2,622 research outputs found

    Approximation bounds on maximum edge 2-coloring of dense graphs

    Full text link
    For a graph GG and integer q≥2q\geq 2, an edge qq-coloring of GG is an assignment of colors to edges of GG, such that edges incident on a vertex span at most qq distinct colors. The maximum edge qq-coloring problem seeks to maximize the number of colors in an edge qq-coloring of a graph GG. The problem has been studied in combinatorics in the context of {\em anti-Ramsey} numbers. Algorithmically, the problem is NP-Hard for q≥2q\geq 2 and assuming the unique games conjecture, it cannot be approximated in polynomial time to a factor less than 1+1/q1+1/q. The case q=2q=2, is particularly relevant in practice, and has been well studied from the view point of approximation algorithms. A 22-factor algorithm is known for general graphs, and recently a 5/35/3-factor approximation bound was shown for graphs with perfect matching. The algorithm (which we refer to as the matching based algorithm) is as follows: "Find a maximum matching MM of GG. Give distinct colors to the edges of MM. Let C1,C2,…,CtC_1,C_2,\ldots, C_t be the connected components that results when M is removed from G. To all edges of CiC_i give the (∣M∣+i)(|M|+i)th color." In this paper, we first show that the approximation guarantee of the matching based algorithm is (1+2δ)(1 + \frac {2} {\delta}) for graphs with perfect matching and minimum degree δ\delta. For δ≥4\delta \ge 4, this is better than the 53\frac {5} {3} approximation guarantee proved in {AAAP}. For triangle free graphs with perfect matching, we prove that the approximation factor is (1+1δ−1)(1 + \frac {1}{\delta - 1}), which is better than 5/35/3 for δ≥3\delta \ge 3.Comment: 11pages, 3 figure

    The Edge Group Coloring Problem with Applications to Multicast Switching

    Get PDF
    This paper introduces a natural generalization of the classical edge coloring problem in graphs that provides a useful abstraction for two well-known problems in multicast switching. We show that the problem is NP-hard and evaluate the performance of several approximation algorithms, both analytically and experimentally. We find that for random χ\chi-colorable graphs, the number of colors used by the best algorithms falls within a small constant factor of χ\chi, where the constant factor is mainly a function of the ratio of the number of outputs to inputs. When this ratio is less than 10, the best algorithms produces solutions that use fewer than 2χ2\chi colors. In addition, one of the algorithms studied finds high quality approximate solutions for any graph with high probability, where the probability of a low quality solution is a function only of the random choices made by the algorithm

    Kernelization and Sparseness: the case of Dominating Set

    Get PDF
    We prove that for every positive integer rr and for every graph class G\mathcal G of bounded expansion, the rr-Dominating Set problem admits a linear kernel on graphs from G\mathcal G. Moreover, when G\mathcal G is only assumed to be nowhere dense, then we give an almost linear kernel on G\mathcal G for the classic Dominating Set problem, i.e., for the case r=1r=1. These results generalize a line of previous research on finding linear kernels for Dominating Set and rr-Dominating Set. However, the approach taken in this work, which is based on the theory of sparse graphs, is radically different and conceptually much simpler than the previous approaches. We complement our findings by showing that for the closely related Connected Dominating Set problem, the existence of such kernelization algorithms is unlikely, even though the problem is known to admit a linear kernel on HH-topological-minor-free graphs. Also, we prove that for any somewhere dense class G\mathcal G, there is some rr for which rr-Dominating Set is W[22]-hard on G\mathcal G. Thus, our results fall short of proving a sharp dichotomy for the parameterized complexity of rr-Dominating Set on subgraph-monotone graph classes: we conjecture that the border of tractability lies exactly between nowhere dense and somewhere dense graph classes.Comment: v2: new author, added results for r-Dominating Sets in bounded expansion graph

    Cubical coloring -- fractional covering by cuts and semidefinite programming

    Full text link
    We introduce a new graph invariant that measures fractional covering of a graph by cuts. Besides being interesting in its own right, it is useful for study of homomorphisms and tension-continuous mappings. We study the relations with chromatic number, bipartite density, and other graph parameters. We find the value of our parameter for a family of graphs based on hypercubes. These graphs play for our parameter the role that circular cliques play for the circular chromatic number. The fact that the defined parameter attains on these graphs the `correct' value suggests that the definition is a natural one. In the proof we use the eigenvalue bound for maximum cut and a recent result of Engstr\"om, F\"arnqvist, Jonsson, and Thapper. We also provide a polynomial time approximation algorithm based on semidefinite programming and in particular on vector chromatic number (defined by Karger, Motwani and Sudan [Approximate graph coloring by semidefinite programming, J. ACM 45 (1998), no. 2, 246--265]).Comment: 17 page
    • …
    corecore