16 research outputs found

    Approximation Resistant Predicates From Pairwise Independence

    Full text link
    We study the approximability of predicates on kk variables from a domain [q][q], and give a new sufficient condition for such predicates to be approximation resistant under the Unique Games Conjecture. Specifically, we show that a predicate PP is approximation resistant if there exists a balanced pairwise independent distribution over [q]k[q]^k whose support is contained in the set of satisfying assignments to PP

    Gaussian Bounds for Noise Correlation of Functions

    Get PDF
    In this paper we derive tight bounds on the expected value of products of {\em low influence} functions defined on correlated probability spaces. The proofs are based on extending Fourier theory to an arbitrary number of correlated probability spaces, on a generalization of an invariance principle recently obtained with O'Donnell and Oleszkiewicz for multilinear polynomials with low influences and bounded degree and on properties of multi-dimensional Gaussian distributions. The results derived here have a number of applications to the theory of social choice in economics, to hardness of approximation in computer science and to additive combinatorics problems.Comment: Typos and references correcte

    On the NP-Hardness of Approximating Ordering Constraint Satisfaction Problems

    Full text link
    We show improved NP-hardness of approximating Ordering Constraint Satisfaction Problems (OCSPs). For the two most well-studied OCSPs, Maximum Acyclic Subgraph and Maximum Betweenness, we prove inapproximability of 14/15+ϵ14/15+\epsilon and 1/2+ϵ1/2+\epsilon. An OCSP is said to be approximation resistant if it is hard to approximate better than taking a uniformly random ordering. We prove that the Maximum Non-Betweenness Problem is approximation resistant and that there are width-mm approximation-resistant OCSPs accepting only a fraction 1/(m/2)!1 / (m/2)! of assignments. These results provide the first examples of approximation-resistant OCSPs subject only to P \neq \NP

    On the Usefulness of Predicates

    Full text link
    Motivated by the pervasiveness of strong inapproximability results for Max-CSPs, we introduce a relaxed notion of an approximate solution of a Max-CSP. In this relaxed version, loosely speaking, the algorithm is allowed to replace the constraints of an instance by some other (possibly real-valued) constraints, and then only needs to satisfy as many of the new constraints as possible. To be more precise, we introduce the following notion of a predicate PP being \emph{useful} for a (real-valued) objective QQ: given an almost satisfiable Max-PP instance, there is an algorithm that beats a random assignment on the corresponding Max-QQ instance applied to the same sets of literals. The standard notion of a nontrivial approximation algorithm for a Max-CSP with predicate PP is exactly the same as saying that PP is useful for PP itself. We say that PP is useless if it is not useful for any QQ. This turns out to be equivalent to the following pseudo-randomness property: given an almost satisfiable instance of Max-PP it is hard to find an assignment such that the induced distribution on kk-bit strings defined by the instance is not essentially uniform. Under the Unique Games Conjecture, we give a complete and simple characterization of useful Max-CSPs defined by a predicate: such a Max-CSP is useless if and only if there is a pairwise independent distribution supported on the satisfying assignments of the predicate. It is natural to also consider the case when no negations are allowed in the CSP instance, and we derive a similar complete characterization (under the UGC) there as well. Finally, we also include some results and examples shedding additional light on the approximability of certain Max-CSPs

    Explicit Optimal Hardness via Gaussian stability results

    Get PDF
    The results of Raghavendra (2008) show that assuming Khot's Unique Games Conjecture (2002), for every constraint satisfaction problem there exists a generic semi-definite program that achieves the optimal approximation factor. This result is existential as it does not provide an explicit optimal rounding procedure nor does it allow to calculate exactly the Unique Games hardness of the problem. Obtaining an explicit optimal approximation scheme and the corresponding approximation factor is a difficult challenge for each specific approximation problem. An approach for determining the exact approximation factor and the corresponding optimal rounding was established in the analysis of MAX-CUT (KKMO 2004) and the use of the Invariance Principle (MOO 2005). However, this approach crucially relies on results explicitly proving optimal partitions in Gaussian space. Until recently, Borell's result (Borell 1985) was the only non-trivial Gaussian partition result known. In this paper we derive the first explicit optimal approximation algorithm and the corresponding approximation factor using a new result on Gaussian partitions due to Isaksson and Mossel (2012). This Gaussian result allows us to determine exactly the Unique Games Hardness of MAX-3-EQUAL. In particular, our results show that Zwick algorithm for this problem achieves the optimal approximation factor and prove that the approximation achieved by the algorithm is 0.796\approx 0.796 as conjectured by Zwick. We further use the previously known optimal Gaussian partitions results to obtain a new Unique Games Hardness factor for MAX-k-CSP : Using the well known fact that jointly normal pairwise independent random variables are fully independent, we show that the the UGC hardness of Max-k-CSP is (k+1)/22k1\frac{\lceil (k+1)/2 \rceil}{2^{k-1}}, improving on results of Austrin and Mossel (2009)

    Near-Optimal UGC-hardness of Approximating Max k-CSP_R

    Get PDF
    In this paper, we prove an almost-optimal hardness for Max kk-CSPR_R based on Khot's Unique Games Conjecture (UGC). In Max kk-CSPR_R, we are given a set of predicates each of which depends on exactly kk variables. Each variable can take any value from 1,2,,R1, 2, \dots, R. The goal is to find an assignment to variables that maximizes the number of satisfied predicates. Assuming the Unique Games Conjecture, we show that it is NP-hard to approximate Max kk-CSPR_R to within factor 2O(klogk)(logR)k/2/Rk12^{O(k \log k)}(\log R)^{k/2}/R^{k - 1} for any k,Rk, R. To the best of our knowledge, this result improves on all the known hardness of approximation results when 3k=o(logR/loglogR)3 \leq k = o(\log R/\log \log R). In this case, the previous best hardness result was NP-hardness of approximating within a factor O(k/Rk2)O(k/R^{k-2}) by Chan. When k=2k = 2, our result matches the best known UGC-hardness result of Khot, Kindler, Mossel and O'Donnell. In addition, by extending an algorithm for Max 2-CSPR_R by Kindler, Kolla and Trevisan, we provide an Ω(logR/Rk1)\Omega(\log R/R^{k - 1})-approximation algorithm for Max kk-CSPR_R. This algorithm implies that our inapproximability result is tight up to a factor of 2O(klogk)(logR)k/212^{O(k \log k)}(\log R)^{k/2 - 1}. In comparison, when 3k3 \leq k is a constant, the previously known gap was O(R)O(R), which is significantly larger than our gap of O(polylog R)O(\text{polylog } R). Finally, we show that we can replace the Unique Games Conjecture assumption with Khot's dd-to-1 Conjecture and still get asymptotically the same hardness of approximation

    From average case complexity to improper learning complexity

    Full text link
    The basic problem in the PAC model of computational learning theory is to determine which hypothesis classes are efficiently learnable. There is presently a dearth of results showing hardness of learning problems. Moreover, the existing lower bounds fall short of the best known algorithms. The biggest challenge in proving complexity results is to establish hardness of {\em improper learning} (a.k.a. representation independent learning).The difficulty in proving lower bounds for improper learning is that the standard reductions from NP\mathbf{NP}-hard problems do not seem to apply in this context. There is essentially only one known approach to proving lower bounds on improper learning. It was initiated in (Kearns and Valiant 89) and relies on cryptographic assumptions. We introduce a new technique for proving hardness of improper learning, based on reductions from problems that are hard on average. We put forward a (fairly strong) generalization of Feige's assumption (Feige 02) about the complexity of refuting random constraint satisfaction problems. Combining this assumption with our new technique yields far reaching implications. In particular, 1. Learning DNF\mathrm{DNF}'s is hard. 2. Agnostically learning halfspaces with a constant approximation ratio is hard. 3. Learning an intersection of ω(1)\omega(1) halfspaces is hard.Comment: 34 page
    corecore