1,178 research outputs found

    Massive MIMO Extensions to the COST 2100 Channel Model: Modeling and Validation

    Full text link
    To enable realistic studies of massive multiple-input multiple-output systems, the COST 2100 channel model is extended based on measurements. First, the concept of a base station-side visibility region (BS-VR) is proposed to model the appearance and disappearance of clusters when using a physically-large array. We find that BS-VR lifetimes are exponentially distributed, and that the number of BS-VRs is Poisson distributed with intensity proportional to the sum of the array length and the mean lifetime. Simulations suggest that under certain conditions longer lifetimes can help decorrelating closely-located users. Second, the concept of a multipath component visibility region (MPC-VR) is proposed to model birth-death processes of individual MPCs at the mobile station side. We find that both MPC lifetimes and MPC-VR radii are lognormally distributed. Simulations suggest that unless MPC-VRs are applied the channel condition number is overestimated. Key statistical properties of the proposed extensions, e.g., autocorrelation functions, maximum likelihood estimators, and Cramer-Rao bounds, are derived and analyzed.Comment: Submitted to IEEE Transactions of Wireless Communication

    Monte Carlo Estimation of the Density of the Sum of Dependent Random Variables

    Full text link
    We study an unbiased estimator for the density of a sum of random variables that are simulated from a computer model. A numerical study on examples with copula dependence is conducted where the proposed estimator performs favourably in terms of variance compared to other unbiased estimators. We provide applications and extensions to the estimation of marginal densities in Bayesian statistics and to the estimation of the density of sums of random variables under Gaussian copula dependence

    Analysis of Buffer Starvation with Application to Objective QoE Optimization of Streaming Services

    Get PDF
    Our purpose in this paper is to characterize buffer starvations for streaming services. The buffer is modeled as an M/M/1 queue, plus the consideration of bursty arrivals. When the buffer is empty, the service restarts after a certain amount of packets are \emph{prefetched}. With this goal, we propose two approaches to obtain the \emph{exact distribution} of the number of buffer starvations, one of which is based on \emph{Ballot theorem}, and the other uses recursive equations. The Ballot theorem approach gives an explicit result. We extend this approach to the scenario with a constant playback rate using T\`{a}kacs Ballot theorem. The recursive approach, though not offering an explicit result, can obtain the distribution of starvations with non-independent and identically distributed (i.i.d.) arrival process in which an ON/OFF bursty arrival process is considered in this work. We further compute the starvation probability as a function of the amount of prefetched packets for a large number of files via a fluid analysis. Among many potential applications of starvation analysis, we show how to apply it to optimize the objective quality of experience (QoE) of media streaming, by exploiting the tradeoff between startup/rebuffering delay and starvations.Comment: 9 pages, 7 figures; IEEE Infocom 201

    On Fundamental Trade-offs of Device-to-Device Communications in Large Wireless Networks

    Get PDF
    This paper studies the gains, in terms of served requests, attainable through out-of-band device-to-device (D2D) video exchanges in large cellular networks. A stochastic framework, in which users are clustered to exchange videos, is introduced, considering several aspects of this problem: the video-caching policy, user matching for exchanges, aspects regarding scheduling and transmissions. A family of \emph{admissible protocols} is introduced: in each protocol the users are clustered by means of a hard-core point process and, within the clusters, video exchanges take place. Two metrics, quantifying the "local" and "global" fraction of video requests served through D2D are defined, and relevant trade-off regions involving these metrics, as well as quality-of-service constraints, are identified. A simple communication strategy is proposed and analyzed, to obtain inner bounds to the trade-off regions, and draw conclusions on the performance attainable through D2D. To this end, an analysis of the time-varying interference that the nodes experience, and tight approximations of its Laplace transform are derived.Comment: 33 pages, 9 figures. Updated version, to appear in IEEE Transactions on Wireless Communication
    corecore