj,tn+l)
) h? _
= 1+18) (14 7582 ) 16, 01 )[* Gy ) + O+ ), (2.60)

Thus, coupling Eq. (2.6) and then dropping the truncation error O(t2 + h*), we obtain an iterative fourth-order in space compact
finite difference scheme for solving Eq. (2.1) as follows:

119-1 1
2 u'.”2>, (2.7a)

( e 82)8[u = (1 +io)82 <W12+u)+R( h? 52) —(1+iﬂ)<1+%53>(u]"*‘

ynt ‘q_] u17+1)

( 32> st = (1+i0)8? (u;ruf) +R( + —82> u™t — (1+iB) (1 + %33> < i i

(2.7b)

1
where u]o =up(xj),and 0 <j < M, 0 <n < N — 1.To start the above iteration, ujf, 0 <j < M, must be known. This can be obtained
using other methods, such as those proposed methods in [29] or the explicit pseudo-spectral methods [39] built in MATLAB. It
should be pointed out that for each time step, one needs only to solve a tri- diagonal linear system for u"“ from Eq. (2.7) once

u;? and u] +3 are known, and then substitute u"+1 into Eq. (2.7) to obtain u 3 by solving another tri-diagonal linear system for

3
u;H 2 Thus, the computation is simple and fast.

The above finite difference scheme can be extended to 2D cases. Indeed, we consider the 2D complex Ginzburg-Landau
equation as

?T =(1+ix) <i + %) +Ru— (1 +iB)ul?” "u, (x.y) e (0.Ly) x (O, Ly),te (0, T], (2.8)

with initial and periodic boundary conditions, where Ly, L, are periods of u(x, y, t) in the x and y directions, respectively. Again,
we divide [0, L] into My subintervals, [0, L] into My subintervals, and [0, T] into N subintervals with mesh sizes hx, hy and 7,
respectively. We denote u]’fk to be the numerical approximation of u(x;, yi. tn). where x; = jhy, yi = khy, ty =nt, 0 <j < My,
0<k<My,and0<n<N.

Instead using Eq. (2.3), we now employ a fourth-order compact finite difference scheme for Poisson equation 4t =

3y2
fx,y) given in [40] as
p2 D2 DD} DD’ D2 D}
[h; MRS 12h2 U@,y = |1+ 35 + 33 ) @90 + 0k + hy), (2.9)
X y X

where the finite difference operators D, D and DDj are defined as follows:

Up,—1k — 2Ugk + Uik,  J=0,0<k <My,
D)%Uj,k =1 U1k — 2ij]< + Uj1k 1 Ej <My-1,0<k< My, (2.10a)
Uy — 2Upg, k + Up—1ks J =My, 0 <k < My;

quMy,1 — 2llj.0 + Uj1, 0 §j < My, k=0
Djujy = { U1 — 2Ujk + U1, 0 <j<My1<k<My—1, (2.10b)
Ui — 2Ujm, + Uimy—1. 0 <j < My, k=M,;
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(U114 Upe—1.1 4 Un—1.My—1 + U1 My—1)
—2(u1,0 + Uo.1 + Unm, 1,0 + Uo.m,—1) + 4lo.0, j=0k=0,
(U1 k1 + Un—1 k1 + Un—1k-1 F UL k-1)
—2(u1 k + Ug k1 + Un,—1.k + Uo k—1) + AUk, j=01<k<My-1,
(ur1 +ume—1.1 + Unm—1.M,—1 + U1.M,-1)
—2(u1,m, + Uo1 + Un,—1.M, + Uom,—1) + 4Uom,, J=0k=M,,
Uj11 +Ujm1 1+ Uji—1,m,—1 + Uj+1,My—1)
—2(Uj1,0 + Uj1 + Uj1,0 + Uim,—1) + 4Ujo, 1<j<My-1k=0,
D2D2u = (uj+12.k+1 + U1 k1 F Ui k-1 + U k-1) . (2.100)
=21k + Ujer1 + Uitk + Ujr-1) + AU, 1<j<My-11<k<M, -1,
Wirr1 + U1t + Uiomy—1 + Uit.my—1)
=2(Uj1.m, + Uit + Uiy, + Uim—1) + 4Ujy, . 1<j=<Mi-1.k=M,,
(U114 ume1.1 4 Une—1.M,-1 + Utm,—1)
—2(u1,0 + Um,.1 + Um—1.0 + UM, M,—1) + AU, 0, j=My k=0,
(U1 k1 + Ung—1.kr1 + Uny—1k-1 + Upk—1)
—2(U1 ke + Unt a1 + Unte—1.k + Ungk—1) + 4Un ks j=My,1<k<My-1,
(U114 ume-1.1 + Une—1.M,-1 + Ut m,—1)
—2(u1m, + UM, 1 + UM—1.M, + Umemy—1) + dUn, v, =My k=M.

We then rewrite Eq. (2.8) as (1 + ioc)(% + %) = % —Ru+ (1 +iB)ul9 Tuat (xj. ¥k t) and then apply Eq. (2.9) to it. This gives
p2 D? D2D? D2D?
A +io) | 2+ 2+ 2L 4 XY Ly, yy, t)
h; k2 12h; 122 |

D2 D2\ rou(x,yet ) ~
= (1 +5t 1;) [% — Ru(x;, Y. ) + (1 +18) [uj, yie. D1 u;. i, t)] +0(hg + hy). (2.11)

Finally, we then use the Crank-Nicolson method similarly and obtain the iterative fourth-order in space compact finite difference
iterative scheme for solving 2D complex Ginzburg-Landau equation in Eq. (2.8) as

) [DZ D2 DD} D§D§:| wlet ul,

1+ia) | 2+ —=
(o) |t Y o T |~ 2

D2 D2 uf"“ —uf, 1 . 191 1
= (1 +35+ 12) [J" — —Ru A+ |uf | |, (2.12a)
2 22 227 " n+}
(i) | 2o Dy DDy DADy i
n2 "R 12n T 1212 2
+3 n+ 4
Dz Dj qu‘:’k Tyt 1 : 1971
= (1 + ﬁ to)l T Ru}f,j + 1 +iB) uj”,j ’ uﬁ , (2.12b)

where ujok =upXj.yx), and 0 <j <My, 0 <k <M,;,0 <n <N —1. It should be noted that Eq. (2.12) can be written as linear
systems, which avoid any nonlinear iterations. Moreover, the scheme can be solved using an ADI method. For instance, Eq. (2.12)
can be solved using a Peaceman-Rachford ADI scheme [41,42] as follows:

D? . TD27 D; . tDj T D; nil R TS L
{1+15_(1+m)2h;]uj*":[1+1;+(1+W)2h§ Wi+ 5 1+é Ru'? — (1+iB) [u, 2| |,
X y
(2.13a)
D? . T D? D? N T D? ntl . n+l -1 n+l
[1 +15 - (1 +za)§h—§ ulet = [1 +35 (1 +za)ih—§]uj_k+§ T+ 25 )| R = (V1B fu * | g |
(2.13b)

where u]*f « Is an intermediate mesh function, which is equivalent to Eq. (2.12) if we ignore those terms whose truncation errors
are O(r?) and O(h#h). Similarly, we can construct an ADI scheme for Eq. (2.12).
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3. Stability analysis

For stability, we would like to show that if solution A and solution B are different periodic solutions obtained by Eq. (2.7)
based on two different initial conditions, then the difference between these two solutions is controlled by their initial difference.
We will employ the discrete energy method [28,29,31-38] to analyze the stability of the present scheme in Eq. (2.7). To this end,
we will first introduce the vector and matrix notations, obtain some lemmas, show the numerical solution to be bounded (as
seen in Theorem 1), and finally use these properties and results to show the stability (as seen in Theorem 2).

We now introduce the vector and matrix notations as

T
n__ (,n ,n n
u' = (ug,uf, ... uy ) .
ntl _ 3 0 n+3
uw-e = |Uy Uy S Uy g
nyq—lq4n _ ng-1,n q-1_n
lu"[7 —(|”o| ug, o Uy [T Uy )
T
-1 q-1
q-1 1 19 1 1 1
n+3 n+y _ n+3 n+3 n+3 N+ 3
ue u 2_<u0 Ug “veeen Uy gl Uya )

where (...)T is the transpose of the vector (...), and

[0 1 0 o 17
110 1 - 0
1
H=
o1 10 1
L1 0 - 1 10,

MxM

It should be pointed out that because of the periodic mesh function, uj = uy,, we do not include uj, in the vectors.
Thus, the present scheme in Eq. (2.7) can be written into vector form as

n+1 n -1
Seu" = (1 + ic)H 162 (%) +Rumt — (14 ip)(Jurd ! wt), (3.1a)
n+3 n+3
Sau™3 = (14 ic)H 182 (“;“) +RUMT (1 4 iB)(um | Tum ), (3.1b)

It can be seen that if H = I, an identity matrix, then Eq. (3.1) will reduce to a second-order Crank-Nicolson scheme.
We define the inner product of two vectors and norms as

M-1 M-1 2
J— . 2 1
vy = Y uvi= @) v f[ut] = (ulp= R Y |ur = (u", hu")3, (3.2a)
j=0 j=0
1
M-1 p
p
lu"lleo = max fuf|, ", = | h >t . p=1, (3.2b)
< =

where W stands for the conjugate of complex vj’?. To analyze the stability of the present scheme in Eq. (3.1), we need the following
six lemmas.

Lemma 1 ([36,37]). For any periodic mesh functions u®, v*, it holds that

<5X2u", v") — —(S,u", S,v7). (3.3)
Lemma 2. For any periodic mesh function u", it holds that
Re <H—153un, hu”> - (H—wgu", hu") — _[|Q8u" |2, (3.4a)
un+1 + u”
Re(H-182 1 b ) = (1@ 12 ~ Qb 2, (3.40)

where Q = Chol(H™1), the Cholesky factorization, and Re denotes the real part of complex value.
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Proof. The proof is similar to that in [31]. Since H is a real, symmetric and positive definite matrix, H-! is also a real, symmetric
and positive definite matrix. By the Cholesky factorization, there exists a real upper-triangular matrix Q such that H-! = Q'Q.
Hence, we obtain from Lemma 1 that
<H‘18fu", hu”> = <85H‘1u”, hu”>

—{8;H 'u", h§,u")

—(H'8,u", h§,u")

(QTQ&cun hé,u™)
—(Qdxu", hQd,u™)
— Q8™ ||, (3.5)

Here, we have used two facts that (1)

T T
Holsgt — gt b uy) — (g Ut )
o —
h
H'(whu, o) —H ot ),
- h
= &H 'u", (3.6)

and similarly, H-182u" = §2H-'u"; and (2) (Qu", Qu") = (Qu")" - Qu" = W")’Q'Q - u™ = (Q'Qu")" - u" = (Q"Qu", u™). Thus, we
obtain from Eq. (3.5) that Re (H~-182u", hu") = (H-182u", hu") = —||Q8,u"||? and hence Eq. (3.4) holds.
Since

un+1 u”
<H—13§7+

P s Bthu">

2t (82H Tw™! +u?), h@@™! — "))
- _? (SH '™ +u"), hé; ™! —u"))
_ _% (H18, ™" +u"), hg, ™! —u")
- _% (QQS, (™! + u™), hS, @™ — um))
‘% (QBy (™! + u"), hQS, ™! —u)
= _% (Qxu™! + QSu", hQSu™ ! — hQS,u")
_%Hanunﬂ, hQSu™1) — (QS,u", hQS,u")] — %[(Q&u”, hQsu™ ") — (QS,u™", hQS,u")]
- *z%[ﬂ%mﬂ 12~ QS ||2] - %anxu", hQsu™!) — (QSu™", hQS.u")] G7)

and the fact that Re((u, v) — (v, u)) = 0 for any vectors u and v, we obtain

n+1 n
Re <H*18f¥, Sthu”>

1 1
—E[IIQSXU”“ 12 — [1Q8u"||?] - 5 [Re((Qdu”, hQSu™ ") — (QSu™!, hQdu™))]
1
—E(IIQSXLI“+1 17 = 1Q3xu" 1), (3.8)
and hence Eq. (3.4) holds. O

Lemma 3. The following inequalities hold

Re( ) < I Bl Rz < 1n oz = (3.9a)

"zl

llzi] = |z2]| < |z1 — 22| < 21| + |22]; (3.9b)
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[1z1]"z1 — |z2|"22| < (lz1] + |zz|)" |z1 —z2|, n=>0; (3.9¢)
u" 2 v 2
by < e < B0 IV (390)
u vtz ) v
3.9
H L (3.9¢)

where zy and z, are complex numbers.

Proof. We prove only for Eq. (3.9) and omit the detailed proofs for others since they are straightforward. It can be seen that
Eq. (3.9) holds if |z1| = |z;|. For the case |z1| > |z;|, we obtain

121" 21 — |22|" 22 1z1]" @ —22) + (|z1]" = |22]") 22

21— 22 21— 2
1z1]" @1 —2)|  |(121]" = |22]") z2
21 =22 Z1— 2
al"lz —z| | ;" = 122]" |2]
|z1 — 22| |z1 — 23]
n n
z|" - |z z
< |z]|n M
|z1] — |22
n-1
= |z1|" + || (Z 21" |Zz|n_k_1>
k=0
. I
= (Z |Z1|k|22|n<>
k=0
< (lz1] + |z])", (3.10)

and hence Eq. (3.9) holds. Similarly, we can prove that Eq. (3.9) holds for the case |z1| < |z2|. O
Lemma 4 ([42,43]). For any u”™ and integer p > 2, it holds that
™[, < e[ (8™ | + u"() (3.11)
witha = 1 - 117’ where ¢ is a constant independent of p and h.
Lemma 5. Forany x > 0, y > 0 and integer n > 1, it holds that
&+ <21y (3.12)

Proof. We use the mathematical induction to prove it. It is obviously that Eq. (3.12) is true for n = 1. Assume that Eq. (3.12)
holds for n up to k. Then, we have (x + y)¥ (x 4+ y) < 2k-1 (x" + yk) (x +y). Moreover, it can be seen that

2k—1 (Xk +yk)(x +y) _ Zk(xkﬂ +ylc+1)
— 2k—1 (xk+1 +yl<+1 + x"y + ka) _ zk(xk+1 +yk+1)
— zk—ll(xky +ka) _ (xk+1 +yl<+1)]
=21 =)+ k-]
=21 -0 -y

k-1
=2¢1 [(y —X) (x~y) ZX’y""‘l}

=0

k-1
— 2k—1 —(X _ y)2 leyk—l—l
=0
<0, (3.13)

implying that (x + y)k+1 < 2k=1(xk 4+ yk)(x + y) < 2k(xk+1 4 yk+1) By the induction, we conclude that Eq. (3.12) holds for any
integern>1. O
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Lemma 6. For H-! = QTQ, where Q is a real upper-triangular matrix, then there exists two positive constants C, and Cy, such that
Collu"]| < [Qu"| < Gy Jlu”| (3.14)

Proof. Note that H-! is a real, symmetric and positive definite matrix. By Schur’s Lemma [44], there exists a unitary matrix U
(i.e., U~ =0T)such that U"'H-1U = D, where D is a real diagonal matrix and the diagonal elements are the eigenvalues of H-!.
Thus, we have H-! = UDU"! and
lQu"|1> = h(Qu". Qu")

= h(Q'Qu". u")

= h(H 'u", u")

= l’l( DU u” lln>

= h(DU 'u", U 'u )

= h(Dw", w") =thj|wj|2, (3.15)

implying that dpi, [W" |2 < |Qu"||? < dmax||W" |2, where w" = U~1u", d; is the eigenvalue of H~". Since U is a unitary matrix,
we have ||[w"||2 = [|[Uu"||? = ||u"||2, and hence dp;, [[u™[|? < [|Qu"||? < dmax||u™||. By the definition of matrix H, we obtain that
the eigenvalues of H are A; = ]1—2(10 +2cos %),j =0,..., M — 1, indicating that % < A;j < 1. Since the eigenvalues of H and H-!
are reciprocal, we obtain that diyi, > 1 and dpax < % Hence, we may choose C; = 1 and C, = % O

Theorem 1. For the scheme in Eq. (3.1), its solution satisfies these priori estimates as follows:

u*[| < Ca. \u'”% < Cu; (3.16a)
[8u|| < Cp. || Su™ 3 | < Cg; (3.16b)
B B
[0l < Gy, Ui <G, (3.16¢)
14 - Y
where0 <n < % Cu, Cg. Cy are constants which are independent on both hand .

Proof. We use the mathematical induction method to prove it. For n = 0, from the initial condition we should have ||u?|| < C,,
18xu®|| < Cg, and lu®||o < Cy. Since u? must be obtained using another method, we may choose a stable numerical method to
obtain the solution at t; . Thus, we should have ||u% | <Cq, ||6xu% | <Cg, ||u’17 l« < Cy.Assume that Eq. (3.16) holds for n up to
m-1< % —1.We WOlild like to show Eq. (3.16) to be true for n = m.

To estimate ||u™|| and ||u””% ||, we first take an inner product of Eq. (3.1) at n = m — 1 with h%. This gives

<5um 1 hiuml>_(]+ia)<ﬂ,182 <um+um—1) hum+um_1>+R< - hw>
- x )

2 2 2 2
. um um—1
—(1+ 1,3)<|u’“’% [9-Tum-z, h%> (3.17)
Taking the real part of the above equation and using Lemmas 2 and 3, one may obtain
1 mi2 m-12 Lo ut um!
— - =Re(§u™ " h—F——
o= (™| = ™1 ?) = Re (™!, n =

m m—1 m m—1 m m—1
=Re ((1+ioz)<H‘l5f (u +2u ) nt +u )+RRe<um‘%,h%>

-1 1
u™z h

)
um+um >>

+Re <_(1 +i/3)<‘u’“*% ’

m m-1 2 | m m-1
< —Re ((l +ia) HQ(SX (%) ) +R‘<um*7, h%>
1 m m-1
+10 +iB)| ’<\um*% Ty T +2“ >
4 um+um—1 5 a1 5 um + um 1
ERHllm N +,/1+8 ’u’" I um: Hf”
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- M-1 q-1 2 m m-1
o flemet || U™ ! B m-1 m-1 u"+u
_RHu N +1+p8 hg U R T —
) e +um ! M 1|2 : um 4 um-1
= Rum | == 1 7 R | H 2
=0
1 l.lm-i-l.lm_1 M-1 1124 Ziq.q u” +um 1
et [ g (o5 ) [
j=0
_ mot | ™+ umt S o1 ]9 0™ +um!
_R“u | +J1+8 Hu 2 wl 2

2 um +um™ 1

2

4 I g ) + ”;’32(

IA

Zq um + um—]
+ S —

2
2 )
2 Ty w2 Lpgme1y2
2 T 117+ S ™

2 ||2), (3.18)

5 (Ju~
3 (1
c
2

2q
(ot [ ot
2q

iy

o L

1

H"’"*f

IA

IA

where ¢; = max{R, y/T + B?}. Here, we have used the fact that —Re((1 + icr)[|Q8x (Y"1 )||2) = — | Q5x (W"+4")|12 < 0. By
Lemma 4 with p = 2q and Lemma 5 as well as the assumption ||um*% | <Cq ,||8xu’”*% | < Cg, we have

1

1129 1|25 132 2
ot 2 e (fo s e o
2q
q+1 q-1 2q
< g24p24-1 (Hu’"’% Syu™ 2 + Hu’"’% )
< g2022a- (¢3! cg;l +CGY) = (3.19)

Substituting Eq. (3.19) into Eq. (3.18) and then using the assumption ||[u™ 1| < Cy, ||um‘% || < Cy, we obtain

+ Jumt

A

1 129
Z(la™ 2 _ um—l 2 c Hum—i
r(” 1“1l ) < a 2
ci(ca+C2+C 4 lum)?)

3 +crlu™?, (3.20)

2
) ||2)

IA

where ¢3 = ¢1¢; + 2¢1C2. Thus, we obtain

[[u™]? [esT + lu™ %]

IA

1-crt
2[cs + 2, (3.21)

IA

if 7 is small enough such that 1 — ¢yt > % and 7 < 1, implying that |ju™|| is bounded independently on h and 7. Once ||u™| is
bounded, we can obtain from Eq. (3.1) that ||um+% || is also bounded using a similar argument.

To estimate ||(S,<u'”||2 and ||8Xum+% |2, we first take the inner product of Eq. (3.1) at n = m — 1 with h§;u™1/(1 + ix). This
gives

m m—1
1 sum1 hsum1) = <H*163 (%) , hS[um*1>

(1 +ix)
R m-1 m— 1 ) m-1
+ i) <u 2 hé;u 1> El Izg) <‘u

umnz, h8tum*1> . (3.22)
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Taking the real part of the above equation and then using Lemmas 2 and 4, we obtain

1
m [|$u™ 1|12
1
= m (8pu™1 h§u™1)

1
:Re<(l+ioz)

_ g (UM U™t m-1 R m-1 m-1
=Re <<H 85 (f) , héul >> +Re (m <u ,hé >
q-1

+ Re( 8 i:g; <‘um" um—%,hatum—l»

(Seu™1, h§um! >>

_l my2 _ m—12 ‘ R ‘ m—— m-1 (1+IIB)H< m—% m71>
= —5-(1Q8a™|” — | Q8™ %) + ﬁia) = hst)] 4 | s héu

=~ (IQBa? — QS™E) + —K w4 VI T st

\/1+ Vi+a2
1 1 1+ 2\ 2

< o (1QBw™ |~ Q8™ ) + F Jumt -ty + B (H zz) 50|

< o (I — Q)+ 5 P .-y L

2(1+a?)
+'32 1 m-12
H T i ra )||5f“ I (3.23)

Thus, moving the term 5L (||Q8,u™||? — [|Q8xu™||?) to the left-hand-side in Eq. (3.23) and dropping the term —L ||8t m-112,

we simplify Eq. (3.23) to

(+a?)

1 2 2q
218 |? — Q8™ < R um= |4 (14 p2) Jun3 |
< R*Cy + (14 B, (3.24)
implying that ||Q8yu™||% < ||QSxu™ 1|2 + R2Cy + (1 + B?)c; if T < 1. By Lemma 6, we obtain

1
[$™]? < = [QSu™|?
a

= 0QBUm P + Gy + (14 F)ca)
a

1
A
1
A

G g™ 1? + RCo + (1 + B?)c2)

<
GC+RCG+ 1+ ) = (3.25)

=

102
8xum+7H < Cs.

Using a similar argument, we may obtain from Eq. (3.1) that
Finally, we have by Lemmas 4 and 5 that

2 1 1 2
%, < [e (™% 8l + u™))] < 262 1S + u™]?)

mi|2 mj|2 c2 +C
< 2¢2 <”“”+”8"“” + ||u’"||2> < 2¢? ( £y c2> = . (3.26)

2 2

Using a similar argument, we also obtain ||u"”% ||« < cg, Thus, by the mathematical induction, Eq. (3.16) holds for any n, and
hence we have completed the proof. O

Theorem 2. Assume that u, and uy, are two different periodic solutions obtained by Eq. (3.1) based on two different initial conditions.
Letting e" = (ua)" — (up)" and ety — (ua)’“% - (ub)’“%, then e and e+ satisfy

2 2
3| [l T2 = [ et |+ 1e°12), (327)

for any n and small T, where C, is a constant, implying that the scheme is unconditionally stable.
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Proof. It can be seen from Eq. (3.1) that for any n > 0, e™ and ety satisfy

Tl+1 m 1 1 71 1 1 71 1
Sce" = (14 ic)H'8? (%)Me"ﬁ—<1+iﬁ>(](ua)“+f "yt = [yt (u.,>"+f), (3:28a)
; n+3 n+y
Siemtt = (14 io)H 152 (e ul >+Re"+l—<1+iﬁ>(|<ua”+l)|q-1<ua>"+l—|(ub>"+1|q-1<ub>"+1), (3.28b)

wed el
where e = (u,)° — (u,)? and e? = (ua)? — (uy)2. Taking the inner products of Eq. (3.28) with henﬂz+en and he™2 1e "2 respec-
tively, we obtain

sen hS e (g gy (atsz (Cte) pe e | plant p& e
2 x 3 3 5
-1 -1 n+1 n
- +iﬂ)<‘(“a)n+% T - [Chas T ), h%% (3.29a)
S.ents he"+%+en+% 1 +io) (H182 et 4 et} hen+%+8"+% olar he”+%+e"+%
2 - — e yentd
t€ s ) + 10 : 5 i . +Rlem, !
-1 -1 n+3 N+l
-1+ iﬁ)<’(lla)ﬂ+1 )q (ua)rH—l _ ‘(ub)nﬂ ‘q (llb)nH, hez—zHEZ> (3.29b)

Since ||(ua)"+% lo <Gy, ||(Ub)"+% loo < C, by Theorem 1, we may simplify the jth component of the nonlinear vector in

Eq. (3.29) based on Eq. (3.9) as

‘(km)"*é - (lla)’”%). B (‘(ub)’“% o (Ub)'”%).
! j
< (| + )(H ) )
< (2¢,)"" (e””f%)j
=C7 (em—%)j‘ , (3.30)

where ¢; = (2, )*" . Similarly, we have

‘(‘(ﬂa)”+1 “H (ua)n+l>‘ _ (‘(ub)nﬂ )fH (ub)nH) <cy (en+1)j‘, (3.31)

]

J

Taking the real part of Eq. (3.29), using Lemmas 2 and 3, and then using Eq. (3.30), we obtain

1
57 (e = e %)

en+1 4 en 2 | en+1 4 en | en+1 +en
< — Q| —=— Rle" 2| | ————| +c7,/1 2 ez | ——=—
<o (55| + 7 A |~
n+1 n
2 nel |1 € te
5<C7\/1+ﬁ +R) etz 5

2 en+1 4 e

C7\/1+,32+R_ N+l 2
—— ezl + —

1
et

cV/1+B2+RT
2

2 1 n+12 ny2

_ + 5 (eI + e"l)

cV/1+B2+RT
2

@+l

2
T e 2 + ||e"||2] . (3.32)
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which can be simplified to

1 2 2
eI = 1) < ca [ et +

1
et

2
et 4 ||e”||2} , (333)
where cg = (‘/1 + B2%¢c7 + R). Using a similar argument for Eq. (3.29), we obtain

< )=l

Summing Eqs. (3.33) and (3.34) together gives

2 2
3 1 3 1
n+ 3 n+ 1+ n+32 n+ 4

2
e ||2] . (3.34)

2 (Jersa ]+ et = ferss | ey
5“‘( et [* 42 et 42 et 2+||e"||2>
<co(Jerst [ et P+ fersd [+ feni?) (3.35)
where cg = 2cg, implying that
%(E"+l —E") < co(E™! + EM), (3.36)

where E" = ||e”+% |2 + ||e"||2. Thus, we obtain from Eq. (3.36) that
En+1 < 1 + 70 En
1—-1co

n+1
- <1 + tc9) 0
~“\1-1¢g
le(nH)cQEO
croE°, (3.37)

where ¢1g = 2T% and (n + 1)t < T if T is sufficiently small such that 1 — tcq > % Hence, Eq. (3.27) has been obtained and the
proof of Theorem 2 is completed. O

IA

IA

IA

Furthermore, the stability analysis for the 2D scheme is similar to the above analysis, but much more complicated. We omit
the detailed derivations here because of the limitation of pages.
4. Numerical examples

To test the accuracy of our numerical schemes, we first considered a 1D complex Ginzburg-Landau equation with initial and
periodic boundary conditions as follows:

2
% = (l—l—ia)% +Ru—(A+iB)|ufu, xe <0, zl/rin),te(o,l]; (4.1a)
u(x,0) = @e’(@”, Xe [0, zﬁn} ; (4.1b)
u@,t) = u (Z\f; t) = @e“‘wt), (4.1c)

L. i(Y2R,_ (@+B)R
where the exact solution is u (x, t) = @e'(T"‘ 70,

We employed our present scheme in Eq. (2.7) to solve the above problem, in which the Thomas algorithm [45] was used for
solving the obtained tri-diagonal linear systems. The maximum of /,-norm errors of the numerical solutions, as compared with
the analytical solution, were computed for 0 < t < 1 based on the formula

) . (4.2)

To obtain the convergence rate with respect to the spatial variable, we may assume that e, (t, h) = O(z? + h9). Thus, e, (24P, 2h)
= 0[(¥PT)P + (2h)1] = 290 (TP + hY). Consequently, e, (%P1, 2h)/e.(r,h) =27 and hence q = logy[ew (VP 2h)/ex (T, h)]

e (T.h) = max ( max
0<nt<1 \0<j<M

uj' — u(x;, tn)
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Table 1
Maximum error and convergence rate in the first example (R = 1, = 8 = 1, and u* was obtained
using Eq. (4.3)).

(h,7) ex(h, 1) Rate

(2v27/5.1/5) 0.00485726115701 -

(2«/27‘[/10, 1/20) 2.946157986007180e-004 40432

(22720, 1/80) 1.820597872425982¢-005 4.0164

(2«/27‘[/40, 1/320) 1.139391147327777e-006 3.9981
Table 2

Maximum error and convergence rate in the first example (R = 2, = 8 = 1, and u* was obtained
using Eq. (4.3)).

(h,7) ex(h, 1) Rate

@m/5,1/5) 0.01610696193415 -

(27 /10,1/20) 0.00106759559593 3.9152

(271 /20, 1/80) 6.710783491111773e-005 3.9917

(27 /40, 1/320) 4.230900881952949¢-006 3.9874
Table 3

Maximum error and convergence rate in the first example (R = 1, = 8 = 1, and u* was obtained
using the analytical solution).

(h,7) ex(h, 7) Rate

(2v27/5.1/5) 0.00489551131950 -

(2«/27'[/10, 1/20) 2.943305960467438e-004 4.0560

(22720, 1/80) 1.819984324406890e-005 40154

(2277 /40, 1/320) 1.139197836597871e-006 3.9980
Table 4

Maximum error and convergence rate in the first example (R = 2, = 8 = 1, and u? was obtained
using the analytical solution).

(h,7) ex(h, 7) Rate
@m/5,1/5) 0.01550766547724 -

(27 /10,1/20) 0.00105786656594 3.8738
(27 /20, 1/80) 6.696133491033216e-005 3.9817
(27 /40, 1/320) 4.228439981965586e-006 3.9851

is the convergence rate with respect to the spatial variable. For our present scheme, we expect to have p=2 and
q=4.

Since the present scheme needs those values at time levels n =0 and n = % the values at the time level n = % must be
obtained using other methods. Here, we used the fully implicit method developed in [29] as

1 1 1
h? uz —uo u? +u° h? u? +ul
1 oe2 J J_ 1 ; 2 J J R(1 92 J J
( +128X> 2 (1 +ix)d; 3 + +126x 3
1 1
|uf 197+ 2] uf 4+ )
2 2

2
~A+ip)(1 + %axz) (4.3)
Note that the analytical solution is known in this example, we also used the exact values at the time level n = % to check if our
scheme is fourth-order. In our computation, we chose two different values of R. Results are shown in Tables 1-4. It can be seen
from these tables that the convergence rate of the scheme is approximately fourth-order with respect to the spatial variable,
which coincides with the theoretical analysis. Fig. 1 shows the solution profiles obtained based on three different meshes as
compared with the analytical solutions. Results do not show much of a difference between the analytical solution and the
numerical solution.
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Re(u)

--- analytical solution

A present scheme, 10 grid points
o present scheme, 20 grid points
+ present scheme, 40 grid points

(a) R=1

0.6
0.4
0.2

Re(u)

--- analytical solution
A present scheme, 10 grid points
o present scheme, 20 grid points |4
+ present scheme, 40 grid points

(b) R=2

Fig. 1. Profiles of the real part of the numerical solution at t = 1 obtained using three different meshes and corresponding 7 = 1,20, 1/80, 1/320, respectively,

as compared with the analytical solution in the first example.

Table 5

Maximum error and convergence rate in the second example (R=1,« = 8 =1, and u? was ob-

tained using the analytical solution).

(hx. hy, T) e (hx, hy, 7) Rate
2327 /5,2v27/5,1 /5) 0.00110542709763 -
24/27/10,2+/27/10,1/20 6.406423411185432¢-005 4.1089
24/27/20,2+/27/20,1/80 3.996877803767565e-006 4.0026
2427 /40, 2727 /40, 1 /320) 2.482725014645710e-007 4.0089

We then considered a 2D complex Ginzburg-Landau equation with initial and periodic boundary conditions as

du . (0%u  d%u , 2 227 )

Fri (1—1—101)(W a—y2>+Ru—(l+l,B)|u| u, x,yeloO, R ,te(0,1];
V2R .. R 2V2m

U, y,0) = ———elTx9Y)  x yelo,

*y.0) = — y R

(4.4a)

(4.4b)
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Table 6
Maximum error and convergence rate in the second example (R=2,« = 8 =1, and uz was ob-
tained using the analytical solution).

(hx, hy., T) e (hx. hy, 7) Rate
(27/5,2m/5,1/5) 0.01239497829524 —
(27/10, 27 /10, 1/20) 8.097105045953942e-004 3.9362
(27/20, 27 /20, 1/80) 4.978160430930223e-005 4.0237
(27 /40, 27 /40, 1/320) 3.117868510497469e-006 3.9970
t=1 t=3
— ™ _— 0.14
— ] 0.08 — ]
1 | 1 | 0.12
| = > 0.07 | | >
% ><// ><> 0.06 08+ ><// ><>‘ 0.1
06— >< />< 0.64—""| >< /><
= ——— /\ 0.05 5 | o 0.08
=0 /// = o4 ///
0.04
! / 0-2\/ 0.06
0.03
0.l 0.04
0.02 20
10 20
001 0.02
y 0o X y 0 X
(a) (b)
0.8
07
0.6
05
E;
0.4
0.3
02
0.1

(c) (d)

Fig. 2. Solution distributions at various times at (a)t = 1, (b) t = 3, (c) t = 5, and (d) t = 7 obtained based on the mesh 40 x 40 and t = 0.1 in the third example.

A/ 2R ei(gx_ !L“rzﬁ )R t)’

u,0,t) = ux, Ly, t)= > tel0,1] (4.4¢)
u@0.y.t) = uy.y.t) = %ei(%‘mfs 0 tel0.1]. (4.4d)

. .. i(VRyy YR, _ (@+B)R . .. . 1.
where the analytical solution is u(x,y,t) = @e’(T”TY’ “570  For simplicity, we used the exact solution for uz in the

computation. Results are shown in Tables 5 and 6. Again, as expected, it can be seen from these two tables that the convergence
rate of the scheme is approximately fourth-order.
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1 T T T T T T T 1 T T T T T T u
- pseudo-spectral method -~ pseudo-spectral method
09 o present scheme 1 09 o present scheme 1
0.8 1 0.8 1
0.7 B 0.7 B
0.6 9 0.6 4
S 05 1 S 05 1
0.4 1 0.4 ]
t=7 <«—t=7 t=7 > € t=7
t=5 t=5 | t=5 t=5 |
03 i3 =3 031 g =3
t=1 t=1 t=1 t=1
0.2 1 0.2 1
0.1 4 0.1 ]
0 0 .
-20 15 10 5 0 5 10 15 20 20 15 10 5 0 5 10 15 20
y y

- pseudo-spectral method -- present scheme

09 o present scheme 1 0.9 1
0.8 9 0.8 4
0.7 1 0.7 1
0.6 1 0.6 1
505 1 505 1
0.4 1 0.4 1

t=7 > t=7 t=7 €« t=7
t=5 t=5 | t=5 t=5 |

031 3 =3 03[ 13 =3

t=1 t=1 t=1 t=1
0.2 1 0.2 1
0.1 1 0.1 1

0 { )
20 15 10 5 0 5 10 15 20 20 15 10 5 0 5 10 15 20
y y

(c) (d)

Fig. 3. Solution profiles along the y-axis at various times obtained based on four meshes of (a) 20 x 20, (b) 30 x 30, (c) 40 x 40, (d) 50 x 50, and t = 0.1 in the
third example.

Finally, we considered a more complex example with no periodic boundary condition, which we could not find the exact
solution, as follows:

u L (0%u  d%u N .
FTi ( H)(W + 8y2> +u— 1 +i)ul‘u, xye(—oo, +o0),t>0; (4.5a)
2 2 2
_ iv)e— ®*+y?) _
u(x,y,0) ﬁ(XJrly)e . XY € (=00, +00). (4.5b)

The example is related to the non-equilibrium condensate. For the coefficient of the diffusion term 327;‘ + % is 1 +1, we expect

to have some diffusions in the solution. In our computation, the domain was taken to be —20 < x, y < 20, where the boundary
condition was set to be zero. The number of grid points in both x and y was chosen to be 40 x 40 with the time step 7 = 0.1.

For this case, u? was computed using the fourth-order accurate and explicit pseudo-spectral method [39] built in the software
MATLAB. Fig. 2 shows the simulation of the solution at various times in 0 < t < 7. As expected, we see from Fig. 2 that the vortex
grows and diffuses toward the boundary.

We then chose four different meshes of 20 x 20, 30 x 30, 40 x 40, and 50 x 50 with the time step T = 0.1 and compared
with the fourth-order accurate and explicit pseudo-spectral method, as shown in Figs. 3 and 4. It can be seen from these two
figures that the solutions obtained based on these two methods are not significantly different for the meshes of 20 x 20, 30 x 30,
and 40 x 40, as shown in Figs. 3(a)-(c) and 4(a)-(c). However, for the mesh of 50 x 50, the pseudo-spectral method produces a
divergent solution in which the maximum value of u(x, y) = 4.670916294752263¢180 + i8.621058722691569¢180 at t = 0.8 and
u(x,y) = NaN at t = 0.9. On the other hand, our method still produces a stable solution, as shown in Figs. 3(d) and 4(d). This
indicates that our method has a better stability condition.



Y. Yan et al. / Applied Mathematics and Computation 260 (2015) 269-287 285

1 T T T T
0.9 1 0.9 o present scheme 1
0.8 4 0.8 4
0.7 1 0.7 1
06 1 0.6 4
S 05 1 Sos ]
0.4 1 0.4 1
t=7 t=7 t=7 > <—t=7
t=5 t=5 | t=5 t=5 |
031 13 =3 03 13 =3
t=1 t=1 t=1 t=1
0.2 A, o K 1 0.2 1
04 g < \ [/ > 1 04 1
0 0 {
20 15 10 5 0 5 10 15 20 20 15 10 5 0 5 10 15 20
X X
(a) (b)
1 T T T T T T T 1 T T T T T T
ectral method - present scheme
0.9 resent scheme 1 09 1
08 1 0.8 4
0.7 q 0.7 1
0.6 4 0.6 4
§ 0.5 g § 0.5 |
04 4 0.4 4
t=7 <— t=7 t=7 t=7
t=5 t=5 | t=5 t=5 |
031 3 =3 03[ 13 =3
t=1 t=1 t=1 t=1
0.2 q 0.2 1
0.1 4 01 4
0 { N
-20 15 10 5 0 5 10 15 20 20 15 10 5 0 5 10 15 20
X X
(c) (d)

Fig. 4. Solution profiles along the x-axis at various times obtained based on four meshes of (a) 20 x 20, (b) 30 x 30, (c) 40 x 40, (d) 50 x 50, and 7 = 0.1 in the
third example.

5. Conclusion

In this study, we have developed a new, simple, and accurate finite difference iterative scheme for solving the 1D and 2D
complex Ginzburg-Landau equations with initial and periodic boundary conditions, respectively. Coupled with the Crank-
Nicolson finite difference technique and the fourth-order compact finite difference method for spatial variables, the new
scheme is proved to be unconditionally stable and provides fourth-order accurate numerical solutions with respect to the
spatial variables. Numerical errors and convergence rates of the solutions have been tested by several examples. Results
show that the maximal [,-norm errors are small as expected, and the convergence rates of the numerical solutions are
fourth-order with respect to the spatial variables. Further research will be focused on the applications of the new method
to practical physics and engineering problems, such as the phenomenological Ginzburg-Landau complex superconductivity
model [22]:
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. 2
n%—f—i—inkdnﬁ—i—(%V—i—A) 1/f—1//+|w|21ﬂ=0, in Q2 x (0, 7); (5.1a)
oA i = .
T V¢ + curl curlA+R [(va +A1/r) w] =0, inQ2x(0,7); (5.1b)
with the initial and boundary conditions
(%vw +A¢) -n= 0, curlA =H, on 92 x (0, T); (5.1¢)
¥ (x,0) = Yo (%), A(x,0) =Ao (x), ingQ; (5.1d)

where Eq. (5.1) may be solved using the present method. Here, v is a complex valued function and is referred to as the
order parameter so that |1//|2 gives the relative density of the superconducting electron pairs, and the normal and the pure
superconducting states are characterized accordingly by |y |2 =0and |y |2 = 1.y stands for the complex conjugate of 1. A is a
real vector potential for the total magnetic field and ¢ is a real scalar function called electric potential. H is the applied magnetic
field that points out of the (x;, x,)-plane. n, k are positive constants which are related to the known physical quantities.
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