6,229 research outputs found

    The Non-Uniform k-Center Problem

    Get PDF
    In this paper, we introduce and study the Non-Uniform k-Center problem (NUkC). Given a finite metric space (X,d)(X,d) and a collection of balls of radii {r1rk}\{r_1\geq \cdots \ge r_k\}, the NUkC problem is to find a placement of their centers on the metric space and find the minimum dilation α\alpha, such that the union of balls of radius αri\alpha\cdot r_i around the iith center covers all the points in XX. This problem naturally arises as a min-max vehicle routing problem with fleets of different speeds. The NUkC problem generalizes the classic kk-center problem when all the kk radii are the same (which can be assumed to be 11 after scaling). It also generalizes the kk-center with outliers (kCwO) problem when there are kk balls of radius 11 and \ell balls of radius 00. There are 22-approximation and 33-approximation algorithms known for these problems respectively; the former is best possible unless P=NP and the latter remains unimproved for 15 years. We first observe that no O(1)O(1)-approximation is to the optimal dilation is possible unless P=NP, implying that the NUkC problem is more non-trivial than the above two problems. Our main algorithmic result is an (O(1),O(1))(O(1),O(1))-bi-criteria approximation result: we give an O(1)O(1)-approximation to the optimal dilation, however, we may open Θ(1)\Theta(1) centers of each radii. Our techniques also allow us to prove a simple (uni-criteria), optimal 22-approximation to the kCwO problem improving upon the long-standing 33-factor. Our main technical contribution is a connection between the NUkC problem and the so-called firefighter problems on trees which have been studied recently in the TCS community.Comment: Adjusted the figur

    Asymptotically Optimal Approximation Algorithms for Coflow Scheduling

    Full text link
    Many modern datacenter applications involve large-scale computations composed of multiple data flows that need to be completed over a shared set of distributed resources. Such a computation completes when all of its flows complete. A useful abstraction for modeling such scenarios is a {\em coflow}, which is a collection of flows (e.g., tasks, packets, data transmissions) that all share the same performance goal. In this paper, we present the first approximation algorithms for scheduling coflows over general network topologies with the objective of minimizing total weighted completion time. We consider two different models for coflows based on the nature of individual flows: circuits, and packets. We design constant-factor polynomial-time approximation algorithms for scheduling packet-based coflows with or without given flow paths, and circuit-based coflows with given flow paths. Furthermore, we give an O(logn/loglogn)O(\log n/\log \log n)-approximation polynomial time algorithm for scheduling circuit-based coflows where flow paths are not given (here nn is the number of network edges). We obtain our results by developing a general framework for coflow schedules, based on interval-indexed linear programs, which may extend to other coflow models and objective functions and may also yield improved approximation bounds for specific network scenarios. We also present an experimental evaluation of our approach for circuit-based coflows that show a performance improvement of at least 22% on average over competing heuristics.Comment: Fixed minor typo

    Sparse geometric graphs with small dilation

    Get PDF
    Given a set S of n points in R^D, and an integer k such that 0 <= k < n, we show that a geometric graph with vertex set S, at most n - 1 + k edges, maximum degree five, and dilation O(n / (k+1)) can be computed in time O(n log n). For any k, we also construct planar n-point sets for which any geometric graph with n-1+k edges has dilation Omega(n/(k+1)); a slightly weaker statement holds if the points of S are required to be in convex position

    Improved Distributed Algorithms for Exact Shortest Paths

    Full text link
    Computing shortest paths is one of the central problems in the theory of distributed computing. For the last few years, substantial progress has been made on the approximate single source shortest paths problem, culminating in an algorithm of Becker et al. [DISC'17] which deterministically computes (1+o(1))(1+o(1))-approximate shortest paths in O~(D+n)\tilde O(D+\sqrt n) time, where DD is the hop-diameter of the graph. Up to logarithmic factors, this time complexity is optimal, matching the lower bound of Elkin [STOC'04]. The question of exact shortest paths however saw no algorithmic progress for decades, until the recent breakthrough of Elkin [STOC'17], which established a sublinear-time algorithm for exact single source shortest paths on undirected graphs. Shortly after, Huang et al. [FOCS'17] provided improved algorithms for exact all pairs shortest paths problem on directed graphs. In this paper, we present a new single-source shortest path algorithm with complexity O~(n3/4D1/4)\tilde O(n^{3/4}D^{1/4}). For polylogarithmic DD, this improves on Elkin's O~(n5/6)\tilde{O}(n^{5/6}) bound and gets closer to the Ω~(n1/2)\tilde{\Omega}(n^{1/2}) lower bound of Elkin [STOC'04]. For larger values of DD, we present an improved variant of our algorithm which achieves complexity O~(n3/4+o(1)+min{n3/4D1/6,n6/7}+D)\tilde{O}\left( n^{3/4+o(1)}+ \min\{ n^{3/4}D^{1/6},n^{6/7}\}+D\right), and thus compares favorably with Elkin's bound of O~(n5/6+n2/3D1/3+D)\tilde{O}(n^{5/6} + n^{2/3}D^{1/3} + D ) in essentially the entire range of parameters. This algorithm provides also a qualitative improvement, because it works for the more challenging case of directed graphs (i.e., graphs where the two directions of an edge can have different weights), constituting the first sublinear-time algorithm for directed graphs. Our algorithm also extends to the case of exact κ\kappa-source shortest paths...Comment: 26 page

    Analysis of Farthest Point Sampling for Approximating Geodesics in a Graph

    Get PDF
    A standard way to approximate the distance between any two vertices pp and qq on a mesh is to compute, in the associated graph, a shortest path from pp to qq that goes through one of kk sources, which are well-chosen vertices. Precomputing the distance between each of the kk sources to all vertices of the graph yields an efficient computation of approximate distances between any two vertices. One standard method for choosing kk sources, which has been used extensively and successfully for isometry-invariant surface processing, is the so-called Farthest Point Sampling (FPS), which starts with a random vertex as the first source, and iteratively selects the farthest vertex from the already selected sources. In this paper, we analyze the stretch factor FFPS\mathcal{F}_{FPS} of approximate geodesics computed using FPS, which is the maximum, over all pairs of distinct vertices, of their approximated distance over their geodesic distance in the graph. We show that FFPS\mathcal{F}_{FPS} can be bounded in terms of the minimal value F\mathcal{F}^* of the stretch factor obtained using an optimal placement of kk sources as FFPS2re2F+2re2+8re+1\mathcal{F}_{FPS}\leq 2 r_e^2 \mathcal{F}^*+ 2 r_e^2 + 8 r_e + 1, where rer_e is the ratio of the lengths of the longest and the shortest edges of the graph. This provides some evidence explaining why farthest point sampling has been used successfully for isometry-invariant shape processing. Furthermore, we show that it is NP-complete to find kk sources that minimize the stretch factor.Comment: 13 pages, 4 figure

    Low-Congestion Shortcut and Graph Parameters

    Get PDF
    Distributed graph algorithms in the standard CONGEST model often exhibit the time-complexity lower bound of Omega~(sqrt{n} + D) rounds for many global problems, where n is the number of nodes and D is the diameter of the input graph. Since such a lower bound is derived from special "hard-core" instances, it does not necessarily apply to specific popular graph classes such as planar graphs. The concept of low-congestion shortcuts is initiated by Ghaffari and Haeupler [SODA2016] for addressing the design of CONGEST algorithms running fast in restricted network topologies. Specifically, given a specific graph class X, an f-round algorithm of constructing shortcuts of quality q for any instance in X results in O~(q + f)-round algorithms of solving several fundamental graph problems such as minimum spanning tree and minimum cut, for X. The main interest on this line is to identify the graph classes allowing the shortcuts which are efficient in the sense of breaking O~(sqrt{n}+D)-round general lower bounds. In this paper, we consider the relationship between the quality of low-congestion shortcuts and three major graph parameters, chordality, diameter, and clique-width. The main contribution of the paper is threefold: (1) We show an O(1)-round algorithm which constructs a low-congestion shortcut with quality O(kD) for any k-chordal graph, and prove that the quality and running time of this construction is nearly optimal up to polylogarithmic factors. (2) We present two algorithms, each of which constructs a low-congestion shortcut with quality O~(n^{1/4}) in O~(n^{1/4}) rounds for graphs of D=3, and that with quality O~(n^{1/3}) in O~(n^{1/3}) rounds for graphs of D=4 respectively. These results obviously deduce two MST algorithms running in O~(n^{1/4}) and O~(n^{1/3}) rounds for D=3 and 4 respectively, which almost close the long-standing complexity gap of the MST construction in small-diameter graphs originally posed by Lotker et al. [Distributed Computing 2006]. (3) We show that bounding clique-width does not help the construction of good shortcuts by presenting a network topology of clique-width six where the construction of MST is as expensive as the general case
    corecore