4 research outputs found

    A Low Cost Two-Tier Architecture Model For High Availability Clusters Application Load Balancing

    Full text link
    This article proposes a design and implementation of a low cost two-tier architecture model for high availability cluster combined with load-balancing and shared storage technology to achieve desired scale of three-tier architecture for application load balancing e.g. web servers. The research work proposes a design that physically omits Network File System (NFS) server nodes and implements NFS server functionalities within the cluster nodes, through Red Hat Cluster Suite (RHCS) with High Availability (HA) proxy load balancing technologies. In order to achieve a low-cost implementation in terms of investment in hardware and computing solutions, the proposed architecture will be beneficial. This system intends to provide steady service despite any system components fails due to uncertainly such as network system, storage and applications.Comment: Load balancing, high availability cluster, web server cluster

    MBA: A market-based approach to data allocation and migration for cloud database

    Full text link
    With the coming shift to cloud computing, cloud database is emerging to provide database service over the Internet. In the cloud-based environment, data are distributed at internet scale and the system needs to handle a huge number of user queries simultaneously without delay. How data are distributed among the servers has a crucial impact on the query load distribution and the system response time. In this paper, we propose a market-based control method, called MBA, to achieve query load balance via reasonable data distribution. In MBA, database nodes are treated as traders in a market, and certain market rules are used to intelligently decide data allocation and migration. We built a prototype system and conducted extensive experiments. Experimental results show that the MBA method signicantly improves system performance in terms of average query response time and fairness

    MBA: A market-based approach to data allocation and dynamic migration for cloud database

    Get PDF
    With the coming shift to cloud computing, cloud database is emerging to provide database service over the Internet. In the cloud-based environment, data are distributed at Internet scale and the system needs to handle a huge number of user queries simultaneously without delay. How data are distributed among the servers has a crucial impact on the query load distribution and the system response time. In this paper, we propose a market-based control method, called MBA, to achieve query load balance via reasonable data distribution. In MBA, database nodes are treated as traders in a market, and certain market rules are used to intelligently decide data allocation and migration. We built a prototype system and conducted extensive experiments. Experimental results show that the MBA method signicantly improves system performance in terms of average query response time and fairness

    Resource-constraint And Scalable Data Distribution Management For High Level Architecture

    Get PDF
    In this dissertation, we present an efficient algorithm, called P-Pruning algorithm, for data distribution management problem in High Level Architecture. High Level Architecture (HLA) presents a framework for modeling and simulation within the Department of Defense (DoD) and forms the basis of IEEE 1516 standard. The goal of this architecture is to interoperate multiple simulations and facilitate the reuse of simulation components. Data Distribution Management (DDM) is one of the six components in HLA that is responsible for limiting and controlling the data exchanged in a simulation and reducing the processing requirements of federates. DDM is also an important problem in the parallel and distributed computing domain, especially in large-scale distributed modeling and simulation applications, where control on data exchange among the simulated entities is required. We present a performance-evaluation simulation study of the P-Pruning algorithm against three techniques: region-matching, fixed-grid, and dynamic-grid DDM algorithms. The P-Pruning algorithm is faster than region-matching, fixed-grid, and dynamic-grid DDM algorithms as it avoid the quadratic computation step involved in other algorithms. The simulation results show that the P-Pruning DDM algorithm uses memory at run-time more efficiently and requires less number of multicast groups as compared to the three algorithms. To increase the scalability of P-Pruning algorithm, we develop a resource-efficient enhancement for the P-Pruning algorithm. We also present a performance evaluation study of this resource-efficient algorithm in a memory-constraint environment. The Memory-Constraint P-Pruning algorithm deploys I/O efficient data-structures for optimized memory access at run-time. The simulation results show that the Memory-Constraint P-Pruning DDM algorithm is faster than the P-Pruning algorithm and utilizes memory at run-time more efficiently. It is suitable for high performance distributed simulation applications as it improves the scalability of the P-Pruning algorithm by several order in terms of number of federates. We analyze the computation complexity of the P-Pruning algorithm using average-case analysis. We have also extended the P-Pruning algorithm to three-dimensional routing space. In addition, we present the P-Pruning algorithm for dynamic conditions where the distribution of federated is changing at run-time. The dynamic P-Pruning algorithm investigates the changes among federates regions and rebuilds all the affected multicast groups. We have also integrated the P-Pruning algorithm with FDK, an implementation of the HLA architecture. The integration involves the design and implementation of the communicator module for mapping federate interest regions. We provide a modular overview of P-Pruning algorithm components and describe the functional flow for creating multicast groups during simulation. We investigate the deficiencies in DDM implementation under FDK and suggest an approach to overcome them using P-Pruning algorithm. We have enhanced FDK from its existing HLA 1.3 specification by using IEEE 1516 standard for DDM implementation. We provide the system setup instructions and communication routines for running the integrated on a network of machines. We also describe implementation details involved in integration of P-Pruning algorithm with FDK and provide results of our experiences
    corecore