44 research outputs found

    Coded Caching for Delay-Sensitive Content

    Full text link
    Coded caching is a recently proposed technique that achieves significant performance gains for cache networks compared to uncoded caching schemes. However, this substantial coding gain is attained at the cost of large delivery delay, which is not tolerable in delay-sensitive applications such as video streaming. In this paper, we identify and investigate the tradeoff between the performance gain of coded caching and the delivery delay. We propose a computationally efficient caching algorithm that provides the gains of coding and respects delay constraints. The proposed algorithm achieves the optimum performance for large delay, but still offers major gains for small delay. These gains are demonstrated in a practical setting with a video-streaming prototype.Comment: 9 page

    Cost-aware caching: optimizing cache provisioning and object placement in ICN

    Full text link
    Caching is frequently used by Internet Service Providers as a viable technique to reduce the latency perceived by end users, while jointly offloading network traffic. While the cache hit-ratio is generally considered in the literature as the dominant performance metric for such type of systems, in this paper we argue that a critical missing piece has so far been neglected. Adopting a radically different perspective, in this paper we explicitly account for the cost of content retrieval, i.e. the cost associated to the external bandwidth needed by an ISP to retrieve the contents requested by its customers. Interestingly, we discover that classical cache provisioning techniques that maximize cache efficiency (i.e., the hit-ratio), lead to suboptimal solutions with higher overall cost. To show this mismatch, we propose two optimization models that either minimize the overall costs or maximize the hit-ratio, jointly providing cache sizing, object placement and path selection. We formulate a polynomial-time greedy algorithm to solve the two problems and analytically prove its optimality. We provide numerical results and show that significant cost savings are attainable via a cost-aware design

    Joint Service Placement and Request Routing in Multi-cell Mobile Edge Computing Networks

    Full text link
    The proliferation of innovative mobile services such as augmented reality, networked gaming, and autonomous driving has spurred a growing need for low-latency access to computing resources that cannot be met solely by existing centralized cloud systems. Mobile Edge Computing (MEC) is expected to be an effective solution to meet the demand for low-latency services by enabling the execution of computing tasks at the network-periphery, in proximity to end-users. While a number of recent studies have addressed the problem of determining the execution of service tasks and the routing of user requests to corresponding edge servers, the focus has primarily been on the efficient utilization of computing resources, neglecting the fact that non-trivial amounts of data need to be stored to enable service execution, and that many emerging services exhibit asymmetric bandwidth requirements. To fill this gap, we study the joint optimization of service placement and request routing in MEC-enabled multi-cell networks with multidimensional (storage-computation-communication) constraints. We show that this problem generalizes several problems in literature and propose an algorithm that achieves close-to-optimal performance using randomized rounding. Evaluation results demonstrate that our approach can effectively utilize the available resources to maximize the number of requests served by low-latency edge cloud servers.Comment: IEEE Infocom 201

    Proactive multi-tenant cache management for virtualized ISP networks

    Get PDF
    The content delivery market has mainly been dominated by large Content Delivery Networks (CDNs) such as Akamai and Limelight. However, CDN traffic exerts a lot of pressure on Internet Service Provider (ISP) networks. Recently, ISPs have begun deploying so-called Telco CDNs, which have many advantages, such as reduced ISP network bandwidth utilization and improved Quality of Service (QoS) by bringing content closer to the end-user. Virtualization of storage and networking resources can enable the ISP to simultaneously lease its Telco CDN infrastructure to multiple third parties, opening up new business models and revenue streams. In this paper, we propose a proactive cache management system for ISP-operated multi-tenant Telco CDNs. The associated algorithm optimizes content placement and server selection across tenants and users, based on predicted content popularity and the geographical distribution of requests. Based on a Video-on-Demand (VoD) request trace of a leading European telecom operator, the presented algorithm is shown to reduce bandwidth usage by 17% compared to the traditional Least Recently Used (LRU) caching strategy, both inside the network and on the ingress links, while at the same time offering enhanced load balancing capabilities. Increasing the prediction accuracy is shown to have the potential to further improve bandwidth efficiency by up to 79%

    Fundamental Limits of Caching

    Full text link
    Caching is a technique to reduce peak traffic rates by prefetching popular content into memories at the end users. Conventionally, these memories are used to deliver requested content in part from a locally cached copy rather than through the network. The gain offered by this approach, which we term local caching gain, depends on the local cache size (i.e, the memory available at each individual user). In this paper, we introduce and exploit a second, global, caching gain not utilized by conventional caching schemes. This gain depends on the aggregate global cache size (i.e., the cumulative memory available at all users), even though there is no cooperation among the users. To evaluate and isolate these two gains, we introduce an information-theoretic formulation of the caching problem focusing on its basic structure. For this setting, we propose a novel coded caching scheme that exploits both local and global caching gains, leading to a multiplicative improvement in the peak rate compared to previously known schemes. In particular, the improvement can be on the order of the number of users in the network. Moreover, we argue that the performance of the proposed scheme is within a constant factor of the information-theoretic optimum for all values of the problem parameters.Comment: To appear in IEEE Transactions on Information Theor

    Efficient Proactive Caching for Supporting Seamless Mobility

    Full text link
    We present a distributed proactive caching approach that exploits user mobility information to decide where to proactively cache data to support seamless mobility, while efficiently utilizing cache storage using a congestion pricing scheme. The proposed approach is applicable to the case where objects have different sizes and to a two-level cache hierarchy, for both of which the proactive caching problem is hard. Additionally, our modeling framework considers the case where the delay is independent of the requested data object size and the case where the delay is a function of the object size. Our evaluation results show how various system parameters influence the delay gains of the proposed approach, which achieves robust and good performance relative to an oracle and an optimal scheme for a flat cache structure.Comment: 10 pages, 9 figure

    Decentralized Coded Caching Attains Order-Optimal Memory-Rate Tradeoff

    Full text link
    Replicating or caching popular content in memories distributed across the network is a technique to reduce peak network loads. Conventionally, the main performance gain of this caching was thought to result from making part of the requested data available closer to end users. Instead, we recently showed that a much more significant gain can be achieved by using caches to create coded-multicasting opportunities, even for users with different demands, through coding across data streams. These coded-multicasting opportunities are enabled by careful content overlap at the various caches in the network, created by a central coordinating server. In many scenarios, such a central coordinating server may not be available, raising the question if this multicasting gain can still be achieved in a more decentralized setting. In this paper, we propose an efficient caching scheme, in which the content placement is performed in a decentralized manner. In other words, no coordination is required for the content placement. Despite this lack of coordination, the proposed scheme is nevertheless able to create coded-multicasting opportunities and achieves a rate close to the optimal centralized scheme.Comment: To appear in IEEE/ACM Transactions on Networkin
    corecore