4,868 research outputs found

    Numerics and Fractals

    Full text link
    Local iterated function systems are an important generalisation of the standard (global) iterated function systems (IFSs). For a particular class of mappings, their fixed points are the graphs of local fractal functions and these functions themselves are known to be the fixed points of an associated Read-Bajactarevi\'c operator. This paper establishes existence and properties of local fractal functions and discusses how they are computed. In particular, it is shown that piecewise polynomials are a special case of local fractal functions. Finally, we develop a method to compute the components of a local IFS from data or (partial differential) equations.Comment: version 2: minor updates and section 6.1 rewritten, arXiv admin note: substantial text overlap with arXiv:1309.0243. text overlap with arXiv:1309.024

    Are galaxy distributions scale invariant? A perspective from dynamical systems theory

    Get PDF
    Unless there is evidence for fractal scaling with a single exponent over distances .1 <= r <= 100 h^-1 Mpc then the widely accepted notion of scale invariance of the correlation integral for .1 <= r <= 10 h^-1 Mpc must be questioned. The attempt to extract a scaling exponent \nu from the correlation integral n(r) by plotting log(n(r)) vs. log(r) is unreliable unless the underlying point set is approximately monofractal. The extraction of a spectrum of generalized dimensions \nu_q from a plot of the correlation integral generating function G_n(q) by a similar procedure is probably an indication that G_n(q) does not scale at all. We explain these assertions after defining the term multifractal, mutually--inconsistent definitions having been confused together in the cosmology literature. Part of this confusion is traced to a misleading speculation made earlier in the dynamical systems theory literature, while other errors follow from confusing together entirely different definitions of ``multifractal'' from two different schools of thought. Most important are serious errors in data analysis that follow from taking for granted a largest term approximation that is inevitably advertised in the literature on both fractals and dynamical systems theory.Comment: 39 pages, Latex with 17 eps-files, using epsf.sty and a4wide.sty (included) <[email protected]

    Hopping Conductivity of a Nearly-1d Fractal: a Model for Conducting Polymers

    Full text link
    We suggest treating a conducting network of oriented polymer chains as an anisotropic fractal whose dimensionality D=1+\epsilon is close to one. Percolation on such a fractal is studied within the real space renormalization group of Migdal and Kadanoff. We find that the threshold value and all the critical exponents are strongly nonanalytic functions of \epsilon as \epsilon tends to zero, e.g., the critical exponent of conductivity is \epsilon^{-2}\exp (-1-1/\epsilon). The distribution function for conductivity of finite samples at the percolation threshold is established. It is shown that the central body of the distribution is given by a universal scaling function and only the low-conductivity tail of distribution remains ϵ\epsilon -dependent. Variable range hopping conductivity in the polymer network is studied: both DC conductivity and AC conductivity in the multiple hopping regime are found to obey a quasi-1d Mott law. The present results are consistent with electrical properties of poorly conducting polymers.Comment: 27 pages, RevTeX, epsf, 5 .eps figures, to be published in Phys. Rev.

    Random walk through fractal environments

    Full text link
    We analyze random walk through fractal environments, embedded in 3-dimensional, permeable space. Particles travel freely and are scattered off into random directions when they hit the fractal. The statistical distribution of the flight increments (i.e. of the displacements between two consecutive hittings) is analytically derived from a common, practical definition of fractal dimension, and it turns out to approximate quite well a power-law in the case where the dimension D of the fractal is less than 2, there is though always a finite rate of unaffected escape. Random walks through fractal sets with D less or equal 2 can thus be considered as defective Levy walks. The distribution of jump increments for D > 2 is decaying exponentially. The diffusive behavior of the random walk is analyzed in the frame of continuous time random walk, which we generalize to include the case of defective distributions of walk-increments. It is shown that the particles undergo anomalous, enhanced diffusion for D_F < 2, the diffusion is dominated by the finite escape rate. Diffusion for D_F > 2 is normal for large times, enhanced though for small and intermediate times. In particular, it follows that fractals generated by a particular class of self-organized criticality (SOC) models give rise to enhanced diffusion. The analytical results are illustrated by Monte-Carlo simulations.Comment: 22 pages, 16 figures; in press at Phys. Rev. E, 200

    One-dimensional wave equations defined by fractal Laplacians

    Full text link
    We study one-dimensional wave equations defined by a class of fractal Laplacians. These Laplacians are defined by fractal measures generated by iterated function systems with overlaps, such as the well-known infinite Bernoulli convolution associated with the golden ratio and the 3-fold convolution of the Cantor measure. The iterated function systems defining these measures do not satisfy the post-critically finite condition or the open set condition. By using second-order self-similar identities introduced by Strichartz et al., we discretize the equations and use the finite element and central difference methods to obtain numerical approximations to the weak solutions. We prove that the numerical solutions converge to the weak solution, and obtain estimates for the rate of convergence
    corecore