
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2007

Resource-constraint And Scalable Data Distribution Management Resource-constraint And Scalable Data Distribution Management

For High Level Architecture For High Level Architecture

Pankaj Gupta
University of Central Florida

 Part of the Computer Sciences Commons, and the Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Gupta, Pankaj, "Resource-constraint And Scalable Data Distribution Management For High Level
Architecture" (2007). Electronic Theses and Dissertations, 2004-2019. 3187.
https://stars.library.ucf.edu/etd/3187

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Central Florida (UCF): STARS (Showcase of Text, Archives, Research &...

https://core.ac.uk/display/236257385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F3187&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=stars.library.ucf.edu%2Fetd%2F3187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/3187?utm_source=stars.library.ucf.edu%2Fetd%2F3187&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

RESOURCE-CONSTRAINT AND SCALABLE DATA DISTRIBUTION MANAGEMENT

FOR HIGH LEVEL ARCHITECTURE

by

PANKAJ GUPTA

B.S. Govt. College of Engineering, Pune, University of Pune, India, 1997
M.S. University of Central Florida, Orlando, USA, 2006

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2007

Major Professor: Ratan K. Guha

 ii

© 2007 Pankaj Gupta

 iii

ABSTRACT

In this dissertation, we present an efficient algorithm, called P-Pruning algorithm,

for data distribution management problem in High Level Architecture. High Level

Architecture (HLA) presents a framework for modeling and simulation within the

Department of Defense (DoD) and forms the basis of IEEE 1516 standard. The goal of

this architecture is to interoperate multiple simulations and facilitate the reuse of

simulation components. Data Distribution Management (DDM) is one of the six

components in HLA that is responsible for limiting and controlling the data exchanged in

a simulation and reducing the processing requirements of federates. DDM is also an

important problem in the parallel and distributed computing domain, especially in large-

scale distributed modeling and simulation applications, where control on data exchange

among the simulated entities is required.

We present a performance-evaluation simulation study of the P-Pruning

algorithm against three techniques: region-matching, fixed-grid, and dynamic-grid DDM

algorithms. The P-Pruning algorithm is faster than region-matching, fixed-grid, and

dynamic-grid DDM algorithms as it avoid the quadratic computation step involved in

other algorithms. The simulation results show that the P-Pruning DDM algorithm uses

memory at run-time more efficiently and requires less number of multicast groups as

compared to the three algorithms. To increase the scalability of P-Pruning algorithm, we

develop a resource-efficient enhancement for the P-Pruning algorithm. We also present a

performance evaluation study of this resource-efficient algorithm in a memory-constraint

environment. The Memory-Constraint P-Pruning algorithm deploys I/O efficient data-

 iv

structures for optimized memory access at run-time. The simulation results show that the

Memory-Constraint P-Pruning DDM algorithm is faster than the P-Pruning algorithm

and utilizes memory at run-time more efficiently. It is suitable for high performance

distributed simulation applications as it improves the scalability of the P-Pruning

algorithm by several order in terms of number of federates. We analyze the computation

complexity of the P-Pruning algorithm using average-case analysis. We have also

extended the P-Pruning algorithm to three-dimensional routing space. In addition, we

present the P-Pruning algorithm for dynamic conditions where the distribution of

federated is changing at run-time. The dynamic P-Pruning algorithm investigates the

changes among federates regions and rebuilds all the affected multicast groups.

We have also integrated the P-Pruning algorithm with FDK, an implementation of

the HLA architecture. The integration involves the design and implementation of the

communicator module for mapping federate interest regions. We provide a modular

overview of P-Pruning algorithm components and describe the functional flow for

creating multicast groups during simulation. We investigate the deficiencies in DDM

implementation under FDK and suggest an approach to overcome them using P-Pruning

algorithm. We have enhanced FDK from its existing HLA 1.3 specification by using

IEEE 1516 standard for DDM implementation. We provide the system setup instructions

and communication routines for running the integrated on a network of machines. We

also describe implementation details involved in integration of P-Pruning algorithm with

FDK and provide results of our experiences.

 v

To

my parents,

my grandparents,

Sequeira family,

my teachers,

and

guruji.

Manaojavam Maarutatulyavegam
Jitendriyam buddhimataam varishtham

Vaataatmajam Vaanarayayoothamukhyam
Sri Ramadootam Saranam prapadye

 vi

ACKNOWLEDGMENTS

First and foremost, I would like to express my most sincere gratitude to my advisor

Dr. Ratan Guha for his continuous guidance and encouragement throughout my Ph.D. I

would probably have not successfully completed Ph.D. without his unwavering support

and kindness. I would also like to thank members of my research committee - Dr.

Mostafa Bassiouni, Dr. Sheau-Dong Lang, and Dr. Michael Proctor for their assistance

and guidance in completing this work.

I am grateful to all the people in Computer Science Department for helping me

during my time here: Denise Tjon Ket Tjong, Jenny Shen, Linda Lockey, Rob Traub, and

Heather Oakes. I would like to acknowledge the help of Parallel and Distributed

Computing group at Georgia Institute of Technology for providing me the source code of

FDK software. I would also like to acknowledge the financial support from Dr. Guha,

UCF School of Electrical Engineering and Computer Science, Dr. Narsingh Deo, Dr.

Guru Prasad, Aximetric Inc., Dr. Ivan Garibay, and UCF Office of Research &

Commercialization during my doctoral program. I am also grateful to Dr. Katherine

Morse, Dr. Mikel Petty, and Dr. Bernard Zeigler for providing helpful research

directions.

I would like to thank my friends in Orlando whom I was lucky to meet and share my

experiences: Olcay Kursun, Yayati Kasralikar, Shahabuddin Muhammad, Sudipta

Rakshit, Kiran Anna, Abhishek Karnik, and many more. I thank you all for your

companionship, best wishes, and support.

 vii

Last, and certainly the most, I thank my parents and grandparents for their patience,

love, and encouragement. I attribute all my success to their blessings and prayers. I am

forever indebted to the Sequeira family in Mumbai, India who provided the educational

foundation that enabled me to come so far. I was very lucky to meet and share

experiences in Orlando through company of great people like Guruji Jerrybandan, Uncle

Nishan Mahabir, and all members of Om-Tat-Sat family. Finally, I owe this thesis to the

unconditional love, encouragement and support of my wife, Kamini. This long, roller-

coaster journey would not have ended successfully without her steadfast company.

I acknowledge the support of the Army Research Office under grants DAAD19-01-

1-0502, and the National Science Foundation under the Grant EIA 0086251. The views

and conclusions herein are those of the author and do not represent the official policies of

the funding agencies.

 viii

TABLE OF CONTENTS

LIST OF FIGURES .. xii

LIST OF TABLES.. xv

LIST OF SYMBOLS & ACRONYMS .. xvii

CHAPTER ONE: INTRODUCTION... 1

1.1 Motivation and Goals.. 2

1.2 Dissertation Organization ... 3

1.3 Research Contributions... 4

CHAPTER TWO: BACKGROUND AND RELATED WORK.. 5

2.1 HLA Architecture ... 5

2.1.1 RTI .. 8

2.1.2 Time Management .. 9

2.1.3 HLA Implementations .. 10

2.2 IEEE 1516 vs. RTI 1.3.. 16

2.3 Concept of Routing Space .. 17

2.4 Related Work .. 20

CHAPTER THREE: OVERVIEW OF DDM ALGORITHMS 23

3.1 Region-Matching Algorithm... 23

3.2 Fixed-Grid DDM .. 25

3.3 Dynamic-Grid DDM... 28

CHAPTER FOUR: THE P-PRUNING ALGORITHM FOR DDM 31

 ix

4.1 The P-Pruning Algorithm: An Overview.. 31

4.2 The P-Pruning Algorithm ... 33

4.2.1 List Computation Sub-Procedure.. 33

4.2.2 MCG Population Sub-Procedure .. 35

4.2.3 MCG Pruning Sub-Procedure ... 39

4.3 Illustration of the P-Pruning Algorithm.. 41

4.4 Algorithm Analysis... 47

4.5 Average-Case Computation Complexity Analysis of P-Pruning DDM

Algorithm.. 48

4.5.1 Analysis for Overlap Cases... 50

4.5.2 Federate Distribution Analysis ... 59

4.6 Size of Multicast Group Analysis ... 61

4.7 Extending the P-Pruning DDM to multidimensional routing space 62

4.8 Dynamic P-Pruning Algorithm... 63

4.8.1 Federate Join and Resign Procedure at Run-Time.................................... 64

CHAPTER FIVE: PERFORMANCE EVALUATION OF DDM ALGORITHMS 66

5.1 Implementation Details... 66

5.2 Simulation Results Analysis ... 72

CHAPTER SIX: RESOURCE CONSTRAINT MANAGEMENT IN DISTRIBUTED

SIMULATION.. 74

6.1 Memory as a Resource.. 74

6.2 I/O Efficient Resource-Constraint Strategy for DDM...................................... 75

6.2.1 Resource-Constraint Issues in DDM Implementation 75

 x

6.2.2 A Memory-Efficient Strategy for Data Distribution Management........... 76

6.3 Performance Evaluation of Resource-Constraint P-Pruning Algorithm........... 77

6.4 Simulation Implementation and Analysis... 78

6.5 Summary of Memory-Efficient Approach.. 81

CHAPTER SEVEN: INTEGRATION OF THE P-PRUNING DDM ALGORITHM IN

FDK... 82

7.1 An Overview of FDK Architecture... 82

7.1.1 HLA Functional Components Implemented in FDK................................ 86

7.2 Implementation of DDM Services in FDK... 89

7.3 DDM Functions in FDK ... 91

7.4 Issues with DDM Implementation in FDK... 93

7.5 Integration with HLA Architecture in FDK.. 93

7.6 Design and Development of the Communicator Module 97

7.6.1 Simulation Results of P-Pruning Algorithm Integrated in FDK............... 99

7.7 Distributed FDK Implementation ... 102

7.8 Summary ... 103

CHAPTER EIGHT: DIRECTIONS FOR FURTHER RESEARCH.............................. 104

8.1 Scalable DDM approach in Distributed Environment 104

8.2 Using Real-World DDM Applications for Test.. 107

CHAPTER NINE: CONCLUSIONS.. 111

APPENDIX A: LIST OF RTI SOFTWARE .. 112

APPENDIX B: RESULTS OF SIMULATION EXPERIMENTS 115

APPENDIX C: FDK P-PRUNING INTEGRATION OUTPUT.................................... 121

 xi

APPENDIX D: LIST OF PUBLICATIONS .. 127

LIST OF REFERENCES.. 130

 xii

LIST OF FIGURES

Figure 1. Components in HLA RTI .. 6

Figure 2. Two-dimensional routing space with subscriber regions: S1 and S2, and a

publisher region P ... 17

Figure 3. Concept of region overlap in two-dimensional routing space........................... 19

Figure 4. Illustration of publisher and subscriber region in an airplane squadron 20

Figure 5. Routing space layout for illustration of P-Pruning DDM algorithm................. 42

Figure 6. Routing space layout for a single publisher region P.. 49

Figure 7. Region overlap analysis for case (a).. 51

Figure 8. Region overlap analysis for case (b) ... 52

Figure 9. Region overlap analysis for case (c).. 54

Figure 10. Region overlap analysis for case (d) ... 56

Figure 11. Performance evaluation of P-Pruning algorithm for routing space 50 x50 and

grid size 2 x 2.. 66

Figure 12. Performance evaluation of P-Pruning algorithm for routing space 50 x50 and

grid size 5 x 5.. 67

Figure 13. Performance evaluation of the P-Pruning algorithm for routing space 100 x

100 and grid size 5 x 5 .. 68

Figure 14. Comparison of memory usage by DDM algorithms for routing space 50 x 50

and grid size 2 x 2 ... 69

Figure 15. Comparison of memory usage by DDM algorithms for routing space 50 x 50

and grid size 5 x 5 ... 70

 xiii

Figure 16. Comparison of memory usage by DDM algorithm for routing Space 100 x 100

and grid size 5 x 5 ... 70

Figure 17. Comparison of multicast group size in DDM algorithms for routing space 50 x

50 and grid size 2 x 2 .. 71

Figure 18. Comparison of multicast group size in DDM algorithms for routing space 50 x

50 and grid size 5 x 5 .. 71

Figure 19. Comparison of multicast group size in DDM algorithms for routing space 100

x100 and grid size 5 x 5 .. 72

Figure 20. Representation of memory-efficient data structure ... 77

Figure 21. Class structure to represent the disjoint set of forest....................................... 78

Figure 22. Comparison of memory utilization by the Memory-Constraint and P-Pruning

DDM algorithms ... 79

Figure 23. Comparison of computation time for routing space from 100 x 100 to 4000 x

4000... 79

Figure 24. Memory utilization for distributed simulation with 20,000 federates............. 80

Figure 25. Architectural Overview of FDK.. 83

Figure 26. FDK Architecture (source: FDK user Manual) ... 84

Figure 27. A modular overview of P-Pruning algorithm.. 94

Figure 28. Architectural layout for integration of P-Pruning DDM algorithm with FDK 94

Figure 29. Integrated architecture of FDK with P-Pruning algorithm.............................. 99

Figure 30. Cluster computer architecture.. 104

Figure 31. 48-node dual-processor Ariel Solaris cluster at UCF.................................... 105

Figure 32. Layout of a distributed computing application sharing data resources 106

 xiv

Figure 33. Application having ground-based radars tracking tank with limited range .. 108

Figure 34. Application having JSTARS flying and tracking tanks with limited range .. 109

Figure 35. Application having AWACS flying and tracking airborne aircrafts 110

 xv

LIST OF TABLES

Table 1. Status of ListX array after List Computation step. Each entry has (region

counter, federate ID) pair. ... 44

Table 2. Classification of real-world scenarios based on subscriber region update 110

Table 3. List of commercial RTI software and their details ... 113

Table 4. List of academic RTI software.. 114

Table 5. Computation time results (in Seconds) for routing space 50 x 50 and grid size 2

x 2.. 116

Table 6. Computation time results (in Seconds) for routing space 50 x 50 and grid size 5

x 5.. 116

Table 7. Computation time results (in Seconds) for routing space 100 x 100 and grid size

5 x 5... 116

Table 8. Memory usage (in MB) results for routing space 50 x 50 and grid size 2 x 2.. 117

Table 9. Memory usage (in MB) results for routing space 50 x 50 and grid size 5 x 5.. 117

Table 10. Memory usage (in MB) results for routing space 100 x 100 and grid size 5 x 5

... 117

Table 11. Multicast group size results for routing space 50 x 50 and grid size 2 x 2..... 118

Table 12. Multicast group size results for routing space 50 x 50 and grid size 5 x 5..... 118

Table 13. Multicast group size results for routing space 100 x 100 and grid size 5 x 5. 118

Table 14. Memory-constraint P-Pruning algorithm scalability result for routing space

20000 x 20000... 119

 xvi

Table 15. Comparison of computation time between Memory-Constraint and normal P-

Pruning routing space 4000 x 4000 .. 119

Table 16. Comparison of memory usage at run-time by Memory-Constraint and normal

P-Pruning routing space 4000 x 4000... 120

 xvii

LIST OF SYMBOLS & ACRONYMS

a Dimension of each grid cell

P Set of publisher regions

S Set of subscriber regions

F Set of Federates

G Set of Grid Cells

n Number of Federates

R Length of Routing Space on X-axis

Fed_ID Identifier for each federate

ListX Array for storing information on publisher and subscriber

regions

List_ID Identifier for each element of ListX

E(x) Expected value of x

Pr(x) Probability of variable x

AWACS Airborne Warning and Control System

DDM Data Distribution Management

DIS Distributed Interactive Simulation

DMMC Dual Mode Multicast

DMSO Defense Modeling and Simulation Office

FDK Federated Simulation Development Kit

HLA High Level Architecture

JSTAR Joint Surveillance Target Attack Radar System

MCG Multicast Group

RTI Runtime Infrastructure

STOW Synthetic Theater of War

SRTP Selectively Reliable Transmission Protocol

SPEEDES Synchronous Parallel Emulation Environment for Discrete

Event Simulation

 1

CHAPTER ONE: INTRODUCTION

Distributed Simulation is a cost-effective technique for system studies in research,

modeling, and training. The High Level Architecture (HLA) presents a framework for

modeling and simulation within the Department of Defense (DoD). The goal of this

architecture is to interoperate multiple simulations and facilitate the reuse of simulation

components. HLA allows interconnection of simulations, devices, and human operators

in a common federation. It builds on composability, letting designer construct simulations

from pre-built components. Each computer-based simulation system is called a federate

and the group of interoperating systems is called a federation. HLA specifications—

incorporated as IEEE 1516 standard—were developed to provide reusability and

interoperability.

The HLA Run-Time Infrastructure (RTI) provides a set of services used to

interconnect simulation during a federation execution. These RTI services are grouped

into the six categories: federation management, declaration management, object

management, ownership management, time management, and data distribution

management. RTI provides a degree of portability (across computing platforms, operating

systems, and communication systems) and simulation interoperability. RTI is also

responsible for information exchange during the execution. It allows federates to join and

resign, declare their intent to publish information, send information about objects,

attributes and interaction, and synchronize time.

A distributed simulation consists of a collection of autonomous simulators, or

federates, that are interconnected using RTI software. RTI implements relevant services

 2

required by the federated simulation environment. The most important services for the

purposes of this discussion fall into two basic categories: Time Management and Data

Distribution. The time management services ensure that the simulation time in each of

the simulator instances stays synchronized with the others, and the data distribution

services allow for the transitioning of event messages from one simulator to another.

Data Distribution Management (DDM) services extend Declaration management

services using routing space and regions in HLA. In distributed simulation environment,

every action takes place on a simulator that may affect or may be of interest to another

simulator, requires a message. In a large-scale distributed simulation, such as those

encountered in defense applications, simulating many objects that are of interest to other

objects can result in increased communication across a network, on the scale of O(n2).

Data Distribution Management is responsible for limiting and controlling the data

exchanged in a simulation. It also aims at reducing the processing requirements of

simulation hosts, or federates, by communicating updates regarding interactions and state

information only to federates that require them.

1.1 Motivation and Goals
DDM is important not only as a crucial service in HLA/RTI, but also as an important

problem in the parallel and distributed simulation domain. For a sequential simulation, all

the simulated entities can exist on single machine and can have direct access to state

information and events. However, for a distributed simulation environment, especially in

large-scale simulation such as those in defense applications, control on data exchange

among the simulated entities is required.

 3

Data distribution techniques are also important in diverse computing applications

such as Web server infrastructure [20], load-balancing schemes [21], Web services [22]

and parallel computing ([23], [24], [25], [27], [26], [28], [29], [30]). The general nature

of the problem in these domains is similar to those encountered in distributed simulation.

Hence, advances in DDM research are applicable to wide areas of computing and

simulation.

1.2 Dissertation Organization
The rest of the dissertation is organized as follows. Chapter 2 provides a background on

the importance of data distribution techniques, concepts of routing space, and a review of

related work in DDM research. Chapter 3 provides an algorithmic overview of current

DDM algorithms. The P-Pruning algorithm for DDM matching problem with its three

sub-procedures and an illustration is presented in Chapter 4. We also analyze the

computational complexity of P-Pruning algorithm, distribution of federates within the

routing space, and size of multicast groups in Chapter 4. The performance-evaluation of

P-Pruning algorithm with other DDM algorithms with implementation details and

simulation results are discussed in Chapter 5. Chapter 6 highlights the resource constraint

issues in data distribution management and proposes memory-efficient enhancements in

P-Pruning algorithm. It also includes the performance-evaluation study details and

simulation results. The integration of P-Pruning algorithm with FDK software is

discussed in Chapter 7. Chapter 8 identifies the directions for further research. It lays out

future directions for development of distributed DDM approach on cluster computers and

testing with real-world data. Finally, Chapter 9 presents the concluding remarks.

 4

1.3 Research Contributions
The objective of this research work is to design efficient and scalable strategies for Data

Distribution Management in resource-constraint well as distributed environment. We

have proposed a new algorithm, called P-Pruning algorithm, for the DDM region

matching problem. We have also shown that this algorithm performs better than several

DDM strategies using average-case complexity analysis and through performance

evaluation experiments. We have also developed a resource-efficient method for DDM.

We also investigate scalability issues and develop a scalable approach for DDM in

distributed environment such as cluster computers. Throughout the dissertation, we have

used IEEE 1516 specifications for representing the federates, and their publisher and

subscriber regions.

 5

CHAPTER TWO: BACKGROUND AND RELATED WORK

In this Chapter, we provide a background on HLA, different implementation of RTI in

commercial and academic institutions, and DDM. Examples of RTI implementations are

the FDK software developed at the Georgia Institute of Technology and the Light-Weight

RTI built at George Mason University. We also highlight the importance of DDM

problem in the parallel and distributed simulation domain and the underlying concept of

routing space. Finally, we present an overview of current state-of-the-art research work in

DDM.

2.1 HLA Architecture
The High Level Architecture (HLA) was developed by the Department of Defense (DoD)

under the leadership of the Defense Modeling and Simulation Office (DMSO). It is an

architecture for reuse and interoperation of simulation components within the DoD. The

HLA is intended to provide a structure for reuse of capabilities available in different

simulations, thereby reducing the cost and time required to create a synthetic

environment for a new purpose and providing developers the option of distributed

collaborative development of complex simulation applications. In recent years, HLA has

been applied across a wide range of simulation application areas, including education and

training, analysis, engineering, and even entertainment, at different levels of resolution.

HLA specifications do not require a particular implementation, or use of a programming

language. There are numerous implementations of HLA in industry and academic

research institutions. Appendix A provides an overview of different implementations of

HLA with their key characteristics.

 6

Figure 1. Components in HLA RTI

 The HLA is defined by three concepts:

• Object Model Template

• Runtime Infrastructure

• HLA compliance rules

The RTI and compliance rules are uniform across all HLA-compliant simulations.

However, each group of interacting simulations, or federates, must define a basis for the

exchange of data and events between simulations. The format and content of this basis is

defined by the Object Model Templates. The Object Model Templates are sued to

describe the objects that will exist in the federation.

 7

The key components of HLA federation are illustrated in Figure 1. The federation

is composed of individual simulations or federates who form the first key component of

HLA. A federate can be a computer simulation, a manned simulator, or supporting utility

(such as a viewer or data collector), or an interface to a live player or instrumented

facility. The HLA requires all federates incorporate specified capabilities to allow the

objects in the simulation through the exchange of data supported by services

implemented in the RTI. The second key component of HLA is the RTI. The RTI is

functionally equivalent to a distributed operating system for the federation. It provides a

set of general purpose services that support federate-to-federate interactions, federation

management functions. All interactions among the federates are executed through the

RTI. The third component in HLA federation is the interface to RTI. The HLA runtime

interface specification provides a standard method for federates to interact with the RTI,

to invoke the RTI services for supporting runtime interactions among federates and to

respond to requests from the RTI. This interface is implementation independent and free

of the specific object models and data exchange requirements of any federation.

The HLA supports passive collection of simulation data and monitoring of

simulation activities. Also, HLA supports interfaces to live participants, such as

instrumented platforms or live systems. Live participants interact with the simulated

world through an interface that feeds the representation of the live world into the

simulated world and projects data from the simulated world back to the live world.

Formally, the HLA is defined by three components: the interface specification, the object

model template, and the HLA rules.

 8

2.1.1 RTI

The RTI is a collection of software that provides commonly required services to

simulation system. It is also intended to provide a measure of portability (across

computing platforms, operating systems, and communication systems) and simulation

interoperability. There are six classes of services in RTI: Federation Management,

Declaration Management, Object Management, Ownership Management, Time

Management, and Data Distribution Management. Federation Management services offer

basic functions required to create and operate a federation. Declaration management

services support efficient management of data exchange through the information

provided by federates defining the data they will provide and will require during a

federation execution. Object management services provide creation, deletion,

identification and other services at the object level. Ownership management services

support the dynamic transfer of ownership of object/attributes during an execution. Time

management services support synchronization of simulation data exchanges. Finally, data

distribution management services support the efficient routing of data among federates

during the course of a federation execution.

The HLA rules define the principles of HLA in terms of responsibilities that

federates and federations must uphold. Each federation has a Federation Object Model

(FOM), which is a common object model for the data exchanged between federates in a

federation. OMT is the meta-model for all FOMs. The Interface Specification defines the

standard services and interfaces to be used between the federates and the RTI. While the

HLA is an architecture, not software, it is the RTI software that facilitates the interaction

 9

between federates using a common FOM. Actions of a federate, such as registering an

object, updating attributes of an object or sending an interaction, are defined as HLA

events. Each federate has a RTI Ambassador and a Federate Ambassador. During

simulation, a federate employs RTI Ambassador (RTIAmb) methods to generate events

and the Federate Ambassador (FedAmb) acts as a callback module to receive events

originating from other federates.

2.1.2 Time Management

There are two principal components to the HLA time management (TM) services. First,

a time stamp ordered (TSO) message delivery service guarantees that successive

messages delivered to each federate have non-decreasing time stamps. Second, the time

management services manage simulation time (termed logical time in the HLA) advances

of each federate. Federates must explicitly request that their logical time be advanced by

invoking an IFSpec service such as Next Event Request, Time Advance Request, or Flush

Queue Request. The RTI only grants the advance via the Time Advance Grant service

(callback) when it can guarantee that no TSO messages will later be delivered with a time

stamp smaller than the granted advance time. In this way the RTI ensures federates never

receives messages with time stamp less than their current logical time. In the HLA, time

management is distinct from sending and receiving messages (events). Services such as

Update Attribute Values and Reflect Attribute Values are used to send and receive

messages, respectively.

 10

2.1.3 HLA Implementations

FDK

Federated Simulations Development Kit (FDK) is HLA-based RTI software

system developed at Georgia Institute of Technology ([1], [2], [3]). It contains

composable modules for building run-time infrastructures (RTI) using which different

simulations can be integrated together. RTI-Kit, a principal component of FDK, is a

collection of libraries. It supports development of Run-Time Infrastructures for parallel

and distributed simulation systems, especially federated simulation systems running on

high performance computing platforms. FDK is designed so that RTI developers can pick

and choose from the set of FDK modules that are most appropriate for developing their

particular RTI implementation. Each library is designed so it can be used separately, or

together with other RTI-Kit libraries, depending on the functionality required by the user.

Because each library is designed as a stand-alone component, RTIs that are constructed

using RTI-Kit are highly modular, with clear, well-defined (and documented) interfaces.

These libraries can be embedded into existing RTIs to add new functionality. RTI

developers can benefit from incorporating these ready-made modules, and avoid having

to develop them on their own. FDK is a modular and reusable set of libraries designed to

facilitate the development of RTIs for developing or integrating parallel and distributed

simulation systems.

 11

RTI Prototype

The RTI Prototype was developed during the mid-1990’s at Massachusetts Institute of

Technology (MIT) Lincoln Laboratories [4]. The HLA specification was still under

development and undergoing revisions during this time period, so the creators of the RTI

Prototype did not implement all of the HLA services (for example, Time Management

was omitted) or follow the specification to the letter. Instead, their implementation was

designed as a proof of concept for HLA, with the intent of also providing feedback that

might impact the development of the HLA itself. The API for the RTI is specified in the

following in languages: IDL, C++, Java, and Ada. IDL stands for Interface Definition

Language, a part of the CORBA specification. The RTI Prototype uses the IDL API

specification, and was developed using C++ and the Iona ORBIX implementation of

CORBA. The approach to Data Distribution Management (DDM) used in the RTI

Prototype is known as the Fixed Grid-based Approach, which we discuss in detail in the

Chapter 2 about different approaches to DDM.

Before the RTI Prototype was tested in the Synthetic Theater of War (STOW)

federation, laboratory experiments were conducted. The experimental results available

deal with only two federates. These experiments seem to have been designed to verify

that the RTI Prototype was indeed functioning properly, and not to show how it performs

when each federate is simulating many objects which are moving around in the

battlespace, as no such scenario was performed. When the STOW exercise was

conducted, a data logger captured statistics, such as the total number of packets sent over

the network. These statistics seem to be confined to the data-link level of the simulation,

where as the HLA deals with a higher level of abstraction. Therefore, this data

 12

unfortunately does not give direct insight into the performance of the RTI Prototype or

the Data Distribution Management system.

RTI 1.3

The same group at Lincoln Labs that designed the RTI Prototype developed the RTI 1.3

[5]. The RTI 1.3 is the successor of the RTI Prototype and is so named because it

implements version 1.3 of the HLA Specification. One of the main changes between the

RTI Prototype and the RTI 1.3 was the Data Distribution Management strategy that was

used. The RTI Prototype used a grid-based approach, whereas the RTI 1.3 employs a

region-based method. The region-based method is described in detail in Chapter 2 on

DDM algorithm overview. A distinguishing feature of the region-based DDM approach is

the use of a single database to store information regarding the regions of interest declared

by all federates in the federation. The database for regions, subscriptions, and

publications used by the RTI 1.3 is called the Information Manager (IM). Unfortunately,

no experimental results have been published concerning the performance of the RTI 1.3.

GMU Light-Weight RTI

The light-weight RTI developed at George Mason University (GMU) focuses on

Declaration Management and the Data Distribution Management services [6]. Time

Management and Ownership Management are not implemented, since these services

were not the primary objective of the project. As a result, the light-weight RTI is best

suited to real time simulations by federation of small to medium size. A useful feature of

this RTI is that it can be interfaced to DIS simulations using a DIS to HLA translator

 13

developed at GMU. The motivation behind its construction was to understand the HLA

and to bring the earlier work done by those researchers into compatibility with the HLA.

We shall now briefly describe the previous works out of which the light-weight RTI

grew.

The light-weight RTI uses elements of the Dual Mode Multicast scheme and the

Selectively Reliable Transmission Protocol. Dual Mode Multicast (DMMC) is a method

of Data Distribution Management that was developed for use by systems adhering to the

Distributed Interactive Simulation (DIS) protocol. DMMC uses a multi-level grid-based

filtering scheme. An exercise-wide multicast group is used on the wide area network

(WAN) and a fixed grid-based approach is used to determine multicast groups at level of

the local area network (LAN).

Selectively Reliable Transmission Protocol (SRTP) is designed for applications,

such as DIS and HLA, that need reliable multicast communications. SRTP runs in user

space and forms a sublayer between an application and the Internet protocol stack of the

operating system. SRTP operates in three modes: best effort multicast reliable multicast,

reliable multicast, and lightweight reliable transaction-oriented unicast. The reliable

multicast uses negative acknowledgement with NAK suppression mechanisms to avoid

congestion at the sender. The major flaw in the light-weight RTI, according to its

creators, is the poor runtime performance that is partly due to the use of SRTP, which is

slower than UDP. Improving the performance of the light-weight RTI is the primary goal

of the future work on this project.

 14

RTI 1.3NG

Science Applications International Corporation (SAIC) developed RTI 1.3NG which was

sponsored by Defense Modeling and Simulation Office (DMSO) based on competitive

industry designs ([7], [8]). Like the RTI 1.3, the RTI 1.3NG also supports the HLA

Specification 1.3. However, the RTI 1.3NG is intended to be a full implementation of all

HLA services and will supersede the RTI 1.3, which is no longer being supported by

DMSO ([9], [10], [11], [12], [14], [15], [16]). As yet, no literature has been published

regarding the design, implementation, or performance of the RTI 1.3NG, which is still

under development.

MAK RTI

MAK Technologies, which is based in Cambridge, Massachusetts, and is a leading

provider of simulation networking software, developed the MAK RTI ([17], [18], [19]). It

supports the HLA Specification 1.3, and is link-compatible with DMSO RTI 1.3. Like the

other RTI implementations that we have discussed, the MAK RTI does not implement all

HLA services. The MAK RTI can be downloaded at no charge, and runs on the Windows

95/98/NT, Solaris, IRIX, and Red Hat Linux platforms.

HPC-RTI

RAM Labs, based in San Diego, California, is developing an RTI designed for use in

high performance computing (HPC) environments. The RTI-HPC is integrated with the

Synchronous Parallel Emulation Environment for Discrete Event Simulation

(SPEEDES). SPEEDES is a government-owned software system, managed by RAM

 15

Labs, and licensed by NASA. SPEEDES was used in the early 90’s to model global

ballistic missile defense applications on parallel and distributed supercomputers.

SPEEDES currently supports various large-scale distributed simulation projects, under

the sponsorship of the Department of Defense, such as Wargame 2000, Joint Simulation

System (JSIMS), and Extended Air Defense Test Bed (EADTB). SPEEDES is

implemented in C++, and supported operating systems are IRIX, HPUX, Solaris, Linux,

and Windows NT.

With the HLA gaining popularity in the defense community, SPEEDES is being

modified and augmented to serve as an RTI that is compatible with the HLA

specifications, and the result will be the RTI-HPC. The RTI-HPC is the first attempt to

transform a pre-existing simulation engine into an RTI. There is another element of the

RTI-HPC that differentiates it from the other RTI implementations, and that is its support

of time management. The RTI-HPC will provide time-management across all six HLA

services. The HLA does not require the Declaration Management, Data Distribution

Management, or Ownership Management services to be time-managed. However, such

capabilities would be extremely useful for a federation that wanted to enforce casual

ordering of events, for the purpose of repeatability or other reasons. In the remainder of

this section, we will discuss how SPEEDES performs Data Distribution Management.

The SPEEDES Data Distribution Management mechanism follows a grid-based

approach. Interest regions are mapped to grid cells, which are represented by entities

called Hierarchical Grid (HiGrids) where region-overlap computations are performed.

The HiGrids are distributed among the participating nodes. When an overlap is detected,

HiGrids tell the publisher which subscribers are interested in the publisher’s attributes.

 16

The publisher then sends the subscriber its proxy, which represents the state of an entity.

The proxy is updated whenever the publisher’s attributes change, thus ensuring that the

subscriber can assess the publisher’s current attributed values.

The SPEEDES method of performing data distribution management was

developed prior to the advent of the HLA specification, so some changes will need to be

made in the transition to the HPC-RTI. The concept of a proxy is not fully compliant with

the HLA specification. In addition, SPEEDES allows subscriptions and publications on a

per-object basis, whereas the HLA only allows interests to be declared on a per-federate

basis. The use of proxies, and the per-object interest expressions, are features that may

need to be modified as SPEEDES is converted to the RTI-HPC. It remains to be seen

how closely the RTI-HPC method of supporting the HLA Data Distribution Management

service resembles the current SPEEDES approach to DDM.

2.2 IEEE 1516 vs. RTI 1.3
IEEE 1516 is the HLA standard approved by IEEE in September 2000 as a

successor of the HLA 1.3 specifications ([31], [32], [33]). It simplifies the DDM

implementation by removing multiple routing spaces and incorporating all the

dimensions within this routing space. The regions are composed of dimension name and

range pairs. Two regions overlap only if they have at one dimension in common. If two

regions do have one or more dimensions in common, then the regions overlap if and only

if ranges for all the dimensions that the regions have in common overlap pair-wise. Petty

[34] and Morse [35] have discussed the migration of HLA 1.3 based simulation system to

IEEE 1516 standards in detail.

 17

S1

US2

S1
P

 0.5 1.0

 0.5

 1.0

 0.0

 0.0

2.3 Concept of Routing Space
DDM is based on a multi-dimensional coordinate system called a routing space. For

example, a two-dimensional routing space might represent the play box in a virtual

environment. A rectangular publisher region within the routing space is associated with

each update message generated by a publishing federate. Receiving federates declare

their interests via rectangular subscriber regions within the routing space. If the publisher

region associated with a message overlaps with the subscriber region of a federate, the

message is routed to that subscribing federate. By calculating the intersection of publisher

and subscriber regions, the Run-Time Infrastructure in HLA establishes connectivity

between sender and receiver federates for routing updates and interactions. Each

overlapping subscriber and publisher federate joins a multicast group to facilitate the

message transfer. For example, in Figure 2, updates using publisher region P are routed

to federates subscribing to region S1, but not to federates subscribing to region S2.

Figure 2. Two-dimensional routing space with subscriber regions: S1 and S2, and a
publisher region P

 18

The DDM provides flexible mechanism for publishing and subscribing interests

through multidimensional routing space. The basic structure of routing space in the IEEE

1516 standard is as following:

Routing space: There is a single routing space and all dimensions are included in this

routing space.

Regions: A region is a single rectangular subspace within the coordinate space. Regions

may be defined on any subset of the available dimensions of the coordinate system.

Region set: Regions are grouped into region sets, which consist of one or more regions.

The regions in a region set need not all have the same subset of the dimensions of the

coordinate system.

Dimension: Dimensions correspond to simulation data and they are used to define

regions.

The interest matching process begins by specifying subscription and update

regions. An object is said to be interested by a federate if and only if at least one of the

object’s attributes is subscribed by the federate (through declaration management) and at

least one update region associating with the object overlaps the subscriber region of the

federate.

 19

Figure 3. Concept of region overlap in two-dimensional routing space

In the Figure 3, a notional federation has three federates; each has declared one region.

The update region declared by federate A overlaps the subscriber region declared by

federate B, so updates to the data items associated with the update region are delivered by

the HLA RTI from federate A to federate B. No data is delivered to federate C.

For instance, a routing space representing the position of the units on the

battlefield could be called "Map", with two dimensions "X" and "Y". A region in the

routing space Map would be the ranges for the dimensions X and Y: [(x
min

, x
max

), (y
min

,

y
max

)]. A region set would be a set of one or several of such regions. A publisher region

could be for instance a region with one extent representing the position of a unit. A

 20

subscriber region could be for instance a region with several extents, each of them

representing the range of some sensors.

In Figure 4, we have illustrated the publisher and subscriber regions for a

squadron of airplanes. The spy plane in region 1 tracks the squadron of planes in region

3.

Figure 4. Illustration of publisher and subscriber region in an airplane squadron

2.4 Related Work
The earliest work on DDM research appears in Van Hook et al. [4]. The HLA

specification, key elements in its architecture, and implementation are described in

Dahmann et al. ([36], [37], [38], [39]) and Van Hook [5]. An overview and tutorial of

DDM and related research work appears in ([40], [41], [42]).

Boukerche and Roy [43] described taxonomy of DDM schemes and basic

concepts. Petty [34] presented a comparison of the DoD 1.3 and IEEE 1516 HLA

specifications. Since 1995, different DDM algorithms have been proposed such as the

fixed-grid [44], dynamic-grid ([45], [46], [47]), region-matching [4], agent-based [49],

 21

and hybrid-method [50]. A sort-based algorithm running in O(n2) time is presented in

([51], [52]). A partition-based DDM technique is proposed in Kumova [53]. In Liu et al.

[54], DDM for multidimensional routing space is explored, while a DDM scheme for

distributed virtual environments is presented in Minson and Theodoropoulos [55].

Performance-evaluation study of different DDM strategies appears in Boukerche and

Dzermajko ([56], [57], [58]), Gupta and Guha [59]. Scalability-related issues for the

implementation of DDM are addressed in [103].

In their doctoral dissertations, Morse [60] and Petty [61] made numerous

algorithmic contributions to the DDM problem. The problem of dynamic multicast

grouping is addressed in [60], while an interval-tree based DDM algorithm is presented in

[61]. A connection-graph based cost-function approach is proposed by Morse in [62]. In

this method, the latency of data communication is taken into account. A computational

analysis of various DDM strategies appears in [63]. Petty and Morse have discussed the

computational complexity of the high level architecture data distribution management

matching and connecting processes in ([64], [65], [66]).

Federated Simulations Development Kit (FDK) is an implementation of HLA

architecture developed at Georgia Institute of Technology [3]. It has been used by

researchers in academia, industry, and government laboratories as an effective software

package for evaluating their research contributions to distributed simulation technology.

FDK has been used as the platform for HLA-based distributed simulation research in ([1],

[65], [70], [71], [72]). Scalability issues of FDK have been researched by Fujimoto et al.

in [2] and Perumalla et al. in [103]. Synchronization issues in DDM and their remedies

 22

have been proposed in [71]. In Chapter 7, we discuss the integration of the P-Pruning

DDM algorithm with FDK.

An interesting merger of distributed simulation with Web services is presented in

Pullen et al. [22]. This paper describes an approach for extending Web Services to

distributed simulation environments and providing scalable interoperability across wide

variety of networked platforms. Advanced memory management schemes such as

hierarchical data-caching and pre-fetching that can be applicable to resource constraint

conditions related to DDM appear in ([74], [75]).

A review of I/O efficient external memory data-structures appears in Arge et al.

([76], [77]). Memory-efficient routines and implementation details appear in [78], while

Meyer et al. [79] provide a good source of algorithms for memory hierarchies. Directions

on I/O efficient algorithms and dynamic memory allocation in simulation appear in

(Nielsen [80], Vengroff and Vitter [81], [82]).

Distributed implementations of HLA been implemented on cluster computers has

been reported in ([83], [84], [85], [86], [87], [88], [90], [92], [96], [97]).

 23

CHAPTER THREE: OVERVIEW OF DDM ALGORITHMS

In this Chapter, we provide a brief algorithmic overview of three DDM algorithms and

highlight their implementation issues.

The DDM problem is stated as follows:

Let,

FFi ∈ , F = Set of federates,

PPi ∈ , P = Set of publisher regions, and

SSi ∈ , S = Set of subscriber regions.

Then, there exists a matching or clustering of subsets of publisher regions P and

subscriber region S.

 Let MCGMCGi ∈ , where MCG = Set of multicast group, such that

The DDM problem is to find all possible iMCG at any time t.

Now, we discuss three types of DDM Schemes implemented in the current HLA.

3.1 Region-Matching Algorithm
In the region-matching DDM approach, a multicast group is defined for each publisher

region. Updates are simply sent to the multicast group associated with the publisher

region. A federate subscribes to the multicast group, if one or more of its subscriber

.0||such that
,0such that

,

>∈

>∈

∈∀

iii

iii

i

SMCGS
PMCGP

MCGMCG

 24

regions overlap with the publisher region. When a subscriber region changes, the new

subscriber region must be matched against all other publisher regions in order to

determine those that overlap with the new subscriber region. The federate must then

subscribe to the multicast groups with overlapping publisher regions. Similarly, when a

publisher region changes, the new publisher region must be matched against all

subscriber regions to determine the new composition of the multicast group that include

this publisher region. This requires examining all subscriber/publisher regions in use by

the federation. Thus, it does not scale well as the number of regions becomes large.

The region-matching algorithm implementation has two sub-procedures: Create

Overlap_List and Create Multicast group. This algorithm needs to scan all the publisher

and subscriber regions at least once. Hence, its time complexity is quadratic.

Create Overlap_List Sub-procedure

Initialization

Overlap: Flag indicating overlap between publisher and subscriber region.

Pub_overlap_counter: Counter for subscriber regions overlapping with each publisher

region.

BEGIN Procedure

For all publisher region Pi do

Set Overlap flag to FALSE;

Begin

 For all subscriber region Sj do

 Begin

 25

//Check all conditions for overlap between Pi and Sj

 If Pi and Sj overlap do

 Begin

 Set Overlap flag to TRUE;

Increment counter Pub_overlap_counter for Pi;

End

End

End

END Procedure

Create Multicast Group Sub-procedure

Initialization

MCG: Multicast group for DDM

BEGIN Procedure

For all publisher region Pi having Pub_overlap_counter > 0 do

Begin

Assign Multicast Group MCGi to Pi;

 Add all subscriber regions Sj overlapping with Pi to multicast group MCGi;
End

END Procedure

3.2 Fixed-Grid DDM
In the fixed-grid DDM algorithm, the routing space is partitioned into non-overlapping

grid cells, and a multicast group is defined for each cell. A federate subscribes to the

 26

group associated with each cell that partially or fully overlaps with its subscriber regions.

The result associates a region with several multicast groups in a fixed and pre-determined

manner. A publish operation is realized by sending an update message to the multicast

groups corresponding to the cells that partially or fully overlap with the associated

publisher region. The fixed-grid approach eliminates the need to explicitly match

publisher and subscriber regions. It is less accurate than the region-matching method,

because the mapping of regions onto grids may not be exact. The actual area covered by

cell may be larger than the region itself. While grid partitioning eliminates the matching

overhead, large number of multicast groups is needed if a fine grid structure is defined; a

coarse grid leads to imprecise filtering, negating the benefits of DDM.

The fixed grid DDM algorithm implementation consists of three sub-procedures:

Grid Initialization, Federate-to-Grid mapping, and Multicast Group creation.

Grid Initialization Sub-Procedure

BEGIN Procedure

Divide the routing space into grid cells Gi of given dimension in routing space;

 Each cell is uniquely identified by a cell ID;

Each grid cell maintains counters for number of publisher regions overlapping and

their federate ID;

Each grid cell maintains counters for number of subscriber regions overlapping and

their federate ID;

END Procedure

 27

Federate-to-Grid Mapping Sub-Procedure

Initialization

For each grid cell Gi, the following variables are maintained:

Pub_Fed_ID: Array for storing the federate ID of each publisher region overlapping with

Gi,

Pub_Region_Counter: Counter for number of publisher regions overlapping with Gi,

Sub_Fed_ID: Array for storing the federate ID of each subscriber region overlapping

with Gi,

Sub_Region_Counter: Counter for number of subscriber regions overlapping with Gi.

BEGIN Procedure

For all federates Fi do

Begin

 // For the publisher region Pi

 For all grid cells Gi covered by publisher region Pi do

 Begin

 Add publisher region Pi information to grid cell Gi;

Increment the Pub_Region_Counter for grid cell Gi;

 End

 // For the subscriber region Si

For all grid cells Gi covered by subscriber region Si do

 Begin

Add subscriber region Si information to grid cell Gi;

 28

 Increment the Sub_Region_Counter for Gi;

 End

End

END Procedure

Create Multicast Group Sub-procedure

Initialization

MCG: Multicast group for DDM.

Each grid cell Gi is assigned a multicast group MCGi.

BEGIN Procedure

For all grid cell Gi do

Begin

 Add all publisher regions in grid cell Gi to MCGi;

 Add all subscriber regions in grid cell Gi to MCGi;

End

END Procedure

3.3 Dynamic-Grid DDM
The fixed-grid method offers no mechanism to prevent publishers from sending data on a

multicast group that no subscribers have joined. The dynamic-grid method addresses this

drawback of the fixed-grid scheme. Like fixed-grid approach, the routing space has grid

overlay that defines the cells. This scheme dynamically allocates multicast groups, based

on the current publisher and subscriber regions in the system and triggers hosts to join

those groups, as in the region-based method. Only those cells, in which there is at least

 29

one publishing and one subscribing federate, are assigned to a multicast group. Thus, a

multicast group is allocated to each cell that is part of the intersection of a publisher

region and a subscriber region. Publisher federates join and transmit on a multicast group,

if there is at least one subscriber region interested in its data. Similarly, subscriber

federates join and listen on multicast group, only if there is at least one publisher federate

transmitting on that group.

This technique prevents the publishing federates from transmitting data on a

multicast group with no subscribers and reduces the number of multicast groups that a

federate needs to join.

The dynamic-grid DDM algorithm implementation consists of three sub-

procedures: Grid Initialization, Federate-to-Grid mapping, and Multicast Group creation.

The Grid Initialization and Federate-to-Grid mapping sub-procedures are similar to the

fixed grid algorithm. Hence, we are listing only the Multicast Group creation sub-

procedure.

Create Multicast Group Sub-procedure

Initialization

MCG: Multicast group for Dynamic Grid DDM.

Each Grid Cell Gi is assigned a multicast group MCGi.

BEGIN Procedure

For all grid cell Gi

Begin

 If grid cell Gi has at least one publisher region Pi

 30

 AND at least one subscriber region Sj

 Begin

 Add all publisher regions in grid cell Gi to MCGi;

 Add all subscriber regions in grid cell Gi to MCGi;

 End

End

END Procedure

 31

CHAPTER FOUR: THE P-PRUNING ALGORITHM FOR DDM

In this Chapter, we present the P-Pruning DDM algorithm with its three sub-procedures.

We also provide an illustration of the steps involved in P-Pruning algorithm using a small

example. Finally, we analyze the computational complexity of P-Pruning algorithm using

average-case analysis and the effect of federate distribution within routing space on its

performance.

4.1 The P-Pruning Algorithm: An Overview
The P-Pruning DDM algorithm computes the multicast groups in three steps: List

Computation, MCG Population, and MCG Pruning. Each publisher and subscriber region

is described by four-coordinate system in the routing space (Px1, Px2, Py1, Py2) and (Sx1,

Sx2, Sy1, Sy2), respectively. Each federate Fi has one publisher region Pi and one subscriber

region Si, where i denotes the federate ID (Fed_ID).

The entire algorithm is based on an array, ListX, whose size is equal to R, i.e., the

length of the routing space X-axis. The elements in ListX array correspond to the

coordinates in X-axis of the routing space. The List Computation sub-procedure scans all

the publisher and subscriber regions once, and stores the information about their

coordinates at each point of the axis. A multicast group is assigned to an element of the

ListX array, if there is a publisher region Pi whose XiP
1

)(coordinate coincides with this

element of ListX.

The MCG Population sub-procedure creates the DDM multicast group based on

information stored in ListX array, but it considers only the overlap information on X-

dimension of the routing space. A multicast group is created at a point on ListX only if

 32

there exists at least one publisher region and there is at least one subscriber region

overlapping with this publisher region on X-axis. Thus, this sub-procedure creates a set

of multicast groups that may include some multicast groups that are having publisher and

subscriber region as members, but these member regions may not actually overlap on the

Y-axis of the routing space. Overall, this sub-procedure computes the entire information

faster by avoiding the simultaneous checking of X-axis and Y-axis overlap.

The errors in creation of multicast group MCG are now corrected by the final

MCG Pruning sub-procedure. The pruning sub-procedure verifies that the regions in

multicast group MCG actually overlap on Y-axis, and it eliminates any non-overlapping

subscriber from the specific multicast group. It also verifies that every multicast group

has at least one subscriber region after this step. At the end of this process, it deletes any

multicast group having no subscriber region.

Since the two main sub-procedures in the algorithm perform the function of

multicast group Population and Pruning, the algorithm is called P-Pruning algorithm

throughout the remainder of this report. The P-Pruning algorithm is efficient because,

unlike other algorithms, it focuses on creation of multicast groups right from the

beginning. Also, it consumes less CPU and memory resources by avoiding the

simultaneous checking of X and Y axis overlap.

 33

4.2 The P-Pruning Algorithm
We now present the three sub-procedures in the P-Pruning DDM algorithm.

4.2.1 List Computation Sub-Procedure

Initialization:

ListX: List of all the coordinates for all publishers regions P and subscriber regions S in

ascending order.

Each publisher and subscriber region is described by four-coordinate system in the

routing space.

()YiYiXiXi PPPP
2121

)(,)(,)(,)(are coordinates of publisher region Pi.

()YiYiXiXi SSSS
2121

)(,)(,)(,)(are coordinates of subscriber region Si.

Each federate Fi has one publisher region Pi and one subscriber region Si, where i denotes

the federate ID (Fed_ID).

ListX = Array of size R, where R is the maximum coordinate of the routing space.

For each element in ListX, following variables are maintained:

List_ID; //Identifier for each element in ListX

Pub_Region_Counter = 0; //Counter for publisher regions having XiP
1

)(=

List_ID

X1_Sub_Region_Counter = 0; //Counter for subscriber region having XiS
1

)(=

List_ID

X2_Sub_Region_Counter = 0; //Counter for subscriber regions having XiS
2

)(=

List_ID

 34

BEGIN Procedure

For each federate Fi do

Begin

 //Processing the publisher region of federate Fi

 List_ID = XiP
1

)(;

Copy the publisher region counter of ListX[List_ID] into Pub_Region_Counter;

ListX[List_ID].Pub_Region[Pub_Region_Counter].Fed_ID = Fi;

Copy coordinates of publisher region Pi at

ListX[List_ID].Pub_Region[Pub_Region_Counter] ;

 Increment Pub_Region_Counter;

 Update the publisher region counter of ListX[List_ID];

 //Processing the X1 subscriber region of federate Fi

 List_ID = XiS
1

)(;

Copy the X1 subscriber region counter of ListX[List_ID] into

X1_Sub_Region_Counter;

ListX[List_ID].X1_Sub_Region[X1_Sub_Region_Counter].Fed_ID = Fi;

Copy coordinates of subscriber region Si at

ListX[List_ID].Sub_Region[X1_Sub_Region_Counter];

 Increment X1_Sub_Region_Counter;

Update the X1 subscriber region counter of ListX[List_ID];

 35

// Processing the X2 subscriber region of federate Fi

List_ID = XiS
2

)(;

Copy the X2 subscriber region counter of ListX[List_ID] into

X2_Sub_Region_Counter;

ListX[List_ID].X2_Sub_Region[X2_Sub_Region_Counter].Fed_ID = Fi;

Copy coordinates of subscriber region Si at

ListX[List_ID].Sub_Region[X2_Sub_Region_Counter];

Increment X2_Sub_Region_Counter;

 Update the X2 sub region counter of ListX[List_ID];

End

END Procedure

4.2.2 MCG Population Sub-Procedure

Initialization:

MCG_Counter = Counter for recording the number of Multicast groups MCG so far.

XiP
1

)(and XiP
2

)(are coordinates on X-axis for publisher region Pi.

XjS
1

)(and XjS
2

)(are coordinates on X-axis for subscriber region Sj.

BEGIN Procedure:

For each List element List_ID of ListX with Pub_Region_Counter > 0 do

Begin

For all publisher region Pi whose XiP
1

)(coordinate coincides with List_ID do

 36

 Begin

Note XiP
1

)(and XiP
2

)(coordinates of publisher region Pi ;

Add Fed_ID of Pi to publisher region of MCG[MCG_Counter];

Increment the publisher region counter of MCG[MCG_Counter];

 //Complete Overlap Condition

 For all points j from 0 to XiP
1

)(on X-axis do

 Begin

For all X1 subscriber region Sj at point j on X-axis do

 Begin

Note XjS
1

)(and XjS
2

)(coordinates of subscriber region Sj ;

If subscriber region Sj completely overlaps publisher region

Pi do

 Begin

Add Fed_ID of Sj to subscriber region of

MCG[MCG_Counter];

Increment the subscriber region counter of

MCG[MCG_Counter];

 End

 End

 End

 37

 // XiP
1

)(to XiP
2

)(range Overlap Condition

 For all points j from XiP
1

)(to XiP
2

)(on X-axis do

 Begin

//Checking for XjS
1

)(overlap in range XiP
1

)(to XiP
2

)(

For all X1 subscriber region Sj at point j on X-axis do

 Begin

Note XjS
1

)(and XjS
2

)(coordinates of subscriber region Sj ;

If subscriber region Sj overlaps publisher region Pi do

 Begin

Add Fed_ID of Sj to subscriber region of

MCG[MCG_Counter];

Increment the subscriber region counter of

MCG[MCG_Counter];

 End

End

//Checking if XjS

2
)(of any subscriber region fall in range

// XiP
1

)(to XiP
2

)(

For all X2 subscriber region Sj at point j on X-axis do

 Begin

Note XjS
1

)(and XjS
2

)(coordinates of subscriber region Sj ;

If subscriber region Sj overlaps publisher region Pi do

 38

 Begin

Add Fed_ID of Sj to subscriber regions of

MCG[MCG_Counter];

Increment the subscriber region counter of

MCG[MCG_Counter];

 End

 End

 End

If current multicast group (MCG[MCG_Counter]) has no subscriber

region

 Begin

Re-initialize publisher region and subscriber region count of

MCG[MCG_Counter] to 0;

 End

If current multicast group (MCG[MCG_Counter]) has subscriber region

 Begin

Increment the multicast group counter; MCG_Counter;

 End

 End

End

END Procedure

 39

4.2.3 MCG Pruning Sub-Procedure

Initialization:

()YiYiXiXi PPPP
2121

)(,)(,)(,)(are coordinates of publisher region Pi.

()YjYjXjXj SSSS
2121

)(,)(,)(,)(are coordinates of subscriber region Sj.

Y_Overlap: Flag indicating overlap condition.

DELETE_MCG: Flag indicating deletion of current multicast group.

BEGIN Procedure:

For all multicast group MCGi do

Begin

Set Y_Overlap to FALSE;

Set DELETE_MCG to FALSE;

Note
1

)(YiP and
2

)(YiP coordinates of publisher region Pi ;

For all subscriber region Sj of multicast group MCGi do

 Begin

Note
1

)(YjS and
2

)(YjS coordinates of subscriber region Sj;

 //Complete Overlap Condition

 If Sj completely overlaps Pi on Y-axis

 Set Y_Overlap = TRUE;

 //Partial Overlap condition on Y-axis

 If Pi overlaps Sj on Y-axis

 Set Y_Overlap = TRUE;

 40

 If Y_Overlap flag is FALSE

 Begin

 //Prune the subscriber region Sj

Decrement the subscriber region count of MCGi;

 Erase the Fed_ID of current subscriber region Sj ;

 Reset Y_Overlap to FALSE;

 End

 End

 If MCGi has no subscriber region

 Begin

 Decrement publisher region count of current MCGi;

 Set DELETE_MCG flag to TRUE;

 End

 If MCGi has no publisher region

 Begin

 Set DELETE_MCG flag to TRUE;

 Delete current multicast group MCGi;

 End

 If DELETE_MCG = TRUE

 41

 Begin

 Delete current multicast group MCGi ;

 Decrement the total count for multicast groups;

 End

End

END Procedure

4.3 Illustration of the P-Pruning Algorithm
Now, we will illustrate step-by-step execution of the P-Pruning algorithm using the

example shown in Figure 5. The example consists of a two-dimensional routing space

with size 10 x 10 units. As stated earlier, the set of federate F = {F1, F2, F3} such that

federate F1 has two publisher regions (P11, P12) and three subscriber regions (S11, S12,

S13). Federate F2 has three publisher regions (P21, P22, P23) and two subscriber regions

(S21, S22). Federate F3 has one publisher region P31 and one subscriber region S31. This

example demonstrates the region-matching calculation by P-Pruning algorithm for three

federates. In practice, a distributed simulation can involve hundreds of federates.

 In the following discussion, XiP
1

)(and XiP
2

)(are coordinates on X-axis for any

publisher region Pi. XjS
1

)(and XjS
2

)(are coordinates on X-axis for any subscriber region

Sj. We now walkthrough each step of the P-Pruning algorithm as it computes the

multicast group.

 42

Figure 5. Routing space layout for illustration of P-Pruning DDM algorithm

List Computation Step: The ListX[1,2,3,...,10] array stores three important details for

each point on X-axis: publisher region counter, X1 subscriber region counter, and X2

subscriber region counter. For a given point x in ListX: publisher region counter records

the number of publisher regions, whose XiP
1

)(coordinate coincides with point x; X1

subscriber region counter records the number of subscriber regions, whose XjS
1

)(

coordinate coincides with point x; and X2 subscriber region counter records the number

of subscriber regions, whose XjS
2

)(coordinate coincides with point x.

 In this step, the publisher and subscriber regions of each federate, F1, F2 and F3, are

examined. After this, the ListX element corresponding to the X1 and X2 coordinates of

each publisher and subscriber region is updated. The state of ListX array at the end of this

R
2 4

6

3

X-Axis

Y-
A

xi
s

10

10

0

P11

S21

3 6 98

S11

Federate F1:

P11 = [(2,3), (4,5)]

P12 = [(4,0), (5,3)]

S11 = [(4,7), (6,9)]

S12 = [(9,6), (10,10)]

S13 = [(8,1), (10,5)]

2

7

9

4

F1 = {(P11, P12),
(S11, S12, S13)}

Federate F2:

P21 = [(8,4), (10,7)]

P22 = [(7,9), (10,10)]

P23 = [(5,1), (7,5)]

S21 = [(3,2), (5,4)]

S22 = [(1,7), (5,10)]

P22S22

P31

P21

S13

S12

F2 = {(P21, P22, P23),
(S21, S22)}

P23

R

71

1

5

8

5

F3 = {(P31), (S31)}

Federate F3:

P31 = [(3,6), (5,8)]

S31 = [(7,0), (9,3)]

P12 S31

 43

step is shown in Table 1. The table shows (region counter, federate ID) pair for each

entry. Entry ‘*’ in this table indicates that there is no publisher or subscriber region,

whose XiP
1

)(or XjS
1

)(or XjS
2

)(coordinate coincides with this point of ListX array. Row

Pub indicates region counter = 1 for the points in ListX whose value coincides with XiP
1

)(

coordinate of a publisher region, and it indicates 0 otherwise. The region counter for each

point on ListX (in row Pub) also records the number of publisher regions, whose XiP
1

)(

coordinate coincides with this point. So, it can be more than one. The federate ID

corresponds to the identifier for the federate owning the publisher region Pi. Row S_X1

indicates region counter = 1 for the points in ListX whose value coincides with XjS
1

)(

coordinate of a subscriber region, and it indicates 0 otherwise. The region counter for

each point on ListX (in row S_X1) also records the number of publisher regions, whose

XjS
1

)(coordinate coincides with this point. So, it can be more than one. The federate ID

corresponds to the identifier of the federate owning the subscriber region Sj. Row S_X2

indicates region counter = 1 for the points in ListX whose value coincides with XjS
2

)(

coordinate of a subscriber region, and it indicates 0 otherwise. The region counter for

each point on ListX (in row S_X2) also records the number of publisher regions, whose

XjS
2

)(coordinate coincides with this point. So, it can be more than one. The federate ID

corresponds to the identifier for the federate owning the subscriber region Sj.

 44

Table 1. Status of ListX array after List Computation step. Each entry has (region
counter, federate ID) pair.

ListX 1 2 3 4 5 6 7 8 9 10

Pub * 1, 1 1, 3 1, 1 1, 2 * 1, 2 1, 2 * *

S_X1 1,2 * 1, 2 1, 1 * 1, 1 1, 3 1, 1 1, 1 *

S_X2 * * * * 2, 2 1, 1 * * 1, 3 2, 1

MCG Population Step: This step checks the overlapping status of publisher and

subscriber regions based on the X-axis information. It also creates the multicast group

MCG for the DDM.

 This step scans the ListX entries, from the Table 1 shown above, that have at least one

publisher region. A multicast group is assigned to each such entry in the beginning. All

the subscriber regions that are not owned by the federate of the publisher region and

overlapping with this publisher region are added to the multicast group. We describe the

formation of two multicast groups MCG1 and MCG2 in detail.

 ListX[2] has a publisher region entry in its Pub position, which corresponds to the

publisher region P11. So, the first multicast group MCG1 is created with P11 as its

member. This implies that federate F1 (which owns P11) is added to MCG1 as the

publishing federate. Since, P11 = [(2, 3), (4, 5)], the ListX array is scanned from the range

of (P11)X1 to (P11)X2 (i.e., 2 to 4) to check any XjS
1

)(coordinate of an overlapping

subscriber region. The subscriber region, S21 = [(3, 2), (5, 4)], has S_X1 entry at ListX[3]

in Table 1, which implies that S21 overlaps with P11. Hence, S21 is added to multicast

group MCG1. In addition to this, the ListX array is also scanned from 0 to (P11)X1 (i.e., 0

to 2) to check XjS
1

)(coordinate of an overlapping subscriber region. The subscriber region

 45

S22 = [(1, 7), (5, 10)] has S_X1 entry at ListX[1] in Table 1, which implies that S22 also

overlaps with publisher region P11. Hence, S22 is also added to multicast group MCG1.

Now, the multicast group MCG1:P11 has two subscriber members: {S21, S22}. This implies

that federate F2 (which owns regions S21 and S22) is added to MCG1 as the subscribing

federate. Finally, ListX array is scanned in range (P11)X1 to (P11)X2 (i.e., 2 to 4) to check

for any XjS
2

)(coordinate of an overlapping subscriber region. In this case, there are no

such overlapping subscriber regions.

 After this step, the next entry in ListX array having a publisher region entry in its Pub

position is ListX[3], which corresponds to the publisher region P31. So, the second

multicast group MCG2 is created with P31 as its member. This implies that federate F3

(which owns P31) is added to MCG2 as the publishing federate. Since, P31 = [(3, 6), (5,

8)], the ListX array is scanned from the range of (P31)X1 to (P31)X2 (i.e., 3 to 5) to check

any XjS
1

)(coordinate of an overlapping subscriber region. The subscriber region, S21 =

[(3, 2), (5, 4)], has S_X1 entry at ListX[3] in Table 1, which implies that S21 overlaps

with P31. Hence, S21 is added to multicast group MCG2. The subscriber region, S11 = [(4,

7), (6, 9)], has S_X1 entry at ListX[4] in Table 1, which implies that S11 overlaps with

P31. Hence, S11 is also added to multicast group MCG2. In addition to this, the ListX array

is also scanned from 0 to (P31)X1 (i.e., 0 to 3) to check XjS
1

)(coordinate of an overlapping

subscriber region. The subscriber region S22 = [(1, 7), (5, 10)] has S_X1 entry at ListX[1]

in Table 1, which implies that S22 overlaps with publisher region P11. Hence, S22 is also

added to multicast group MCG2. Now, the multicast group MCG2:P31 has three subscriber

members: {S11, S21, S22}. This implies that federates F1 (which owns region S11) and F2

 46

(which owns regions S21 and S22) is added to MCG2 as the subscribing federate. Finally,

ListX array is scanned in range (P31)X1 to (P31)X2 (i.e., 3 to 5) to check for any

XjS
2

)(coordinate of an overlapping subscriber region. In this case, there are no such

overlapping subscriber regions.

 Using the steps described above the P-Pruning algorithm creates four more multicast

groups for this example. The final list of multicast groups is shown below.

MCG1: P11 = {S21, S22},

MCG2: P31 = {S11, S21, S22},

MCG3: P12 = {S21, S21, S22},

MCG4: P23 = {S11},

MCG5: P22 = {S12, S13, S31}, and

MCG6: P21 = {S12, S13, S31}.

MCG Pruning Step: This step examines the overlap information of every region within

all multicast groups on Y-axis and prunes any regions that do not overlap.

 First, multicast group MCG1: P11 = {S21, S22} is examined. Since, publisher region P11

= [(2, 3), (4, 5)], we scan only the range from (P11)Y1 to (P11)Y2 (i.e., 3 to 5). The

subscriber region S21 = [(3, 2), (5, 4)] overlaps with P11 on Y-axis. However, S22 = [(1, 7),

(5, 10)] with (S22)Y1 = 7 and (S22)Y2 = 10 does not overlap with P11 on Y-axis. Hence, it is

pruned from MCG1. The final composition this group is MCG1: P11 = {S21}.

 The second multicast group MCG2: P31 = {S11, S21, S22} has publisher region P31 = [(3,

6), (5, 8)]. The subscriber region S21 = [(3, 2), (5, 4)] does not overlap with P31 on Y-axis

and hence, it is pruned from MCG2. Subscriber regions S11 and S22 are retained in MCG2

 47

after verifying that they overlap with P31 on Y-axis. The final composition of MCG2: P31

= {S11, S22}.

 Similarly, the remaining multicast groups are also examined and pruned to have

correct overlapping publisher and subscriber regions. For the multicast group MCG4, the

subscriber region S11 is pruned as it does not overlap with P23 on Y-axis. Since, there is

no subscriber region in this multicast group, MCG4 is deleted from the list of multicast

groups.

 The list of multicast groups created by the P-Pruning at the end of all three steps is as

follows:

MCG1: P11 = {S21},

MCG2: P31 = {S11, S22},

MCG3: P12 = {S21},

MCG5: P22 = {S12}, and

MCG6: P21 = {S12, S13}.

 Thus, using this example, we have demonstrated the formation of multicast groups in

P-Pruning algorithm for two federates. The multicast groups created using P-Pruning

algorithm can then be used by RTI for communication amongst federates.

4.4 Algorithm Analysis
The P-Pruning algorithm focuses on the computation of multicast groups right from the

beginning. For the List Computation sub-procedure, complexity is O(n), where n is the

number of federates in the distributed simulation. The MCG Computation sub-procedure

runs for between O(n) and O(n2) depending on the density of the regions within the

routing space. For the MCG Pruning sub-procedure, complexity is O(n) times. The total

 48

number of multicast groups in this algorithm is limited by O(n), which is significantly

lesser than the number of multicast groups in fixed-grid and dynamic-grid algorithms.

We prove this property in Section 4.6. In the next section, we present the computational

complexity analysis of the P-Pruning algorithm in detail.

The P-Pruning algorithm is faster than region-matching, fixed-grid, and dynamic-

grid DDM algorithms, as it avoid the quadratic computation step involved in these

algorithms. By populating the multicast group, first only on the basis of X-axis

information, and pruning the multicast group of unwanted subscriber regions in another

step, it avoids the computational overheads of other algorithms.

4.5 Average-Case Computation Complexity Analysis of P-Pruning DDM Algorithm
We now present the complexity analysis of the P-Pruning algorithm. In particular, we

prove its correctness and efficiency analytically through average-case analysis. We are

using the average-case analysis as it is better representative of publisher and subscriber

region distribution within the routing space.

Assumptions:

Let, F, P, and S be the set of federates, publisher regions and subscriber regions in

the distributed simulation system, respectively. In our complexity analysis and simulation

experiments, each federate Fi has one publisher region Pi and one subscriber region Si,

where i denotes the federate ID.

n = |F| = Number of federates, and

|P| = |S| = Number of publisher and subscriber regions.

R = Length of the x-dimension of routing space. For simplicity, we assume that the

routing space is a square two-dimensional coordinate system.

 49

MCG = Set of multicast groups and |MCG| is the number of multicast groups.

Each publisher region is identified by four coordinates (Px1, Px2, Py1, Py2) as shown in

Figure 6. Similarly, each subscriber region is identified by four coordinates (Sx1, Sx2, Sy1,

Sy2).

For all publisher regions:

Px1 < Px2 and Py1 < Py2.

For all Subscriber regions:

Sx1 < Sx2 and Sy1 < Sy2.

Figure 6. Routing space layout for a single publisher region P

In order to have distinct variable names and clear understanding, we will be

denoting probability of random variable x as Pr[x]. First, we analyze the different overlap

cases between publisher/subscriber regions. After this, we find the expected number of

subscriber regions that can overlap with a given publisher region Pi on X-axis of the

routing space.

R

P

Px1
Px2

Py2

Py1

X-Axis

Y-
A

xi
s

A publisher region P in routing space R

 50

For a publisher region, Pi, Px1 and Px2 can fall in the range 0-R with equal

probability.

Hence, for any coordinate x on X-axis,

 Probability Pr[Px1 = x] =
R
1 , and

 Probability Pr[Px2 = x] =
R
1 .

Similarly, we can see that for a subscriber region, Sj, Sx1 and Sx2 will have

probability

Pr[Sx1 = x] =
R
1 , and Pr[Sx2 = x] =

R
1 .

We need to find all subscriber regions that overlap with publisher region Pi and

add them to multicast group MCGi.

4.5.1 Analysis for Overlap Cases

Given a publisher region Pi and a subscriber region Sj, there are four distinct cases for

overlap of Pi and Sj. We only consider X-axis overlap information for the MCG

Population sub-procedure.

Case (a): In this case, as shown in Figure 7, subscriber region Sj overlaps

publisher region Pi such that Sx1 is less than Px1 and Sx2 lies between Px1 and Px2.

 51

Figure 7. Region overlap analysis for case (a)

Using the formula,

∑
=

=<<
b

ax
xPrbxaPr)(][,

the probability that Sx1 is less than Px1 is given as

⋅=

=

==

<<=<

∑

∑

=

=

R
P

R

xSPr

PSPrPSPr

x

P

x

P

x
x

xxxx

x

x

1

0

0
1

1111

1

][

]0[][

1

1

Also, the probability that Sx2 lies between Px1 and Px2 is

⋅
−

=

=

==<<

∑

∑

=

=

R
PP

R

xSPrPSPPr

xx

P

Px

P

Px
xxxx

x

x

x

x

12

2221

1

][][

2

1

2

1

R

Pi

Px1 Px2Sx1 Sx2

X-Axis

Y-
A

xi
s

Case (a): Subscriber region Sj overlaps publisher region Pi

Sj

 52

Therefore, the probability that a subscriber region Sj overlaps publisher region Pi

in case (a) is

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛=

<<<=
<<<

R
PP

R
P

PSPPrPSPr
PSPANDPSPr

xxx

xxxxx

xxxxx

121

22111

22111

x

events)t independen areBoth (
)]([x)][(

)]()[(

Q

Case (b): In this case, as shown in Figure 8, subscriber region Sj overlaps

publisher region Pi such that Sx2 is greater than Px2 and Sx1 lies between Px1 and Px2.

Figure 8. Region overlap analysis for case (b)

The probability that Sx1 lies between Px1 and Px2 is given as

R

Pi

Px1 Px2Sx1 Sx2

X-Axis

Y-
A

xi
s

Case (b): Subscriber region Sj overlaps publisher region Pi

Sj

 53

⋅
−

=

=

==<<

∑

∑

=

=

R
PP

R

xSPrPSPPr

xx

P

Px

P

Px
xxxx

x

x

x

x

12

1211

1

][][

2

1

2

1

 Also, the probability that Sx2 is greater than Px1 is

⋅
−

=

=

==

<<=<

∑

∑

=

=

R
PR
R

xSPr

RSPPrSPPr

x

R

Px

R

Px
x

xxxx

x

x

2

2

2222

1

][

][][

2

2

Thus, the combined probability for case (b) is

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

=

<<<<=
<<<<

R
PR

R
PP

RSPPrPSPPr
RSPANDPSPPr

xxx

xxxxx

xxxxx

212

22211

22211

x

events)t independen areBoth (
)]([x])[(

)]()[(

Q

Case (c): In this case, as shown in Figure 9, publisher region Pi completely

overlaps subscriber region Sj such that Sx1 is greater than Px1 and Sx2 is less than Px2.

 54

Figure 9. Region overlap analysis for case (c)

The probability that Sx1 is greater than Px1 and less than Sx2 is given as

⋅
−

=

=

==<<

∑

∑

=

=

R
PS

R

xSPrSSPPr

xx

S

Px

S

Px
xxxx

x

x

x

x

12

1211

1

][][

2

1

2

1

Also, the probability that Sx2 is greater than Sx1 and less than Px2 is

⋅
−

=

=

==<<

∑

∑

=

=

R
SP

R

xSPrPSSPr

xx

P

Sx

P

Sx
xxxx

x

x

x

x

12

2221

1

][][

2

1

2

1

Thus, the combined probability for case (c) is

R

Px1
Px2Sx1 Sx2

X-Axis
Y-

A
xi

s

Case (c): Publisher region Pi completely overlaps subscriber
region Sj

Sj

Pi

 55

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

=

<<<<=
<<<<

R
SP

R
PS

PSSPrSSPPr
PSSANDSSPPr

xxxx

xxxxxx

xxxxxx

1212

221211

221211

x

events)t independen areBoth (
)]([x])[(

)]()[(

Q

Case (d): In this case, as shown in Figure 10, subscriber region Sj completely

overlaps publisher region Pi such that Sx1 is less than Px1 and Sx2 is greater than Px2.

The probability that Sx1 is less than Px1 is given as

⋅=

=

==<<

∑

∑

=

=

R
P

R

xSPrPSPr

x

P

x

P

x
xxx

x

x

1

0

0
111

1

][]0[

1

1

Also, the probability that Sx2 is greater than Px2 is

⋅
−

=

=

==<<

∑

∑

=

=

R
PR
R

xSPrRSPPr

x

R

Px

R

Px
xxx

x

x

2

222

1

][][

2

2

Thus, the combined probability for case (d) is

 56

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛=

<<<<=
<<<<

R
PR

R
P

RSP PrPSPr
RSPANDPSPr

xx

xxxx

xxxx

21

2211

2211

x

events)t independen areBoth (
)]([x])0[(

)]()0[(

Q

Figure 10. Region overlap analysis for case (d)

In all, we have n subscriber regions spread over R length, where R is the length of

X-dimension of routing space. Hence, assuming a uniform distribution of regions over the

routing space, the expected number of subscriber regions at any point on X-axis of the

routing space is
n
R

. Each of these subscriber region has coordinate Sx1 coinciding with a

point x on X-axis. Therefore, the probability that any point on X-axis has a subscriber

region Sj, whose Sx1 coordinate coincides with this point is
n

R
1 .

R

Sx1
Sx2Px1 Px2

X-Axis

Y-
A

xi
s

Case (d): Subscriber region Sj completely overlaps publisher
region Pi

Pi

Sj

 57

The expected value of a random variable x is given as ∑=)(.)(xPrxxE , where

Pr(x) is the probability of x. So, we can calculate the expected number of subscriber

regions for each case, and then the total expected number of subscriber region

overlapping with publisher region Pi for case (a) is given as:

⋅
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛×=

⎥
⎦

⎤
⎢
⎣

⎡ ×
=

=

∑

∑

∑

R
PP

R
P

n
R

xPrxacaseE

xxx 121 x1

) case(a) ofty (Probabili
)case(a) of iespossibilit ofNumber (

)(.))((

Since, the entire X-dimension of routing space is used for summation, the limits

of above sum is from 0 to R. Therefore, the above equation is

⋅⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛×=

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛××=

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛×= ∑

=

R
PP

R
P

n

R
PP

R
P

R
nR

R
PP

R
P

n
R

xxx

xxx

R

i

xxx

121

121

0

121

x

x

 x1

For simplicity, we consider n = R. Thus, the expected number of subscriber

regions in case (a) is given as:

R
PPP

acaseE xxx)(
)]([121 −×
= .

Similarly, we can derive the average-case values for remaining cases. They are as

follows:

R
PRPP

bcaseE xxx)()(
)]([212 −×−
= ,

 58

and ,
)()(

)]([1212

R
SPPS

ccaseE xxxx −×−
=

R
PRP

dcaseE xx)(
)]([21 −×
= .

The overall average-case (expected value) for the number of subscriber regions

overlapping with publisher region Pi is given as

.

)]([
)]()[(

)]()[(
)]([

4
1

)]([)]([
)]([)]([

4
1

21

1212

212

121

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−×
+−×−

+−×−
+−×

=

⎥
⎦

⎤
⎢
⎣

⎡
+

++

xx

xxxx

xxx

xxx

PRP
SPPS

PRPP
PPP

R

dcaseEccaseE
bcaseEacaseE

Since, all the terms in above equation are constants, the average number of

subscriber regions overlapping with any publisher region Pi is O(1), i.e., constant.

Observation 1:

The MCG Population sub-procedure in Section 4.2.2 runs for n times and calculates the

subscribe regions overlapping with the publisher regions at all coordinates. This step

takes constant time on average. Hence, the average case complexity of MCG Population

sub-procedure is O(n).

Observation 2:

List Computation sub-procedure in Section 4.2.1 runs in O(n) time in both average and

worst-case scenarios. This is because the publisher and subscriber regions of all federates

are scanned only once.

 59

Observation 3:

MCG Pruning sub-procedure in Section 4.2.3 prunes the unnecessary subscriber regions

from multicast groups. It checks only the Y-axis coordinates of pre-existing subscriber

regions. Since, there are O(1) subscriber regions and O(n) multicast groups, this

procedure also takes O(n) on average.

From observations 1, 2, and 3, we conclude that the P-Pruning algorithm takes

O(n) in average case and O(n2) in worst-case scenario.

4.5.2 Federate Distribution Analysis

We now analyze two more cases related to distribution of federates within the routing

space. In the preceding section, we considered the case when number of federates is equal

to the size of routing space. Here, we consider the remaining two possibilities.

Case (i): n < R

In this condition, the number of federates is significantly fewer than the length of

the routing space. Hence, communication channels are relatively free and this facilitates

message transfer among federates. Also, we have a sparse distribution of publisher and

subscriber regions. Thus, the expected number of subscriber regions in overlap case (a) is

given as

⎟
⎠

⎞
⎜
⎝

⎛ −
⎟
⎠

⎞
⎜
⎝

⎛
×=

R
PP

R
P

nacase E xxx 121 x])([.

The overall average-case (expected value) for the number of subscriber regions

overlapping with publisher region Pi is given as

 60

[]⋅×=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−×
+−×−

+−×−
+−×

=

⎥
⎦

⎤
⎢
⎣

⎡
+

++

constant

)]([
)]()[(

)]()[(
)]([

4

)]([)]([
)]([)]([

4
1

2

21

1212

212

121

2

R
n

PRP
SPPS

PRPP
PPP

R
n

dcaseEccaseE
bcaseEacaseE

xx

xxxx

xxx

xxx

Therefore, the average-case complexity for MCG population sub-procedure in

Section 4.2.2 is)(2

2

R
nO . Since, Rn < , it implies that the DDM computations in the P-

Pruning algorithm are faster in this case.

Case (ii): n > R

In this condition, the number of federates is significantly greater than the length of

the routing space. Hence, communication channels are overloaded and this impedes

message transfer among the federates. Also, we have dense distribution of publisher and

subscriber regions. Thus, the expected number of subscriber regions in overlap case (a) is

given as

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛×=

R
PP

R
P

nacase E xxx 121 x])([.

The overall average-case (expected value) for the number of subscriber regions

overlapping with publisher region Pi is given as [].constant
2
×

R
n

 61

Therefore, the average-case complexity for MCG Population sub-procedure in

Section 4.2.2 is)(2

2

R
nO . Since, Rn > , this implies that the DDM computations in the P-

Pruning algorithm will take O(n2) time.

4.6 Size of Multicast Group Analysis

We now prove that P-Pruning algorithm is efficient in terms of space required to

represent the multicast groups.

Lemma: The P-Pruning DDM algorithm requires less memory space to store the

multicast groups.

Proof: The fixed-grid algorithm creates a multicast group for each grid cell. If the

dimension of each grid cell is aa× , then the number of multicast group is ⎟
⎠
⎞

⎜
⎝
⎛

×
×

aa
RR .The

dynamic-grid algorithm requires fewer memory space than ⎟
⎠
⎞

⎜
⎝
⎛

×
×

aa
RR because it assigns

multicast groups to only those cells that have at least one overlapping subscriber and one

publisher region. However, dynamic-grid algorithm does not save significant memory. If

the size of grid cell is increased, then it requires less memory, but at the cost of accuracy.

The region-matching algorithm requires n = |F| multicast groups, where n is the number

of federates in the distributed simulation. The P-Pruning DDM algorithm first assigns n

memory space for the multicast groups, and then prunes the unwanted multicast groups

which have publisher and subscriber regions that do not overlap on Y-axis. Hence, the

total space required to store the multicast groups in the P-Pruning DDM algorithm is

fewer than the other three algorithms.

 62

4.7 Extending the P-Pruning DDM to multidimensional routing space

A region represents interests. Region = {(XL, YL, ZL), (XH, YH, ZH)}. Thus, a publisher

region Pii is represented as {(XiiL, YiiL, ZiiL), (XiiH, YiiH, ZiiH)}.

The three-dimensional P-Pruning algorithm assumes that all the 3-D coordinates are

present.

Input: Federate F = {F1, F2, F3, …, Fn}. Every federate Fi has publisher regions {Pi1, Pi2,

…, Pix}. Every Fi has subscriber regions {Si1, Si2, …, Six}.

Output: Multicast group MCG = {MCG1, MCG2, …, MCGn} such that MCGi: Pj = {S1,

S2, …, Sk}.

First, we project all regions on the ListX array and compute the multicast groups MCG

using the MCG Population procedure. Then, we apply the MCG pruning process

successively first on the Y-axis and then on the Z-axis. Here, we only show the MCG

Pruning procedure on Z-axis here.

MCG Pruning on Z-axis Procedure

BEGIN Procedure

For all multicast groups MCGi do

Begin

Pi is the publisher region in multicast group MCGi;

For all subscriber regions Sj in MCGi do

Begin

 63

 If subscriber region Sj does not overlap publisher region Pi on Z-axis of routing

space

 Begin

 Delete subscriber region Si from MCGi;

 Decrement the subscriber region count of MCGi;

 End

End

If MCGi has no subscriber region

Begin

 Delete current multicast group MCGi;

 Decrement the multicast group counter in MCG;

End

End

END Procedure

4.8 Dynamic P-Pruning Algorithm
We now describe the extension of P-Pruning algorithm to dynamic situations where

federates can join and leave multicast groups. In this approach, the multicast groups

 64

produced by P-Pruning algorithm are corrected whenever a federate joins or resigns from

the routing space.

4.8.1 Federate Join and Resign Procedure at Run-Time

Federate Join Procedure

Input: Federate Fi (with federate ID Fed_ID) joining the federation. Federate Fx has

publisher regions {Pi1, Pi2, …, Pix} and subscriber regions {Si1, Si2, …, Six}.

Output: Updated multicast group MCG.

BEGIN Procedure

For all publisher regions Pi of federate Fi do

Begin

 Create Multicast group MCGx+1: Pix

 Find all subscriber regions overlapping with publisher region Pix and add them to

MCGx+1

End

For all subscriber regions Six of federate Fi do

Begin

 Scan all publisher regions Pix in multicast groups to check if Six and Pix overlap

 If (Overlap Scan = TRUE) Then add Six to MCG:Pix

End

END Procedure

 65

Federate Resign Procedure

Input: Federate Fi (with federate ID Fed_ID) resigns from the federation. Federate Fx has

publisher regions {Pi1, Pi2, …, Pix} and subscriber regions {Si1, Si2, …, Six}.

Output: Updated multicast group MCG.

BEGIN Procedure

For all multicast groups MCGi do

Begin

 If Fed_ID of publisher region in MCGi = Fed_ID of Fi

 Begin

 Delete multicast group MCGi

 End

 Else

 Begin

 //Check if any subscriber regions in MCGi are owned by federate Fi

 If Fed_ID of any subscriber region in MCGi = Fed_ID of Fi

 Begin

 Delete subscriber region Si from MCGi

 End

 End

End

END Procedure

 66

CHAPTER FIVE: PERFORMANCE EVALUATION OF DDM
ALGORITHMS

In this Chapter, we describe the performance evaluation of the P-Pruning DDM algorithm

against three other algorithms: region-matching, fixed-grid, and dynamic-grid DDM

algorithms. The simulations were implemented in C++ on Windows XP running on a

Pentium IV 3 GHz PC. We used object-oriented class structures to represent federates,

their publisher and subscriber regions, the grid cells and the multicast groups.

Figure 11. Performance evaluation of P-Pruning algorithm for routing space 50 x50 and
grid size 2 x 2

5.1 Implementation Details
We compared the four DDM algorithms using three performance criteria: computation

time, run-time memory usage, and number of multicast groups required. In our

simulation experiments, we generated federates with publisher and subscriber regions,

Region
Matching Fixed

Grid DDM Dynamic
Grid DDM P-Pruning

DDM

10

20

30
40

50

0

0.5

1

1.5

2

2.5

3

3.5

Computation
Time (Sec.)

Type of Algorithm

No. of Federates

DDM Algorithm Comparison

10
20
30
40
50

 67

whose coordinates were randomly distributed within the routing space. Each federate Fi

has one publisher region Pi and one subscriber region Si. In the graphs from Figure 11

through Figure 19, we have shown the results for three set of distributed simulation

environment: 50 x 50 routing space with 2 x 2 grid cells, 50 x 50 routing space with 5 x 5

grid cells, and 100 x 100 routing space with 5 x 5 grid cells. The grid cell dimensions are

applicable only for the fixed-grid and dynamic-grid algorithms. The number of federates

in this simulation environment was increased from 10 to 50 for 50 x 50 routing space and

from 20 to 40 for the 100 x 100 routing space. In all the graph charts, the data

corresponding to DDM algorithm is referred as P-Pruning DDM. In Chapter 6, we

discuss the impact of system resources such as memory constraints on data distribution

strategies. To ensure consistency in the simulation results, all DDM algorithms access the

same federates at run-time.

Figure 12. Performance evaluation of P-Pruning algorithm for routing space 50 x50 and
grid size 5 x 5

Region
Matching Fixed

Grid DDM Dynamic
Grid DDM P-Pruning

DDM

10

20

30
40

50

0

5

10

15

20

25

Computation
Time (Sec.)

Type of Algorithm

No. of Federates

DDM Algorithm Comparison

10
20
30
40
50

 68

The graphs in Figures 11, 12, and 13 show the comparison of computation time

required for different DDM algorithms. The routing space is 50 x 50 in Figure 11 and 12,

while it is 100 x 100 for Figure 13. The grid size is 2 x 2 for Figure 11, and 5 x 5 for

Figures 12 and 13. The results show that the P-Pruning DDM algorithm computes the

multicast groups for DDM faster than any of the three algorithms.

Figure 13. Performance evaluation of the P-Pruning algorithm for routing space 100 x
100 and grid size 5 x 5

We compared the memory usage at run-time for the four algorithms and the

results are shown in Figures 14, 15, and 16. The routing space is 50 x 50 in Figure 14 and

15, while it is 100 x 100 for Figure 16. The grid size is 2 x 2 for Figure 14, and 5 x 5 for

Figures 15 and 16. The graphs show that the P-Pruning DDM algorithm used system

memory more efficiently as compared to the other three algorithms. From our simulation

experience, we learned that memory management is very critical in distributed

Region
Matching Fixed

Grid DDM Dynamic
Grid DDM P-Pruning

DDM

20

400

2

4

6

8

10

12

14

16

Computation
Time (Sec.)

Type of Algorithm

No. of
Federates

DDM Algorithm Computation Time

20
40

 69

simulations. Chapter 6 discusses the memory constraint management issues in more

detail.

Figure 14. Comparison of memory usage by DDM algorithms for routing space 50 x 50
and grid size 2 x 2

All DDM algorithms provide the multicast groups as an output. The size of the

multicast groups is an important metric for evaluating the performance of DDM

algorithms. The graphs in Figures 17, 18, and 19 show the comparison of DDM

algorithms in terms of size of multicast groups required to provide the region overlap

information. The routing space is 50 x 50 in Figure 17 and 18, while it is 100 x 100 for

Figure 19. The grid size is 2 x 2 for Figure 17, and 5 x 5 for Figures 18 and 19. The

results show that the P-Pruning DDM algorithm requires significantly fewer multicast

groups as compared to fixed-grid and dynamic-grid algorithm.

R
eg

io
n

M
at

ch
in

g

Fi
xe

d
G

rid
 D

D
M

D
yn

am
ic

G
rid

 D
D

M

P-
P

ru
ni

ng
D

D
M

10
20

30
40

50

0

100

200

300

400

500

600

700

800

900

Memory (MB)

Type of Algorithm

No. of Federates

DDM Algorithm Memory Usage

10
20
30
40
50

 70

Figure 15. Comparison of memory usage by DDM algorithms for routing space 50 x 50
and grid size 5 x 5

Figure 16. Comparison of memory usage by DDM algorithm for routing Space 100 x
100 and grid size 5 x 5

R
eg

io
n

M
at

ch
in

g

Fi
xe

d
G

rid
 D

D
M

D
yn

am
ic

G
rid

 D
D

M

P-
P

ru
ni

ng
D

D
M

10
20

30
40

50

0

50

100

150

200

250

300

Memory (MB)

Type of Algorithm

No. of Federates

DDM Algorithm Memory Usage

10
20
30
40
50

Region
Matching Fixed

Grid DDM Dynamic
Grid DDM P-Pruning

DDM

20

400

200

400

600

800

1000

1200

1400

1600

Memory (MB)

Type of Algorithm

No. of Federates

DDM Algorithm Memory Usage

20
40

 71

Figure 17. Comparison of multicast group size in DDM algorithms for routing space 50
x 50 and grid size 2 x 2

Figure 18. Comparison of multicast group size in DDM algorithms for routing space 50
x 50 and grid size 5 x 5

R
eg

io
n

M
at

ch
in

g

Fi
xe

d
G

rid
 D

D
M

D
yn

am
ic

G
rid

 D
D

M

P-
Pr

un
in

g
D

D
M

10
20

30
40

50

0

100

200

300

400

500

600

700

Number of
Multicast
groups

Type of Algorithm

No. of
Federates

DDM Algorithm Multicast Group Size

10

20

30
40

50

R
eg

io
n

M
at

ch
in

g

Fi
xe

d
G

rid
 D

D
M

D
yn

am
ic

G
rid

 D
D

M

P
-P

ru
ni

ng
D

D
M

10
20

30
40

50

0
10
20
30
40
50
60

70
80

90

100

Number of
Multicast
groups

Type of Algorithm

No. of
Federates

DDM Algorithm Multicast Group Size

10
20
30
40
50

 72

Figure 19. Comparison of multicast group size in DDM algorithms for routing space 100
x100 and grid size 5 x 5

5.2 Simulation Results Analysis
In this sub-section, we analyze the simulation results from the performance

evaluation of DDM algorithms. We found that the P-Pruning DDM algorithm provides

the region overlapping information efficiently with respect to three important metrics:

computation time, memory usage at run-time, and size of multicast groups. In the

performance-evaluation simulation, the region-matching algorithm is an exact algorithm

with quadratic time complexity, while the grid-based (fixed and dynamic) algorithms are

approximate heuristics. The P-Pruning DDM algorithm is an exact algorithm, and it

outperforms both exact and approximate class of DDM algorithms.

We also found that the density of federates in the routing space and the variation

of grid sizes affects the performance of all DDM algorithms. The performance of fixed-

grid and dynamic-grid algorithm deteriorates with increase in the number of federates

more severely as compared to region-matching and the P-Pruning DDM algorithm.

Region
Matching Fixed

Grid DDM Dynamic
Grid DDM P-Pruning

DDM

20

400

50

100

150

200

250

300

350

400

Number of
Multicast
Groups

Type of Algorithm

No. of Federates

DDM Algorithm Multicast Group Size

20

40

 73

However, if we increase the size of grid cells, the grid algorithms become fast, but at the

cost of accuracy [99]. The P-Pruning algorithm does not suffer from this constraint.

Hence, it is both efficient and accurate. The computations in all DDM algorithms can be

extremely memory intensive. Therefore, system memory can become a huge constraint

on the performance. Also, managing the communication overhead with increase in

number of federates--and their overlapping regions--is very crucial for scalable

distributed simulation. We discuss these important aspects of DDM research in the next

Chapter.

 74

CHAPTER SIX: RESOURCE CONSTRAINT MANAGEMENT IN
DISTRIBUTED SIMULATION

In this Chapter, we present the design and implementation of a resource-efficient

enhancement to the P-Pruning algorithm. We also present a performance evaluation

study in a memory-constraint environment.

6.1 Memory as a Resource
The memory system of current machines is composed of several levels:

Memory = L1 Cache (On-Chip) + L2 Cache (Secondary) + RAM (Main Memory) + Disk

A cache provides temporary storage that can be accessed quicker than RAM. By placing

computationally intensive portions of a program in the cache, the processor can avoid the

overhead involved in continuous access of RAM. L1 cache is a storage space that is

located on the processor itself, while L2 cache is typically a RAM chip outside the

processor (e.g., the Intel Pentium 4 features a 256 or 512KB L2 advanced transfer cache).

In this hierarchy, memory gets larger and slower as it gets further away from the

processor. A typical access time to internal main memory (RAM) is in the order of

nanoseconds, while access time to external memory (such as hard disk) is in the order of

milliseconds. Thus, the access times of internal and external memory differ by a factor of

million. In many large-scale distributed simulation applications, the communication

between internal and external memory, and not the internal computation time, is actually

bottleneck in the computation. Also, as the application size is scaled, the Input/Output

(I/O) requirements can lead to serious memory crunch. Modern operating systems use

sophisticated paging and data pre-fetching strategies to minimize the effect of I/O

 75

bottleneck and ensure that the accessed data is present in the internal memory. However,

these strategies are general in nature and cannot exploit the properties of a specific

problem. Hence, we need to design solutions which consider a memory of limited size.

In memory-constraint approach, we view the system memory as a resource that

has to be optimally allocated among the processes. The problem is how to deploy

efficient data-structures and reorganize the data at run-time so that the DDM computation

is not as memory intensive as encountered in practical simulations. I/O efficient data-

structures are the key tools in developing a resource-efficient approach. Also, dynamic

memory-management strategy that provides efficient garbage collection to reduce

unnecessary memory leak at run-time is crucial. The primary motivation in the resource-

constraint approach is to devise a scalable, memory-efficient solution for high-

performance distributed simulation applications.

6.2 I/O Efficient Resource-Constraint Strategy for DDM

In this section, we explore the resource-constraint issues in the DDM algorithms and

present a memory-efficient enhancement to the P-Pruning algorithm.

6.2.1 Resource-Constraint Issues in DDM Implementation

In Chapter 5, we compared the performance of P-Pruning algorithm with region-

matching, fixed-grid and dynamic-grid DDM algorithm through simulation studies.

During the simulation experiments, it was observed that the performance of DDM

algorithms is adversely affected as the number of federates is increased in the simulation

environment. In practice, system scalability can be seriously inhibited by limits on

 76

bandwidth and computation. While this is not totally unexpected; for a DDM algorithm to

be effective and deployable in high performance modeling and simulation applications, it

must be scalable. In general, the performance of all DDM algorithms is severely affected

by limitations in system resources such as communication bandwidth, memory, and CPU

availability. Hence, we have considered the system memory as a resource in this research.

In practical distributed simulation applications, the designers should deploy efficient data

structures to achieve the dual goal of reducing computation time and memory utilization.

6.2.2 A Memory-Efficient Strategy for Data Distribution Management

The P-Pruning algorithm is not resource-efficient because it does not conserve memory.

In a resource-constraint environment, the system memory is limited and special routines

are needed for developing scalable solutions. We now present a memory-efficient

enhancement to the P-Pruning algorithm. We consider the system memory as a resource

and modify the P-Pruning algorithm for optimal utilization of this resource. In memory-

efficient P-Pruning algorithm, the List Computation Sub-Procedure in Chapter 4 is

modified by incorporating a resource-efficient data structure. We define a node which

maintains three different types of lists: Publisher region list, X1 subscriber region list,

and X2 subscriber region list. The set of node is represented as list which replaces the

ListX array in the List Computation sub-procedure. The set of nodes can be viewed as

disjoint set of forests, where each node stores three different trees. This representation

reduces the memory allocated at run-time significantly for the DDM computation and

 77

also improves the computation time as evident from the performance evaluation results in

next sub-section.

Figure 20. Representation of memory-efficient data structure

Data Structure Design: The structure of each node in the disjoint set is shown in Figure

20. There are n nodes in the list, and each node maintains three different lists of size p, q,

and r. Here, p = number of publisher regions; q = number of X1 subscriber regions; and r

= number of X2 subscriber regions. The list node is represented using the class structure

shown in Figure 20. The three lists in disjoint set are populated in List Computation sub-

procedure and the multicast groups are built using the disjoint set in the MCG population

sub-procedure. Using the new structure, we can reduce the memory allocated at run-time

and reduce the access time during computations.

6.3 Performance Evaluation of Resource-Constraint P-Pruning Algorithm
In this section, we describe the performance evaluation of the P-Pruning DDM and

Memory-Constraint P-Pruning algorithm. The study was aimed at modeling high-

List
Nodei

Publisher List X1 Subscriber List X2 Subscriber List

Publisher List1
.
.
.
.

Publisher List(p - 1)
Publisher Listp

X1 Subscriber List1
.
.
.

.
X1 Subscriber List(q - 1)

X1 Subscriber Listq

X2 Subscriber List1
.
.
.

.
X2 Subscriber List(r - 1)

X2 Subscriber Listr

List
Node1

List
Noden

List
Node(n-1)

 78

performance distributed simulation scenario and implemented in C++ under Windows

XP running on a Pentium IV 2.8 GHz PC with 512 MB RAM and 2500 MB virtual

memory. We used object-oriented class structures. as shown in Figure 21, to represent

federates, their publisher and subscriber regions, the grid cells and the multicast groups.

Figure 21. Class structure to represent the disjoint set of forest

6.4 Simulation Implementation and Analysis
In the simulation experiments, we generated federates with publisher and subscriber

regions, whose coordinates were randomly distributed within the routing space. Each

federate Fi has one publisher region Pi and one subscriber region Si. The graph in Figure

22 shows the comparison of memory utilized at run-time by the Memory-Constraint P-

Pruning and P-Pruning algorithms for distributed simulation having routing space of

4,000 x 4,000 and number of federates ranging from 100 to 4,000. Figure 23 shows the

comparison of computation time required for the Memory-Constraint P-Pruning and

conventional P-Pruning implementation for the similar range of routing space and

class List_Node

{ public:

 vector<Region> Pub_Region;

 vector<Region> X1_Sub_Region;

 vector<Region> X2_Sub_Region;

 List_Node();

~List_Node();

};

 79

number of federates in simulation environment. It is evident from these graphs that the

Memory-Constraint version uses constant memory as compared to the P-Pruning

algorithm. It also requires less computation time.

Figure 22. Comparison of memory utilization by the Memory-Constraint and P-Pruning
DDM algorithms

Figure 23. Comparison of computation time for routing space from 100 x 100 to 4000 x
4000

100
500

1000
3000

4000

0

200

400

600

800

1000

1200

1400

1600
M

em
or

y
(M

B
)

No. of Federates

Memory Utilization Graph

P-Pruning DDM Memory-Constraint DDM

100
500

1000
3000

4000

0

50

100

150

200

250

Ti
m

e
(s

ec
)

No. of Federates

Computation Time Comparison

P-Pruning DDM Memory-Constraint DDM

 80

Memory Utilization Graph

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10
0

50
0

10
00

30
00

40
00

50
00

75
00

10
00

0
15

00
0
17

00
0
18

00
0
19

00
0
20

00
0

No. of Federates

M
em

or
y

(M
B

)

P-Pruning
DDM

Memory-
Constraint
DDM

The graph in Figure 24 shows the memory utilization for the routing space upto 20000 x

20000 and the number of federates ranging from 100 to 20,000. This result demonstrates

the scalable nature of Memory-Constraint P-Pruning algorithm. The P-Pruning algorithm

could simulate only upto 4,000 federates due to inefficient memory utilization at run-

time.

Figure 24. Memory utilization for distributed simulation with 20,000 federates

 From the performance evaluation study of two versions of the P-Pruning DDM

algorithm, it is clear that the Memory-Constraint P-Pruning DDM algorithm provides the

region overlapping information efficiently with respect to important metrics: computation

time and memory usage at run-time. The list of disjoint forests minimizes I/O

requirements and optimizes memory access at run-time.

 81

6.5 Summary of Memory-Efficient Approach

In this Chapter, we presented the design and performance evaluation of a resource-

efficient enhancement to the P-Pruning algorithm for DDM. By deploying efficient data

structures, the resource-constraint P-Pruning DDM algorithm scales well in high

performance distributed-simulation environment. It shows better performance in terms of

computation time and memory usage at run-time in simulation environment.

 82

CHAPTER SEVEN: INTEGRATION OF THE P-PRUNING DDM
ALGORITHM IN FDK

In this Chapter, we describe the integration of the P-Pruning algorithm with FDK. FDK is

an implementation of HLA architecture developed at Georgia Institute of Technology. It

has been widely used by researchers in academia, industry, and government laboratories

as an effective software package for evaluating their research contributions to distributed

simulation technology. We first provide an overview of the FDK architecture with

emphasis on the DDM component. After this, we discuss the issues with FDK DDM

module and areas of improvement. Then, we describe the integration of the P-Pruning

algorithm with FDK and provide results of our experiences. We also describe the

enhancements made to FDK from its existing HLA 1.3 specification to the IEEE 1516

standard for DDM implementation. Finally, we provide the concluding remarks.

7.1 An Overview of FDK Architecture

Federated Simulations Development Kit (FDK) is an open source implementation of

HLA-based RTI software system developed at Georgia Institute of Technology. It has

been used by researchers in academia, industry, and government laboratories as an

effective software package for evaluating their research contributions to distributed

simulation technology.

 FDK contains composable modules for building run-time infrastructures (RTI)

using which different simulations can be integrated together. RTI-Kit, a principal

component of FDK, is a collection of libraries. It supports development of Run-Time

 83

Infrastructures for parallel and distributed simulation systems, especially federated

simulation systems running on high performance computing platforms. Figure 25 and

Figure 26 show an architectural overview of FDK and its interconnection with the

Federate and the underlying network.

Figure 25. Architectural Overview of FDK

FDK enables its users to develop the functions of RTI, and more importantly,

provides developers with the flexibility to expand the functionality. FDK is designed so

that RTI developers can pick and choose from the set of FDK modules that are most

appropriate for developing their particular RTI implementation. Each library can be used

separately, or together with other RTI-Kit libraries, depending on the functionality

required by the user. Because each library is designed as a stand-alone component, RTI

implementations that are constructed using RTI-Kit are highly modular, with clear, well-

 Federate

Simulator/Application

RTI Interface

MCAST TM

FM

Buffer
Management
Queues Lib

Network

FDK

Basic RTI / Detailed RTI

 84

defined (and documented) interfaces. These libraries can be embedded into existing RTI

to add new functionality. RTI developers can benefit from incorporating these ready-

made modules, and avoid having to develop them on their own. Thus, FDK is a modular

and reusable set of libraries designed to facilitate the development of RTI for developing

or integrating parallel and distributed simulation systems.

Figure 26. FDK Architecture (source: FDK user Manual)

The RTI-Kit consists of the following modules all of which implemented in

C/C++:

• Buffer Management and Queues Library.

• Time Management Kit (TM).

• Multicast Kit (MCAST).

 85

• Fast Messages (FM).

Buffer Management is a common module for the MCAST-Kit (Multicast), TM-

Kit (Time Management) and FM-Lib (Fast Messages) modules for the management of

buffers and queues. The Fast Messages module, FM-Lib, is a low-level messaging layer.

Fast Messages is designed to enable convenient and high performance layering of other

APIs and protocols on top of it. MCAST-Kit handles the management of multicast groups

including communication in multicast groups. The Time Management (TM) module, TM-

Kit, provides basic primitives for synchronizing events in HLA distributed simulations. It

also enables message delivery in both Receive Order (RO) and Time Stamp Order (TSO).

In addition to the RTI-Kit, FDK contains two HLA Interface Specification

complaint RTI implementations:

• Baby RTI (BRTI), C implementation.

• Debbie’s RTI (DRTI), C++ implementation.

While these two implementations are not complete realization of the HLA

Interface Specification, sufficient HLA services are already in place for simple

simulations and benchmarking. The MCAST and FM modules are of particular interest in

this paper. The MCAST module is responsible for the management of multicast groups

and group communications while the FM module provides the low-level primitives for

communications on the underlying network.

 86

7.1.1 HLA Functional Components Implemented in FDK

The HLA Interface Specification defines sets of services to support realization of

distributed simulations. The Runtime Infrastructure (RTI) in HLA is software that

implements those services.

The DRTI software implements services in five of the categories defined in the HLA

Interface Specification:

FEDERATION MANAGEMENT: These services initialize the execution of the

federation.

The joinFederationExecution service is used to initialize the RTI and to define the object

classes and interaction classes that are valid for the federation. No other RTI function

should be invoked prior to making this call. Constants indicating the number of federates

(RTIKIT_numnodes) and the ID of this federate (RTIKIT_nodeid) are undefined until

this procedure is called. Note that all federates joining the federation must supply

identical fed files. Otherwise, the handles assigned to go with the names will not match,

and the federation will not work correctly.

DECLARATION MANAGEMENT: These services define object and interaction classes

and set up communications between federates using a newsgroup-like publish/subscribe

paradigm.

The declaration management services are used to specify those object and interaction

classes for which a federate intends to send messages, and specifies those classes for

which a federate desires to receive messages. Some means is required to specify which

 87

federates are to be notified when an interaction is sent, an object instance is created, or an

attribute of an object instance is updated. A publish/subscription mechanism not unlike

Internet newsgroups is used for this purpose. Specifically, the HLA uses something called

"class-based filtering." This means a federate can subscribe to receive all updates to all

instances of objects of a certain class. For example, to get a message whenever any tank

moves, a federate can subscribe to the Tank class. Note there is no mechanism to only get

updates for a specific object instance, only for all objects of some class. DDM

mechanisms are defined in the HLA for this type of data filtering.

OBJECT MANAGEMENT: These services allow federates to declare object instances,

update attributes, send interactions, receive updates to attributes, and receive interactions

produced by other federates.

The object management services are used to transmit messages between federates. A

message will be sent whenever a federate creates (registers) an instance of an object

class, updates the attributes of an object instance, or sends an interaction. Callbacks are

used to receive messages. When the RTI is ready to deliver a message to the federate, it

calls one of the methods of the FederateAmbassador class. FederateAmbassador is an

abstract class. This means the federate developer has to derive a class from

FederateAmbassador and provide definitions for each of the methods. When a federate

creates an instance of an object (of some class specified in the FedFile), it must notify the

RTI of this fact by registering this instance. When an instance is registered, the RTI

returns a handle for the object instance that is used in future references to it, e.g., to

update attributes of the object. The type ObjectHandle denotes a reference to an object

instance.

 88

TIME MANAGEMENT: These services control the advancement of simulation time

within each federate, and prevent federates from receiving messages in their past (i.e.,

time stamp less than the federate's current simulation time).

The time management services ensure that messages sent with a time stamp are delivered

to each federate in time-stamp order, and that no federate receives a time-stamped

message in its past, i.e., a message with time stamp less than the federate's current

simulation time. In the current implementation, updates and sends that include a time

stamp are delivered in time-stamp order. All other messages are delivered in receive

order. Time management is implemented by services where the federate requests that its

simulation time be advanced, and the RTI responds by issuing a GRANT when it can

guarantee the time advance will not later result in a message in the federate's past.

Specifically, there are two services to request simulation time advances. The grant is

implemented via a callback to the federate.

Use of these services always results in the following scenario:

1) Federate requests a time advance and then calls tick,

2) RTI delivers zero or more messages to the federate via the reflectAttributeValues

and/or receiveInteraction callbacks in FederateAmbassador,

3) RTI notifies the federate its simulation time has been advanced via a

timeAdvanceGrant callback. No additional reflectAttributeValues and/or

receiveInteraction callbacks *with time stamps* will be made until the next time an

advance in simulation time is requested. (If messages without time stamps are received,

 89

they will be delivered the next time the federate calls tick, regardless of whether an

advance in simulation time has been requested.)

Support services provide mapping between string representations of names and integer

handles used in the other services, and provide miscellaneous utilities which do not neatly

fit into other categories.

There are two other sets of services defined in the HLA. The Ownership Management

services allow one federate to transfer ownership of object instance attributes to another

federate (at which point the second federate would be responsible for updating those

attributes). These are not implemented in the current version of FDK DRTI. The Data

Distribution Management services allow you to attach "regions" of interest to

publications and subscriptions (to allow minimization of unnecessary network traffic).

An initial version of a library for realizing the DDM services, called DDM-Kit, is

included. All of the data types used in the RTI interface are declared within a class named

RTI which acts as a namespace (requiring the scope qualifier RTI:: before each type

name).

7.2 Implementation of DDM Services in FDK

FDK uses RTI 1.3 standard for implementing DDM services. Hence, regions are

composed of extents, which in turn are rectangular portions of k-dimensional routing

space. In that way, a geometric shape can be approximated with a collection of extents. A

 90

publisher region is associated with each publish message generated by a federate.

Federates express their interests via subscription regions. If the publisher region

associated with a message overlaps with a subscriber region, the message is routed to that

subscribing federate. In a distributed simulation application, the DDM services map the

name space, description, and interest expressions to the communication services provided

by the underlying network. The multicast services are used to realize communications

among federates using MCAST libraries. MCAST provides standard group

communication services (join, leave, and send messages to groups). Thus, the central

problem addressed by DDM-Kit software is mapping description and interest expressions

represented as (region, class attributes) pair to groups. Interest expressions must be

mapped to groups to which the federate must join. Description expressions associated

with a message are mapped to one or more groups to which the message must be sent.

For any particular description, expression, DDM-Kit in FDK can determine a set of

multicast groups. Creating and managing multicast groups is done outside DDM-Kit.

However, DDM-Kit specifies how many groups are needed during DDM_init, and uses

DDM_modify_groups callback to inform an RTI process when to join or leave groups.

Multicast groups are referred to uniquely across all RTI processes by an integer value

taken from [0, total groups required – 1] range.

 Users of DDM-Kit have to map their attributes to integers by invoking

DDM_get_attribute_handle. This integer representation is used to pass attributes back to

users when DDM_filter_and_promote is invoked. In addition, special integer value, not

assigned to any of the attributes is passed in DDM_init. It is used for

DDM_filter_and_promote to designate an attribute as being filtered out.

 91

7.3 DDM Functions in FDK

Each RTI process must call the following procedures when it begins to execute in order

to ensure proper initialization of the library. These procedures must be called before

RTIKIT_Init() is called.

void DDM_UsingDDM(void)

This procedure sets a flag in RTI-Kit to indicate the DDM-Kit library will be used.

void DDM_init(long p_fed_id, long p_n_feds, long p_n_dimensions,

const char *p_FedFileName, long

p__DDM_filtered_out_attr_index_value,

DDM_modify_groups_proc p_DDM_modify_groups, long

*r_DDM_n_groups, long *r_DDM_size_tag)

Data Types and Support Services

The following types and support services are provided by DDM-Kit:

DDM_expression_handle: a handle that serves as a pointer to a description or interest

expression

attribute_handle: a handle for an attribute

class_handle: a handle for a class

The next two services are used to obtain attribute and class handles.

int DDM_get_class_handle(char *p_class_name, class_handle *r_class)

DDM_get_class_handle returns a class handle to be used in subsequent DDM-Kit service

calls. p_class_name is a hierarchical name of the class which uniquely identifies it.

 92

r_class is the returned handle. The value returned by this function can be one of the

following:

• DDM_success indicates the operation completed successfully.

• DDM_no_class_error indicates no class with this name exists.

int DDM_get_attribute_handle(char *p_attr_name, class_handle

p_class, long p_attr_index, attribute_handle *r_attr)

DDM_get_attribute_handle returns an attribute handle to be used in subsequent DDM-Kit

service calls. p_class is the class handle and p_attr_name is an attribute name.

p_attr_index is an integer value assigned to attribute by the user. The user must map each

attribute to a unique integer value. This integer representation is used to pass attributes

back to users when DDM_filter_and_promote is invoked. r_attr is the returned handle.

The value returned by this function will be one of the following:

• DDM_success indicates the operation completed successfully.

• DDM_no_class_error indicates no class with this handle exists.

• DDM_no_attribute_error indicates no attribute with this name and class exists.

Finally, each region is represented as follows. A region is a sequence of extents. An

extent is a sequence of ranges, one for each dimension. A range is a half closed interval

[lower_bound, upper_bound). Dimensions are numbered from 0 to the N-1 in an N-

dimensional routing space.

Ranges are specified in order of increasing dimensions to define an extent. An extent can

be shared among multiple regions.

 93

7.4 Issues with DDM Implementation in FDK

FDK implements HLA 1.3 specifications. Hence, it uses the system of multiple routing

spaces, where regions can span across different routing spaces. Also, the number of

extents per region and number of regions per federate is limited to 5 and 10, respectively.

The maximum number of federates is limited to 256. Moreover, DDM services are not

available as a standard functionality. To overcome these drawbacks, we have developed

the P-Pruning DDM algorithm and integrated it with FDK.

7.5 Integration with HLA Architecture in FDK

FDK is an implementation of HLA architecture developed at Georgia Institute of

Technology. It has been widely deployed as the platform for HLA-based distributed

simulation research. Hence, we have integrated the P-Pruning DDM algorithm with FDK

software as a library and compare the performance of P-Pruning DDM algorithm with

other DDM algorithms using the FDK simulated environment for some applications with

certain characteristics. This unified FDK-DDM architecture will improve current HLA

implementations and advance the current state-of-the-art distributed simulation

methodologies.

 94

Figure 27. A modular overview of P-Pruning algorithm

Figure 28. Architectural layout for integration of P-Pruning DDM algorithm with FDK

RTI-Core

MCAST Other UtilitiesRM-KIT TM-KIT

Shared Memory IP Protocols Network Interface

Fast Message Interface

Physical Network

DDM-Module
P-Pruning Algorithm

Region Interface

List Computation

Multicast Groups

Population Module

Pruning Module

List
Computation

Module

Region
Mapping
Interface

Population
Module

D
istributed S

im
ulation Interface

Pruning
Module

Multicast
Group
Output

 95

 The integrated architecture of FDK with P-Pruning DDM algorithm is shown in

Figure 27. Figure 28 presents the DDM module used within FDK. We now describe the

setup procedures involved in the integration process.

Setup Instructions:

To Compile:

 nmake /f PDDM_Makefile.win

This creates pddm_fdk.exe, the federate executable, in current folder.

To Run on Single Machine:

Edit MyFed.net to relect the IP of the machine and decide the number of nodes.

Set the COMM_NODE_ID = 0, = 1 and so on.

Run the executable from different DOS windows to simulate the federates.

Setup:

PDDMFed.fed is the new Federation info file. It is based on the MyFed.fed file in

minsim simulation. The federation name has been changed to PDDMFed from MyFed in

the original simulation.

Structure of MyFed.NET File

(Communication

 (Device fm-tcp ;; Use FM/MCAST over TCP

 (Mode sync fixed) ;; the mode supported by fm-tcp

)

 (Memory Static 16 4096) ;; use 128 16K buffers

 (Topology

 96

 (Network 4

 (Host 132.170.109.231 33333)

 (Host 132.170.109.231)

 (Host 132.170.109.231)

 (Host 132.170.109.231)

;; (Host hostname_of_first_node port)

;; (Host hostname_of_next_node)

;; (Host hostname_of_next_node)

;; (Host hostname_of_next_node)

)

)

)

Communication Across Network

(Communication

 (Device fm-tcp ;; Use FM/MCAST over TCP

 (Mode sync fixed) ;; the mode supported by fm-tcp

)

 (Memory Static 16 4096) ;; use 128 16K buffers

 (Topology

 (Network 2

 (Host 132.170.109.231 33333)

 (Host 132.170.109.246)

;; (Host hostname_of_first_node port)

;; (Host hostname_of_next_node)

;; (Host hostname_of_next_node)

 97

;; (Host hostname_of_next_node)

)

)

)

7.6 Design and Development of the Communicator Module

We now describe the integration of P-Pruning algorithm with FDK. First, we present the

design of a communicator module and then a minimal simulation in FDK.

The integration of P-Pruning algorithm with FDK consists of following steps:

• Design of P-Pruning to FDK communicator module

• Integration of FDK software and the communicator module

 We now describe the design of the communicator module for integrating the P-

Pruning algorithm with FDK. The communicator module provides connection between P-

Pruning DDM and the FDK federate. It enables conversion of the federate and region

representation formats from the IEEE 1516 to the HLA 1.3 as required in FDK. The

template of communicator module is useful in any implementation of simulation

involving P-Pruning algorithm. Thus, it acts as an API for further simulation

experiments.

In the current version of FDK, the number of processors used during the execution

does not change and all the processors are available during initialization and entire

execution. Each processor s assigned unique number. According to the FDK user manual,

FDK has implemented only 25% of the total DDM services from the RTI1.3 Interface

specification. Hence, the integration of P-Pruning algorithm with FDK can provide help

 98

with implementation of DDM services in FDK. The information about regions created by

federates are stored in two classes: RegionInfo and RegionSets. A RegionInfo class is

created upon calling CreateRegion, and contains an array of extents. Since this

information also may relate to routing, ClassInfo retains information about multicast

groups. During join, the parsing of the fed file results in the creation of multicast groups

based on the value of ClassSet.CreateMCast.

 IEEE 1516 is the HLA standard approved by IEEE in September 2000 as a successor

of the HLA 1.3 specifications. It simplifies the DDM implementation and the basic

components in this specification are as follows:

Routing space: There is a single routing space and all dimensions are included in this

routing space.

Regions: A region is a single rectangular subspace within the coordinate space. Regions

may be defined on any subset of the available dimensions of the coordinate system.

Region set: Regions are grouped into region sets, which consist of one or more regions.

The regions in a region set need not all have the same subset of the dimensions of the

coordinate system.

Dimension: Dimensions correspond to simulation data and they are used to define

regions.

 99

7.6.1 Simulation Results of P-Pruning Algorithm Integrated in FDK

In Figure 29, we have shown the interface setting for a simulation using FDK and its

integration with P-Pruning. A simulation that is developed in FDK needs to deliver the

information on federates to P-Pruning module. This information includes details about

the publisher and subscriber region in each federates in the IEEE 1516 specifications. The

P-Pruning algorithm then computes the multicast groups and sends this to the distributed

simulation which is used by the federation for DDM.

Figure 29. Integrated architecture of FDK with P-Pruning algorithm

 The FDK uses following data structures to define regions. As it can be seen, region,

referred to as region_handle, is an array of extents p_extents_value with p_n_extents

Simulation/Application
RTI Interface

Buffer
Management

Library

TM

FM

Network

Federate

FDK with
P-Pruning

P-Pruning

MCAST

DDM

Basic RTI / Detailed RTI

 100

number of elements. Extent, in turn, referred to as extent is an array of ranges, one for

each dimension, whereas range is a half closed interval [lower_bound, upper_bound).

 In the FDK, at any point during an execution there is a set of description and interest

expressions, each of which may either be registered (i.e. active) or not. Registered

expressions are used to determine data distribution connectivity. Two procedures are used

to tag an expression as being active or not. These are registering and unregistering an

expression. They can only be invoked after obtaining a handle for a description or interest

expression. Besides registering expressions, it is also possible to modify description and

interest expressions. For these purpose, two procedures are defined:

typedef struct range_Struct range;

typedef struct range_Struct *extent;

struct range_Struct {

long lower_bound; /* lower bound for a range */

long upper_bound; /* upper bound for a range */

};

typedef struct region_handle_Struct region_handle;

struct region_handle_Struct {

extent *p_extents_value; /* sequence of extents */

int p_n_extents; /* number of extents for this region */

};

 101

DDM_modify_expression and DDM_modify_region. The first procedure allows

changing an expression’s value by atomically changing all arguments of an expression’s

(region, class attribute) pair. The second procedure is used to change a region’s argument

only.

 The DDM_register_expression(DDM_expression_handle p_exp) procedure registers

an expression with the handle p_exp. The returned parameter may have one of the

following values: DDM_success indicates the operation completed successfully and

DDM_no_expression_error indicates no interest or description expression with this

handle could be found.

int DDM_unregister_expression(DDM_expression_handle p_exp)

 This procedure deactivates an expression with the handle p_exp. The return value is

the same as for DDM_register_expression.

int DDM_modify_expression(DDM_expression_handle p_exp,

region_handle p_region, attribute_handle *p_attrs, int p_n_attrs)

 Expression p_exp is modified by modifying all parts of an expression value, that is, its

region p_region, attributes p_attrs with p_n_attrs.

class pRegion
{
public:
 int Xrange1, Xrange2;
 int Yrange1, Yrange2;
 int Region_Type;

 int ID;
 pRegion ();
};

 102

The return value is the same as DDM_register_expression.

int DDM_modify_region(DDM_expression_handle p_exp, region_handle p_region).

Modifying the region part of an expression value, that is, its region p_region, modifies

expression p_exp. The return value is the same as for DDM_register_expression.

 The P-Pruning algorithm can be invoked as library for a distributed simulation

application. Based on the federate information provided by the RTI, it generates the

multicast groups. In the implementation of the P-Pruning algorithm, we used the

following data-structure to represent a region:

 In our integration environment, we created a simulation using 4 nodes under Windows

XP based on the minsim simulation in FDK version 4.2b3. The DDM services were

invoked in the simulation to utilize the P-Pruning region-matching routines. Finally, the

multicast groups information generated by the P-Pruning was delivered to the simulation

for inter-federate communication. Using this experimental setup, we have demonstrated

the P-Pruning algorithm can be used a library for implementing DDM services in FDK.

7.7 Distributed FDK Implementation

The performance of DDM algorithms is strongly dependant on the availability of

system resources such as memory, CPU time, and communication bandwidth. In the

performance-evaluation simulations, we compared the memory usage of four DDM

algorithms and found that system memory becomes a bottleneck as the number of

federates in increased. Hence, resource-efficient DDM algorithms that can deliver results

in constrained conditions are critical in distributed simulation. The constraints become

 103

more relevant as we incorporate real-world large-scale distributed simulations

applications in the experiments. Advanced memory management schemes such as

hierarchical data-caching and pre-fetching routines can help in solving the memory

constraint issues. In the near future, we plan to adapt the P-Pruning DDM algorithm in a

resource-constraint environment.

In memory-constraint approach, we view the system memory as a resource that

has to be optimally allocated among the processes. The problem is how to deploy

efficient data-structures and reorganize the data at run-time so that the DDM computation

is not as memory intensive as encountered in practical simulations. I/O efficient data-

structures are the key tools in developing a resource-efficient approach. Also, dynamic

memory-management strategy that provides efficient garbage collection to reduce

unnecessary memory leak at run-time is crucial. The primary motivation in the resource-

constraint approach is to devise a scalable, memory-efficient solution for high-

performance distributed simulation applications.

7.8 Summary

In this Chapter, we presented the integration of P-Pruning DDM algorithm with FDK.

FDK has been widely deployed as the platform for HLA-based distributed simulation

research. We believe that integration of P-Pruning DDM algorithm with FDK software

can improve the current HLA implementations, and help advance the modeling and

simulation technology.

 104

CHAPTER EIGHT: DIRECTIONS FOR FURTHER RESEARCH

8.1 Scalable DDM approach in Distributed Environment
During the performance evaluation experiments, it was observed that the performance of

DDM algorithm is adversely affected as the number of federates is increased in the

simulation environment. In large-scale distributed simulation application, system

scalability can be seriously inhibited by limits on resources such communication

bandwidth, memory, and CPU availability [98].

Figure 30. Cluster computer architecture

A distributed DDM algorithm implementation on cluster computers (Figure 30)

can scale well as the number of simulation entities increases ([86], [113], [117], [118]).

An interesting extension to our work could be a parallel/distributed DDM algorithm that

incorporates resources such as communication bandwidth in the resource-constraint

 105

analysis, and address the scalability issues. Figure 31 shows a visual image of the 48-

node dual-processor Ariel cluster running on SUN Solaris operating system in the School

of Computer Science at University of Central Florida.

Figure 31. 48-node dual-processor Ariel Solaris cluster at UCF

Data distribution management services provided by the RTI should scale in terms

of (1) computational complexity for handling requests, (2) message traffic and/or

bandwidth for distributing information, and (3) memory requirements for storing attribute

information, maintaining tables, etc. The parameters that normally affect scalability are:

(a) the number of federates (or hosts) in the federation, (b) the number of simulated

entities per federate, (c) the average complexity concerning the interests of each entity

(i.e., an entity may have a number of different kinds of sensors), (d) the interaction rates

between objects after they discover each other, (e) the locality of objects, and indirectly

(f) the scenario.

 106

Figure 32. Layout of a distributed computing application sharing data resources

In large-scale distributed simulation application, system scalability can be

seriously inhibited by limits on resources such communication bandwidth, memory, and

CPU availability. While this is not totally unexpected; for a DDM algorithm to be

effective and deployable in high performance modeling and simulation applications, it

must be scalable. Our work can be extended to a distributed DDM algorithm

implementation on cluster computers, incorporate resources such as communication

bandwidth in the resource-constraint analysis, and investigate the scalability issues.

Figure 32 shows the layout of a distributed computing application as often encountered in

DDM scenarios sharing resources across geographically distributed locations. The

distributed implementation of P-Pruning algorithm will provide a scalable and resource-

efficient DDM approach. The P-Pruning DDM algorithm on integration with FDK

 107

software will improve the current HLA implementations, and advance the modeling and

simulation technology.

8.2 Using Real-World DDM Applications for Test
We can apply the DDM techniques developed in this research using data derived from

real-world applications. Now, we present three scenarios for illustrating the use of DDM

in real-world applications ([104], [106], [107], [108], [111], [112]). The following

applications are considered:

i) Ground-Based Radar (GBR) tracking tanks with limited operating range.

ii) JSTARS (airborne radar) flying and tracking tanks with limited operating range.

iii) AWACS flying and tracking airborne aircrafts.

Application (i) represents static condition, i.e., neither the publisher or subscriber

regions, once set, are modified. As illustrated in Figure 33, ground-based radars GBR1

through GBR2 cover an area and their subscriber regions are shown. Tanks T1 through

T6 have limited operating range reflected by their respective publisher regions. The

subscriber region for radar GBR1 is shown overlaps publisher regions of tanks T1 and

T2.

 108

Figure 33. Application having ground-based radars tracking tank with limited range

Application (ii) represents semi-dynamic condition, which have either the publisher or

subscriber regions fixed. In this case, the publication region of JSTARS is not fixed. As

illustrated in Figure 34, a dynamic JSTARS (Joint Surveillance Target Attack Radar

System) is circling over the entire area and its subscriber region is shown. Tanks T1

through T6 have limited operating range reflected by their respective publisher regions.

At this particular instance, the subscriber region for JSTARS overlaps publisher regions

of tanks T1, T2, and T3.

T1
T2

T3
T4

T5

T6

GBR1

GBR2GBR3

GBR4

 109

Figure 34. Application having JSTARS flying and tracking tanks with limited range

Application (iii) represents the dynamic DDM test-case, where both subscriber

and publisher regions are dynamically modified. In this case, the publication region of

JSTARS is fixed. As illustrated in Figure 35, a dynamic AWACS (Airborne Warning and

Control System) is circling over the entire area and its subscriber region is shown.

Airborne aircrafts A1 through A6 are circle over the area and move in and out of

AWACS range. At this particular instance, the subscriber region for AWACS overlaps

publisher regions of aircrafts A1, A2, and A3. Table 2 shows the classification of three

applications based on the nature of subscriber region.

T4

JSTARS

T5

T6 T1
T2

T3

 110

Figure 35. Application having AWACS flying and tracking airborne aircrafts

Table 2. Classification of real-world scenarios based on subscriber region update

Sensor / Target Sensor Subscription Target Update

GBR/Tank Static Static

JSTAR/Tank Dynamic Static

AWACS/Aircraft Dynamic Dynamic

AWACS
A6

A4

A5

A2

A1

A3

 111

CHAPTER NINE: CONCLUSIONS

DDM is necessary for large-scale distributed simulation applications as information

exchange and delivery become more complex. In this thesis, we presented the design,

analysis, and performance evaluation of an efficient algorithm for DDM. The P-Pruning

DDM algorithm shows better performance in terms of computation time, memory usage

at run-time, and size of multicast groups as compared to other algorithms in a simulated

environment. We have also presented the design and performance evaluation of a

resource-efficient enhancement to the P-Pruning algorithm for DDM. By deploying

efficient data structures, the resource-constraint P-Pruning DDM algorithm scales well in

high performance distributed-simulation environment. It shows better performance in

terms of computation time and memory usage at run-time in simulation environment. We

have also extended our DDM research work by incorporating resource constraints and

develop resource-efficient approaches in constrained environments. A distributed

implementation of DDM on cluster computers will provide scalable solution to this

problem. The P-Pruning DDM algorithm when integrated with FDK software will

improve the current HLA implementations, and advance the modeling and simulation

technology.

 112

APPENDIX A: LIST OF RTI SOFTWARE

 113

Table 3. List of commercial RTI software and their details

RTI

Name

Vendor HLA

Spec.

DDM

Method

Langu

age

Platform Compil

er

Latest

Release

Date

Notes

pRTI Pitch AB IEEE
1516,
1.3

Unknown Java,
C++

Java2,
Win32

JDK 1.4,
MSVC+
+

Aug. 05 www.pitc
h.se

ERTI Mitsubishi
Space
Software
(MSS)

1.3 Unknown C++ SunOS 8,
Windows,
Linux

MSVC+
+,
gcc,
Sun
Visual
C++

Apr. 02 *

MAK
RTI

MAK
Technolog
ies

1.3 Unknown C++ Win32,
Linux,
IRIX

MSVC+
+,
gcc,
MIPS
Pro C++

Jan. 03 www.ma
k.com

RTI-
NG Pro

VTC &
SAIC

1.3 Unknown C++ Solaris,
Linux

C++
Forte 6,
gcc

May 05 www.virt
c.com

RTI
NG

SAIC 1.3 Unknown C++ Solaris 2.6 Sun C++
4.2

May 04 *

Matrex
RTI
NG

VTC 1.3 Unknown C++ Linux gcc May 05 *

HPC-
RTI

RAM
Labs

1.3 Grid * * * * www.ra
mlabs.co
m

* denotes that data is not available.

http://www.pitch.se/�
http://www.pitch.se/�
http://www.mak.com/�
http://www.mak.com/�
http://www.virtc.com/�
http://www.virtc.com/�
http://www.ramlabs.com/�
http://www.ramlabs.com/�
http://www.ramlabs.com/�

 114

Table 4. List of academic RTI software

NAME Institute Version DDM

Method

Platform Website

DRTI Georgia
Institute of
Technology

1.3 * C++ on

Win32

and

Linux

http://www.cc.gatech.edu/computing/pads

Light-

Weight

RTI

George

Mason

University

1.0 * * http://netlab.gmu.edu/rti

RTI 1.3 MIT
Lincoln
Labs

1.0 Grid * http://dss.ll.mit.edu

* denotes that data is not available.

http://www.cc.gatech.edu/computing/pads�
http://netlab.gmu.edu/rti�
http://dss.ll.mit.edu/�

 115

APPENDIX B: RESULTS OF SIMULATION EXPERIMENTS

 116

Table 5. Computation time results (in Seconds) for routing space 50 x 50 and grid size 2

x 2

Routing
Space

Dimensions
No. of

Federates
Region

Matching
Fixed

Grid DDM
Dynamic
Grid DDM

P-
Pruning

DDM
50 10 0.813 4.828 7.078 0.265
50 20 0.766 6.672 11.547 0.218
50 30 2.032 10.593 20.172 0.219
50 40 2.953 15.282 21.654 0.219
50 50 5.36 18.516 23.125 0.218

Table 6. Computation time results (in Seconds) for routing space 50 x 50 and grid size 5

x 5

Routing
Space

Dimensions
No. of

Federates
Region

Matching
Fixed

Grid DDM
Dynamic
Grid DDM

P-
Pruning

DDM
50 10 0.547 0.421 0.75 0.219
50 20 1 0.516 1.359 0.25
50 30 1.094 0.766 1.953 0.218
50 40 2.625 0.969 1.172 0.219
50 50 3.297 0.984 1.75 0.218

Table 7. Computation time results (in Seconds) for routing space 100 x 100 and grid size

5 x 5

Routing
Space

Dimensions
No. of

Federates
Region

Matching
Fixed

Grid DDM
Dynamic
Grid DDM

P-Pruning
DDM

100 20 0.734 8.078 8.781 0.688
100 40 4 11.203 15.922 0.922

 117

Table 8. Memory usage (in MB) results for routing space 50 x 50 and grid size 2 x 2

Routing
Space

Dimensions
No. of

Federates
Region

Matching
Fixed

Grid DDM
Dynamic
Grid DDM

P-Pruning
DDM

50 10 215.641 334.125 334.289 213.961
50 20 209.555 443.297 443.289 201.719
50 30 219.68 565.797 565.629 201.852
50 40 232.945 719.879 720.105 232.848
50 50 250.141 861.102 861.113 250.09

Table 9. Memory usage (in MB) results for routing space 50 x 50 and grid size 5 x 5

Routing
Space

Dimensions
No. of

Federates
Region

Matching
Fixed

Grid DDM
Dynamic
Grid DDM

P-Pruning
DDM

50 10 186.867 274.773 274.773 177.168
50 20 197.117 274.969 274.969 177.363
50 30 207.281 275.164 275.164 177.559
50 40 217.449 275.359 275.359 177.754
50 50 227.621 275.563 275.563 177.957

Table 10. Memory usage (in MB) results for routing space 100 x 100 and grid size 5 x 5

Routing
Space

Dimensions
No. of

Federates
Region

Matching
Fixed

Grid DDM
Dynamic
Grid DDM

P-Pruning
DDM

100 20 232.668 813.805 813.324 200.711
100 40 328.059 1430.27 1429.92 201.512

 118

Table 11. Multicast group size results for routing space 50 x 50 and grid size 2 x 2

Routing
Space

Dimensions
No. of

Federates
Region

Matching
Fixed

Grid DDM
Dynamic
Grid DDM

P-Pruning
DDM

50 10 10 625 235 8
50 20 20 625 408 20
50 30 30 625 476 30
50 40 40 625 476 40
50 50 50 625 478 50

Table 12. Multicast group size results for routing space 50 x 50 and grid size 5 x 5

Routing
Space

Dimensions
No. of

Federates
Region

Matching
Fixed

Grid DDM
Dynamic
Grid DDM

P-Pruning
DDM

50 10 10 100 34 9
50 20 20 100 79 18
50 30 30 100 89 28
50 40 40 100 85 40
50 50 50 100 77 50

Table 13. Multicast group size results for routing space 100 x 100 and grid size 5 x 5

Routing
Space

Dimensions
No. of

Federates
Region

Matching
Fixed

Grid DDM
Dynamic
Grid DDM

P-Pruning
DDM

100 20 20 400 263 19
100 40 40 400 290 40

 119

Table 14. Memory-constraint P-Pruning algorithm scalability result for routing space
20000 x 20000

Routing Space
Dimensions

No. of
Federates

P-Pruning
DDM

Memory
Constraint

DDM
100 100 215.035 214.293
500 500 208.227 189.242

1000 1000 268.352 191.926
3000 3000 909.316 222.535
4000 4000 1469.2 248.504
5000 5000 283.059
7500 7500 402.465
10000 10000 570.445
15000 15000 1049.01
17000 17000 1294.45
18000 18000 1429.02
19000 19000 1570.9
20000 20000 1752

Table 15. Comparison of computation time between Memory-Constraint and normal P-
Pruning routing space 4000 x 4000

Routing Space
Dimensions

No. of
Federates

P-Pruning
DDM

Memory
Constraint DDM

100 100 0.281 0.266
500 500 0.328 0.906

1000 1000 0.5 1.265
3000 3000 80.672 6.672
4000 4000 204.782 12.656

 120

Table 16. Comparison of memory usage at run-time by Memory-Constraint and normal
P-Pruning routing space 4000 x 4000

Routing Space
Dimensions

No. of
Federates

P-Pruning
DDM

Memory
Constraint

DDM
100 100 215.035 214.293
500 500 208.227 189.242

1000 1000 268.352 191.926
3000 3000 909.316 222.535
4000 4000 1469.2 248.504

 121

APPENDIX C: FDK P-PRUNING INTEGRATION OUTPUT

 122

RESULTS on Two Nodes

Node 0:

C:\FDK\New_minsim>node0.bat

C:\FDK\New_minsim>set COMM_NODE_ID=0

C:\FDK\New_minsim>minsim

Debug set to DEBUG_DRTI

Initializing Instance tables

Registering Handlers

RTI Ambassador Initialized

double: 8

rti13::Double: 8

TM_Time: 8

float: 4

Creating federation execution... created. (sort of)

Current simulation time: 0

Joining federation execution...

myID initialized

Begin Join

Pass 1 complete

Pass 2 complete

 Transports: 0

 Spaces: 1

 Dimensions: 1

 Classes: 2

 Attributes: 1

 Interactions: 2

 Parameters: 1

 123

Allocating a heap of max 16 elements.

Info: commkit: loaded fm-tcp: sockets-based TCP using the FM library

Info: commkit: execution is synchronous (single-threaded)

Info: commkit: net topolgy is fixed

Number of FM Nodes: 2

0: Initializing RTI-KIT(Version: 4.0)...Node 0 initialized logging services.

Join: Creating Object Class Multicast Groups

Join: Creating Interaction Class Multicast Groups

Join: Entering Barrier

Join: Leaving Barrier

Join: Entering Final Barrier

Out of the call now joined.

Publishing and subscribing...Creating HVPS..done.

Enabling Time Constraint...enabled.

Entering initial barrier...done.

Publishing an object class and its attributes...getObjectClassHandle for Name: o

bjectRoot.MyObjectClass

done

Subscribing to that object class...done

Tick now...done

Create a AHVPS...done

Sending update message for attribute values of MyObjectClass...done

Sending delete message for MyObjectClass object...Received update attributes

message.

done

Sending a message for time 3.500000 ...done.

Requesting time... 1.000000 ...done.

Granted to time: 1.000000

 124

Requesting time... 2.000000 ...done.

Granted to time: 2.000000

Requesting time... 3.000000 ...done.

Granted to time: 3.000000

Requesting time... 4.000000 ...done.

Granted to time: 4.000000

Requesting time... 5.000000 ...done.

Granted to time: 5.000000

Requesting time... 6.000000 ...done.

Granted to time: 6.000000

Entering final barrier...done

Requesting time... 7.000000 ...done.

Exited with tick_count 1000

Resigning from Federation...service_this_socket: myid 0 readn() error; proc 1 so

ck 1860 bytes_read = -1

Node 1

C:\FDK\New_minsim>node1.bat

C:\FDK\New_minsim>set COMM_NODE_ID=1

C:\FDK\New_minsim>minsim

Debug set to DEBUG_DRTI

Initializing Instance tables

Registering Handlers

RTI Ambassador Initialized

double: 8

rti13::Double: 8

TM_Time: 8

float: 4

 125

Creating federation execution... created. (sort of)

Current simulation time: 0

Joining federation execution...

myID initialized

Begin Join

Pass 1 complete

Pass 2 complete

 Transports: 0

 Spaces: 1

 Dimensions: 1

 Classes: 2

 Attributes: 1

 Interactions: 2

 Parameters: 1

Allocating a heap of max 16 elements.

Info: commkit: loaded fm-tcp: sockets-based TCP using the FM library

Info: commkit: execution is synchronous (single-threaded)

Info: commkit: net topolgy is fixed

Number of FM Nodes: 2

1: Initializing RTI-KIT(Version: 4.0)...Node 1 initialized logging services.

Join: Entering Barrier

Join: Leaving Barrier

Join: Joining Groups

Join: Entering Final Barrier

Out of the call now joined.

Publishing and subscribing...Creating HVPS..done.

Enabling Time Constraint...enabled.

Entering initial barrier...done.

 126

Publishing an object class and its attributes...getObjectClassHandle for Name: o

bjectRoot.MyObjectClass

done

Subscribing to that object class...done

Tick now...done

Create a AHVPS...done

Sending update message for attribute values of MyObjectClass...done

Sending delete message for MyObjectClass object...Received update attributes

message.

done

Requesting time... 1.000000 ...done.

Granted to time: 1.000000

Requesting time... 2.000000 ...done.

Granted to time: 2.000000

Requesting time... 3.000000 ...done.

Granted to time: 3.000000

Requesting time... 4.000000 ...done.

Granted to time: 4.000000

Requesting time... 5.000000 ...done.

Granted to time: 5.000000

Requesting time... 6.000000 ...done.

Granted to time: 6.000000

Entering final barrier...done

Setting not constrained

Thrown Exception: TimeRegulationWasNotEnabled because: Time Regulation

was not enabled.

Destroying Federation...done.

 127

APPENDIX D: LIST OF PUBLICATIONS

 128

Parallel & Distributed Simulation:

1. Pankaj Gupta and Ratan K. Guha, “Integration of the P-Pruning Data Distribution
Management Technique with FDK”, 2007 (In preparation).

2. Pankaj Gupta and Ratan K. Guha, “Design, Analysis, and Performance Evaluation
of the P-Pruning DDM Algorithm”, Modeling and Simulation in Engineering Journal,
2007 (In Preparation).

3. Pankaj Gupta and Ratan K. Guha, “Design, Analysis, and Performance Evaluation
of an Efficient Algorithm for Data Distribution Management in High Level
Architecture”, Journal of Defense Modeling and Simulation, 2007.

4. Pankaj Gupta and Ratan K. Guha, “Integration of the P-Pruning Data Distribution
Management Technique with FDK”, 2006 Summer Computer Simulation
Conference, Calgary, Canada, July 31-August 2, 2006.

5. Pankaj Gupta and Ratan K. Guha, “Data Distribution Management for High
Performance Distributed Simulation in Resource-Constraint Environment”, 2006
High Performance Computing & Simulation (HPC & S), 20th European Conference
on Modelling And Simulation, Bonn, Germany, May 28-31, 2006.

6. Pankaj Gupta and Ratan K. Guha, “Design and Implementation of an Efficient
Algorithm for Data Distribution Management in High Level Architecture”, 4th
Symposium on Design, Analysis, and Simulation of Distributed Systems, 2006
Spring Simulation Multiconference, Huntsville, Alabama, April 2-6, 2006.

7. Pankaj Gupta and Ratan K. Guha, “A Heuristic for Efficient Data Distribution
Management in Distributed Simulation”, Enabling Technologies for Simulation
Science IX, (eds. Dawn A. Trevisani, Alex F. Sisti), Proc. of the SPIE, vol. 5805,
Defense & Security Symposium, March 2005, Orlando, FL, pp. 362-370.

Modeling & Simulation:
8. Pankaj Gupta and G. Prasad, “A Scalable, Portable, Object-Oriented Framework for

Parallel Multi-Sensor Data-Fusion Applications in HPC Systems”, Multisensor,
Multisource Information Fusion: Architectures, Algorithms, and Applications VIII,
SPIE Defense and Security Symposium, 13-15 April 2004, Orlando, FL.

9. Pankaj Gupta and G. Prasad, “SIMPAR: a portable object-oriented simulation-
science-based metamodel framework for performance modeling, prediction, and
evaluation of HPC systems”, Enabling Technologies for Simulation Science VIII
Conference, SPIE Defense and Security Symposium, 13-15 April 2004, Orlando, FL.

10. G. Prasad, S. Jayaram, J. Ward, and Pankaj Gupta, “SimBox: a simulation-based
scalable architecture for distributed command and control of spaceport and service
constellations”, Enterprise Modeling Applications and Techniques Session, Enabling

 129

Technologies for Simulation Science VIII Conference, SPIE Defense and Security
Symposium, 13-15 April 2004, Orlando, FL.

11. G. Prasad, S. Jayaram, J. Ward, and Pankaj Gupta, “SimBox: a scalable architecture
for aggregate distributed command and control of spaceport and service
constellations”, Modeling, Simulation and Calibration Of Space-Based Systems, SPIE
Defense and Security Symposium, 13-15 April 2004, Orlando, FL.

Graph Theory:
12. N. Deo and Pankaj Gupta, “Graph-Theoretic Structure of the World Wide Web”, A

chapter in Information Technology: Principles and Applications (eds. A. K. Ray and
T. Acharya), Prentice-Hall, India, ISBN 81-203-2184-7, 2004, pp. 169-203.

13. Pankaj Gupta and N. Deo, “Modeling Discrete Optimization Problems with
Graphs”, Proc. IASTED International Conference on Modelling, Simulation, and
Optimization, July 2-4, 2003, Banff, Canada.

14. Pankaj Gupta and N. Deo, "Diameter of a Random Graph and its Implications on
the Web graph", Congressus Numerantium, 160 (2003), pp. 109-116, 34th
Southeastern International Conference on Combinatorics, Graph Theory and
Computing, Mar. 3-7, 2003, Boca Raton, FL.

15. N. Deo and Pankaj Gupta, "Graph-Theoretic Analysis of the World Wide Web:
New Directions and Challenges", Matemática Contemporânea, vol. 25, pp. 49-70,
2003.

16. Pankaj Gupta and N Deo, "Analysis of Graph Theoretic Models for the Web",
Proc. 33rd Southeastern International Conference on Combinatorics, Graph Theory
and Computing, Mar. 4-8, 2002, Boca Raton, FL. Congressus Numerantium, vol.
155-159 (2002).

17. N. Deo and Pankaj Gupta, “Graph-Theoretic Web Algorithms: An Overview”,
Lecture Notes in Computer Science, (eds. T. Böhme and H. Unger), vol. 2026, pp. 91-
102, 2001, Germany.

18. N. Deo and Pankaj Gupta, "Sampling the Web With Random Walks", Congressus
Numerantium, 149 (2001), pp. 143-154, 32nd Southeastern International Conference
on Combinatorics, Graph Theory and Computing, Feb. 26 - Mar. 2, 2001, Baton
Rouge, LA.

19. A. Abdalla, N. Deo, and Pankaj Gupta, "Random-Tree Diameter and the Diameter-
Constrained MST", Congressus Numerantium, 144 (2000), pp. 161-182, 31st
Southeastern International Conference on Combinatorics, Graph Theory and
Computing, March 13-17, 2000, Boca Raton, FL.

20. N. Deo, Pankaj Gupta, and B. Litow, “Modeling the Web: Linking Discrete and
Continuous”, Proc. 2000 Summer Computer Simulation Conference, July 16-20,
2000, Vancouver, Canada, pp. 395-400.

 130

LIST OF REFERENCES

[1] G. Riley, M. Ammar, R. Fujimoto, A. Park, K. Perumalla, and D. Xu. “A Federated
Approach to Distributed Network Simulation”, ACM Transactions on Modeling and
Computer Simulation, Vol. 14, No. 2, pp. 116-148, April 2004.

[2] R. Fujimoto, T. McLean, K. Perumalla, and I. Tacic. “Design of high-performance

RTI software”, In Proceedings of Distributed Simulations and Real- time
Applications (DS-RT), San Francisco, CA, 2000.

[3] FDK—Federated simulations development kit.

http://www.cc.gatech.edu/computing/pads/fdk.html

[4] D. J. Van Hook, S. J. Rak, and J. O. Calvin. “Approaches to RTI Implementation of

HLA Data Distribution Management Services”, 96-14-084, Fifteenth Workshop on
Standards for the Interoperability of Distributed Simulations, September 16-20,
1996.

[5] D. J. Van Hook and J. O. Calvin. “Data Distribution Management in RTI 1.3.”, In

Proceedings of the 1998 Spring Simulation Interoperability Workshop. No. 98S-
SIW-206, Orlando, FL, 1998.

[6] GMU RTI homepage. http://netlab.gmu.edu/rti/

[7] http://www.virtc.com/products.jsp

[8] M. Hyett and R. Wuerfel. Implementation of the Data Distribution Management

Services in the RTI-NG. In Proceedings of the 2002 Spring Simulation
Interoperability Workshop, March 10 - 15, 2002, paper no. 02S-SIW-044.

[9] Defense Modeling and Simulation Office. 1997. HLA Compliance Checklist,

Federate, Version
1.1.Availabledfromdhttp://hla.dmso.mil/hla/policy/cmp_cl11.html/.

[10] Defense Modeling and Simulation Office. 1997. Test Procedures For High Level

Architecture Interface Specification, Version 1.1. Available from
http://hla.dmso.mil/hla/policy/pro_v11.doc

[11] Defense Modeling and Simulation Office. 1997. Test Procedures For High Level

Architecture Object Model Template, Version 1.1. Available from
http://hla.dmso.mil/hla/policy/pro_v3-0.doc

[12] Join Interoperability Test Command Document. HLA Services Overview.

http://jitc.fhu.disa.mil/jdep/briefings/hla_dis/hla_services_overview.pdf. Feb. 2003.

http://netlab.gmu.edu/rti/�
http://www.virtc.com/products.jsp�
http://hla.dmso.mil/hla/policy/pro_v11.doc�
http://hla.dmso.mil/hla/policy/pro_v3-0.doc�
http://jitc.fhu.disa.mil/jdep/briefings/hla_dis/hla_services_overview.pdf. Feb. 2003�

 131

[13] Defense Modeling and Simulation Office. 1998. High Level Architecture Interface

Specification, v1.3. http://hla.dmso.mil/hla/tech/ifspec/if1-3d9b.doc.

[14] Defense Modeling and Simulation Office. 1998. High Level Architecture Object

Model Template, v1.3. http://hla.dmso.mil/hla/tech/omtspec/omt1-3d4.doc.

[15] Defense Modeling and Simulation Office. 1998. High Level Architecture Rules,

v1.3” http://hla.dmso.mil/hla/tech/rules/rules1-3d2b.doc.

[16] Defense Modeling and Simulation Office. 1998. Federation Execution Planner’s

Workbook. http://hla.dmso.mil/hla/federation/fedep/fepw.xls.

[17] MAK High Performance RTI. http://www.mak.com/rti.php

[18] D. D. Wood. Implementation of DDM in the MAK High Performance RTI. White

paper. http://www.mak.com/ddm_whitepaper.htm.

[19] D. D. Wood. Implementation of DDM in the MAK High Performance RTI. In

Proceedings of the 2002 Spring Simulation Interoperability Workshop, March 10 -
15, 2002, paper no. 02S-SIW-056.

[20] R. C. Burns, R. M. Rees, and D. D. Long. “Efficient Data Distribution in a Web

Server Farm”, IEEE Internet Computing, Vol. 5, No. 4, pp. 56-65, 2001.

[21] L. Chen and H. Choi. “Approximation Algorithms for Data Distribution with Load

Balancing of Web Servers”, In Proceedings of the 2001 IEEE International
Conference on Cluster Computing, pp. 274-281, Los Angeles, CA, 2001.

[22] J. Mark Pullen, R. Brunton, D. Brutzman, D. Drake, M. Hieb, K. L. Morse, and A.

Tolk. “Using Web Services to Integrate Heterogeneous Simulations in a Grid
Environment”, In Proceedings of the International Conference on Computational
Science, Krakow, Poland, 2004.

[23] L. Arguello, P. Chliaev, W. Fehse, J. Miró, A. Vankov. “HLA-based distributed

simulation for International space station operations”, In Proceedings of the
International Conference on Space Operations (SpaceOps), June 1-5, 1998, Tokyo,
Japan paper ID: 4c007,
http://track.sfo.jaxa.jp/spaceops98/paper98/track4/4c007.pdf.

[24] P. Lee. “Efficient algorithms for data distribution on distributed memory parallel

computers”, IEEE Transactions on Parallel and Distributed Systems, Vol. 8, No. 8,
pp. 825-839, 1997.

http://hla.dmso.mil/hla/tech/rules/rules1-3d2b.doc�
http://hla.dmso.mil/hla/federation/fedep/fepw.xls�
http://www.mak.com/rti.php�

 132

[25] J. Barbosa, C.N. Morais, and A.J. Padilha. “Simulation of data distribution
strategies for LU factorization on heterogeneous machines”, In Proceedings of the
International Parallel and Distributed Processing Symposium, 22-26 April 2003.

[26] H. Sivaraman and C.S. Raghavendra. “ADDT: automatic data distribution tool for

porting programs to PVM”, In Proceedings of the Twenty-Ninth Hawaii
International Conference on System Sciences, Vol. 1, pp. 557 – 564, 3-6 Jan. 1996.

[27] G. Yang, J. Ruoming, and G. Agrawal. “Impact of data distribution, level of

parallelism, and communication frequency on parallel data cube construction”, In
Proceedings of the International Parallel and Distributed Processing Symposium,
22-26 April 2003.

[28] M. Amri. “A new data distribution method for parallel ray tracing”, In Proceedings

Seventh International Conference on Information Visualization, pp. 79–84, 16-18
July 2003.

[29] C. Lin, Y. Chung, and J. Liu. “Performance evaluation of data distributions with

load-balancing for sparse arrays”, In Proceedings of the 7th International
Symposium on Parallel Architectures, Algorithms and Networks, pp. 207–212,
May 10-12, 2004.

[30] N. Comino and V.L. Narasimhan. “A novel data distribution technique for host-

client type parallel applications”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 13, No. 2, pp. 97–110, Feb. 2002.

[31] IEEE New Standards Committee (NESCOM). 1997. IEEE Project Authorization

Request (PAR) 1516. Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) - Framework and Rules.

[32] IEEE New Standards Committee (NESCOM). 1997. IEEE Project Authorization

Request (PAR) 1516.1 Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) - Federate Interface Specification.

[33] IEEE New Standards Committee (NESCOM). 1997. IEEE Project Authorization

Request (PAR) 1516.2 Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA) - Object Model Template (OMT) Specification.

[34] M. D. Petty. “Comparing high level architecture data distribution management

specifications 1.3 and 1516”, Simulation Practice and Theory, Vol. 9, No. 3-5, pp.
95-119, 2002.

 133

[35] K. L. Morse and M. D. Petty. “Data distribution management migration from DoD
1.3 to IEEE 1516”, In Proceedings of the Fifth IEEE International Workshop on
Distributed Simulation and Real-Time Applications, pp. 58–65, 13-15 Aug., 13-15
August 2001, Cincinnati, OH.

[36] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly. “The DoD High Level

Architecture: an Update”, In Proceedings of the 1998 Winter Simulation
Conference, Washington DC, 1998.

[37] F. Kuhl, R. Weatherly, and J. Dahmann. Creating computer simulation systems: an

introduction to the High Level Architecture, Upper Saddle River, NJ, Prentice Hall,
2000.

[38] J. S. Dahmann. “The High Level Architecture and beyond: technology challenges”,

In Proceedings of the thirteenth workshop on Parallel and distributed simulation.
Atlanta, Georgia, 64 – 70, 1999.

[39] J. S. Dahmann, J. O. Calvin, and R. M Weatherly. “A reusable architecture for

simulations”, Communications of the ACM, Sep 1999. Vol. 42, No. 9. pp. 79-84.

[40] R. K. Guha and M. Bassiouni. “Simulation Methods and Applications”, Simulation

Practice and Theory, Vol. 9, No. 3-5, pp. 91-93, 2002.

[41] H. A. Jacobsen. “Tutorial: OMG data distribution service”, In Proceedings of the

23rd International Conference on Distributed Computing Systems Workshops, pp.
198–198, 2003.

[42] G. Pardo-Castellote. “OMG data distribution service: architectural overview”, IEEE

Military Communications Conference, MILCOM, Vol. 1, pp. 242–247, 2003.

[43] A. Boukerche and A. Roy. “In search of data distribution management in large scale

distributed simulations”, In Proceedings of the 2000 Summer Computer Simulation
Conference, Vancouver, Canada, 2000.

[44] G. Tan, R. Ayani, Y. S. Zhang, and F. Moradi. “Grid-based data management in

distributed simulation”, In Proceedings of the 33rd Annual Simulation Symposium,
pp. 7-13, 16-20 April, 2000.

[45] A. Boukerche, A. Roy, and N. Thomas. “Dynamic Grid-Based Multicast Group

Assignment in Data Distribution Management”, In Proceedings of the Fourth IEEE
International Workshop on Distributed Simulation and Real-Time Applications
(DS-RT’ 00), pp. 47-54, 2000.

 134

[46] A. Boukerche and A. Roy. “Dynamic Grid-Based Approach to Data Distribution
Management”, Journal of Parallel and Distributed Computing, Vol. 62, No. 3, pp.
366-392, March 2002.

[47] A. J. Roy. “Dynamic grid-based data distribution management in large scale

distributed simulations”, M.S. Thesis, Dept. of Computer Science, University of
North Texas, 2000.

[48] A. Boukerche, N. J. McGraw, C. Dzermajko, and K. Lu. “Grid-Filtered Region-

Based Data Distribution Management in Large-Scale Distributed Simulation
Systems”, In Proceedings of the 38th annual Symposium on Simulation, pp. 259 –
266, 2005.

[49] G. Tan, X. Liang, F. Moradi, and S. Taylor. “An agent-based DDM for High Level

Architecture”, In Proceedings of the 15th Workshop on Parallel and Distributed
Simulation, pp. 75-82, 15-18 May, 2001.

[50] G. Tan, Y. Zhang, and R. Ayani. “A hybrid approach to data distribution

management”, In Proceedings of the Fourth IEEE International Workshop on
Distributed Simulation and Real-Time Applications, pp. 55-61, 2001.

[51] Y. Jun, C. Raczy, and G. Tan. “Evaluation of a sort-based matching algorithm for

DDM”, In Proceedings of the sixteenth workshop on Parallel and distributed
simulation. pp. 68–75, 2002.

[52] C. Raczy, G. Tran, and J. Yu. “A sort-based DDM matching algorithm for HLA”,

ACM Transactions on Modeling and Computer Simulation (TOMACS), Vol.
15, No. 1, pp. 14-38, 2005.

[53] B. I. Kumova. “Dynamically Adaptive Partition-Based Data Distribution

Management”, In Proceedings of the 19th Workshop on Parallel and Distributed
Simulation (PADS 2005), pp. 292– 300, June 1-3, 2005, Monterey, CA, USA.

[54] E. S. Liu, M. K. Yip, and G. Yu. “Scalable Interest Management for

Multidimensional Routing Space”, In Proceedings of the ACM symposium on
Virtual reality software and technology, pp. 82–85, Monterey, CA, USA, 2005.

[55] R. Minson and G. Theodoropoulos. “An Adaptive Interest Management Scheme for

Distributed Virtual Environments”, In Proceedings of the 19th Workshop on
Principles of Advanced and Distributed Simulation, pp. 273 – 281, 2005.

[56] A. Boukerche and C. Dzermajko. “Performance evaluation of Data Distribution

Management strategies”, Concurrency and Computation: Practice and Experience,
Vol. 16, No. 15, pp. 1545 – 1573, 2004.

 135

[57] A. Boukerche and C. Dzermajko. “Scalability and performance evaluation of an
aggregation/disaggregation scheme for data distribution management in large-scale
distributed interactive systems”, In Proceedings of the 37th Annual Simulation
Symposium, pp. 238–245, 18-22 April, 2004.

[58] A. Boukerche and C. Dzermajko. “Dynamic grid-based vs. region-based data

distribution management strategies for large-scale distributed systems”, In
Proceedings of the International Parallel and Distributed Processing Symposium,
pp. 7, 22-26 April, 2003.

[59] P. Gupta and R. K. Guha. “Design, Analysis, and Performance Evaluation of an

Efficient Algorithm for Data Distribution Management in High Level
Architecture.” Computer Science Technical Report CS-TR-05-12, School of
Computer Science, University of Central Florida, Orlando, FL, December 2005.

[60] K. L. Morse. “An Adaptive, Distributed Algorithm for Interest Management”, Ph.D.

Dissertation, Information & Computer Science Department, University of
California, Irvine, 2000.

[61] M. D. Petty. “Computational geometry techniques for terrain reasoning and data

distribution problems in distributed battlefield simulation”, Ph.D. Dissertation,
Computer Science Department, University of Central Florida, Orlando, 1997.

[62] K. L. Morse and M. Zyda. “Multicast grouping for data distribution management”,

Simulation Practice and Theory, Vol. 9, No. 3-5, pp. 121-141, 2002.

[63] C. Dzermajko. “Performance comparison of data distribution management

strategies in large scale distributed simulation”, M.S. Thesis, Computer Science
Department, University of North Texas, 2004.

[64] M. D. Petty and K. L. Morse. “The computational complexity of the high level

architecture data distribution management matching and connecting processes”,
Simulation Modelling Practice and Theory, Vol. 12, pp. 217–237, 2004.

[65] M. D. Petty and K. L. Morse. “Computational Complexity of HLA Data

Distribution Management”, In Proceedings of the 2000 Fall Simulation
Interoperability Workshop, September 17-22, 2000, paper no. 00F-SIW-143.

[66] M. D. Petty. “Data Distribution Management Specifications 1.3 and 1516 Are

Equivalently Powerful”, In Proceedings of the 2001 Spring Simulation
Interoperability Workshop, March 25-30, 2001, paper no. 01S-SIW-127.

[67] M. D. Petty. “Geometric and Algorithmic Results Regarding HLA Data

Distribution Management Matching”, In Proceedings of the 2000 Fall Simulation
Interoperability Workshop, September 17-22, 2000, paper no. 00F-SIW-072.

 136

[68] P. Gupta and R. K. Guha. “A heuristic for efficient data distribution management in

distributed simulation”, In Proceedings of the Enabling Technologies for
Simulation Science IX Conference, Defense & Security Symposium, March 2005,
Orlando, FL, 2005.

[69] P. Gupta and R. K. Guha. “Design and Implementation of an Efficient Algorithm

for Data Distribution Management in High Level Architecture”. In Proceedings of
the 4th Symposium on Design, Analysis, and Simulation of Distributed Systems,
2006 Spring Simulation Multiconference, Huntsville, Alabama, April 2-6, 2006.

[70] P. Gupta and R. K. Guha, “Data Distribution Management for High Performance

Distributed Simulation in Resource-Constraint Environment”, 2006 High
Performance Computing & Simulation (HPC&S) Conference, Bonn, Germany,
May 28-31, 2006.

[71] Y. Zhang, G. Sun, H. Yan, and L. Zhong. “Research on a new data distribution

strategy for DDM”, In Proceedings of the International Conference on Machine
Learning and Cybernetics, Vol. 2, pp. 672– 675, 2-5 November, 2003.

[72] J. B. Koh, B. S. Lee, W. T. Cai, and S. J. Turner. “'Multicasting Fast Messages in

RTI-Kit”, In Proceedings of the 2000 Spring Simulation Inter-operability Workshop
(SIW), 2000.

[73] I. Tacic and R. M. Fujimoto. “Synchronized data distribution management in

distributed simulations”, In Proceedings of the Twelfth Workshop on Parallel and
Distributed Simulation, pp. 108–115, 26-29 May, 1998.

[74] J. Z. Wang and R. K. Guha. “A novel data caching scheme for multimedia servers”,

Simulation Practice and Theory, Vol. 9, No. 3-5, pp. 193-213, 2001.

[75] J. Z. Wang. “Data caching and data allocation for multimedia servers”, Ph.D.

Dissertation, Dept. of Computer Science, University of Central Florida, Orlando,
FL, 2001.

[76] L. Arge, L. Toma, and J. Vitter. “I/O-Efficient Algorithms for Problems on Grid-

based Terrains”, ALENEX'00. ACM Journal of Experimental Algorithmics, 6, No.
1, 2001.

[77] L. Arge. “External Memory Data Structures”, In Handbook of Massive Data Sets, J.

Abello, P.M. Pardalos, M.G.C. Resende (Eds.), Kluwer Academic Publishers, pp.
313-357, 2002.

[78] B. Blunden. Memory Management: Algorithms and Implementation in C/C++.

Plano, TX. Wordware Publishing, 2003.

 137

[79] U. Meyer, P. Sanders, and J. Sibeyn. Algorithms for Memory Hierarchies. Springer-

Verlag, Berlin, 2003.

[80] N. R. Nielsen. “Dynamic memory allocation in computer simulation”,

Communications of the ACM 20, No. 11, 864-873, 1977.

[81] D. E. Vengroff and J. S. Vitter. “I/O-Efficient Algorithms and Environments.

Strategic Directions in Computing Research”, ACM Computing Surveys, Vol. 28,
No. 4es, 1996.

[82] Zorn, B. and D. Grunwald. “Evaluating Models of Memory Allocation”, ACM

Transactions on Modeling and Computer Simulation 4, No.1., pp. 107-131, 1994.

[83] Z. Yuan, W. Cai, and M.Y.H. Low. “A framework for executing parallel simulation

using RTI”, In Proceedings of the Seventh IEEE International Symposium on
Distributed Simulation and Real-Time Applications, pp. 12-19, 23-25 October,
2003.

[84] R. K. Guha, J. Lee, and O. Kachirski. “Evaluating performance of distributed

computing technologies – HLA and TSpaces on a cluster computer”, In
Proceedings of the 19th European Conference on Modelling and Simulation, June
1-4, 2005, Riga, Latvia.

[85] T. Lu, C. Lee, W. Hsia and M. Lin. “Supporting Large-Scale Distributed Simulation

Using HLA”, ACM Transactions on Modeling and Computer Simulation, Vol. 10,
No. 3, pp. 268–294, July 2000.

[86] Use of Cluster computing in Simulation

http://www.sisostds.org/webletter/siso/iss_3/art_77.htm

[87] Y. Xie, Y. M. Teo, W. Cai, and S. J. Turner. “A distributed simulation backbone for

executing HLA-based simulation over the internet”, In Workshop on Grid
Computing & Applications, In Proceedings of the 2nd International Conference on
Scientific and Engineering Computation, pp. 96–103, June 2004.

[88] W. Cai, S. J. Turner, and H. Zhao. “A Load Management System for Running

HLA-based Distributed Simulations over the Grid”, In Proceedings of the 6th IEEE
International Workshop on Distributed Simulation and Real-Time Applications
(DS-RT.02), pp. 7- 14, 2002.

[89] W. Cai, P. Xavier, S. J. Turner, and B. Lee. “A scalable architecture for supporting

interactive games on the Internet”, In Proceedings of the sixteenth workshop on
Parallel and distributed simulation. Washington, D.C., pp. 60– 67, 2002.

http://www.sisostds.org/webletter/siso/iss_3/art_77.htm�

 138

[90] S. J. E. Taylor, R. Sudra, T. Janahan, G. Tan, and J. Ladbrook. “Towards COTS
distributed simulation using grids”, In Proceedings of the 2001 Winter Simulation
Conference. pp. 1372-1379, 2001.

[91] K. Rycerz, M. Bubak, M. Malawski, and P. Sloot. “A Framework for HLA-Based

Interactive Simulations on the Grid”, SIMULATION: Transactions of the Society for
Modeling and Simulation International, Vol. 81, Issue 1, January 2005, pp. 67-76.

[92] J. Luthi and S. Grossmann. “The resource sharing system: dynamic federate

mapping for HLA-based distributed simulation”, In Proceedings of the fifteenth
workshop on Parallel and distributed simulation, Lake Arrowhead, CA, pp. 91-
98, 2001.

[93] M. A. Bassiouni, M. Chiu, M. Loper, M. Garnsey, and J. Williams. “Performance

and Reliability Analysis of Relevance Filtering for Scalable Distributed Interactive
Simulation”, ACM Transactions on Modeling and Computer Simulation, Vol. 7,
No. 3, July 1997, pp. 293–331.

[94] Y. Xie, Y. Teo, W. Cai, and S. J. Turner. “Service Provisioning for HLA-based

Distributed Simulation on the Grid”, In Proceedings of the 19th Workshop on
Principles of Advanced and Distributed Simulation, pp. 282 – 291, 2005.

[95] D. Chen, B. Lee, W. Cai, and S. J. Turner. “Design and Development of a Cluster

Gateway for Cluster-based HLA Distributed Virtual Simulation Environments”, In
Proceedings of the 36th annual symposium on Simulation, pp. 193-201, March
2003.

[96] C. D. Pham. “High Performance Clusters: A Promising Environment for Parallel

Discrete Event Simulation”, In Proceedings of the PDPTA'99, June 28-July 1, 1999,
Las Vegas, USA.

[97] A. Santoro and R.M. Fujimoto. “Off-Loading Data Distribution Management to

Network Processors in HLA-Based Distributed Simulations”, In Proceedings of the
Eighth IEEE International Symposium on Distributed Simulation and Real-Time
Applications (DS-RT' 04). pp. 12-19.

[98] R. M. Fujimoto. Parallel and distribution simulation systems, New York, Wiley,

2000.

[99] R. Ayani, F. Moradi, and G. Tan. “Optimizing cell-size in grid-based DDM”, In

Proceedings of Fourteenth Workshop on Parallel and Distributed Simulation, pp.
93-100, 28-31 May, 2000.

 139

[100] S.J. Deitz, B.L. Chamberlain, and L. Snyder. “Abstractions for dynamic data
distribution”, In Proceedings of the Ninth International Workshop on High-Level
Parallel Programming Models and Supportive Environments, pp. 42–51, 26 April
2004.

[101] S. Ferenci, K. Perumalla, and R. Fujimoto. “An Approach to Federating Parallel

Simulators”, In Proceedings of ACM/IEEE/SCS Workshop on Parallel and
Distributed Simulation, Bologna, Italy, May 2000.

[102] T. McLean, R. Fujimoto, and B. Fitzgibbons. “Next Generation Real-Time RTI

Software”, In Proceedings of Fifth IEEE International Workshop on Distributed
Simulation and Real-Time Applications, 2001.

[103] K. Perumalla, A. Park, R. Fujimoto, and G. Riley. “Scalable RTI-based Parallel

Simulation of Networks”, In Proceedings of ACM/IEEE/SCS Workshop on
Parallel and Distributed Simulation (PADS), San Diego, CA, 2003.

[104] D. Coffin, M. Calef, D. Macannuco, and W. Civinskas. “Experimentation with

DDM schemes”, In Proceedings of the 1999 Spring Simulation Interoperability
Workshop, March 14-19, 1999, paper no. 99S-SIW-053.

[105] K. L. Morse, L. Bic, and M. Dillencourt. “Characterizing Scenarios for DDM

Performance and Benchmarking RTIs”, In Proceedings of the 1999 Spring
Simulation Interoperability Workshop, March 14-19, 1999, paper no. 99S-SIW-
054.

[106] D. Cohen and A. Kemkes. “User-Level Measurements of DDM Scenarios”, In

Proceedings of the 1998 Spring Simulation Interoperability Workshop, March 9-
13, 1998, paper no. 98S-SIW-072.

[107] D. Cohen and A. Kemkes. “DDM scenarios”, In Proceedings of the 1997 Fall

Simulation Interoperability Workshop, Sept 8-12, 1997, paper no. 97F-SIW-057.

[108] D. Cohen and A. Kemkes. “Using DDM - an application perspective”, In

Proceedings of the 1997 Spring Simulation Interoperability Workshop, paper no.
97S-SIW-014.

[109] N. Kuijpers, J. Lukkien, and B. Huijbrechts. “Applying Data Distribution

Management and Ownership Management Services of the HLA Interface
Specification”, In Proceedings of the 1999 Fall Simulation Interoperability
Workshop, September 12-17, 1999, paper no. 99F-SIW-023.

[110] E. S. Hougland, D. J. Paterson. “Data Distribution Management Issues for HLA

implementations”, In Proceedings of the 1999 Spring Simulation Interoperability
Workshop, March 26-31, 2000, paper no. 00S-SIW-130.

 140

[111] M.A. Thomas. “HLA federation design for dismounted infantry simulation”, In

Proceedings of the 2000 Fall Simulation Interoperability Workshop, September
17-22, 2000, paper no. 00F-SIW-099.

[112] A. C. Janett, S. J. Adelson, D. D. Miller, and R.A. Reynolds. “The FOM for

Atmosphere, Ocean, Space and Dynamic Terrain – Environment Federation”, In
Proceedings of the 2000 Fall Simulation Interoperability Workshop, September
17-22, 2000, paper no. 00F-SIW-092.

[113] B. Helfinstine, D. Wilbert, M. Torpey, and W. Civinskas. “Experiences with Data

Distribution Management in Large-Scale Federations”, In Proceedings of the 2001
Fall Simulation Interoperability Workshop, September 9 - 14, 2001, paper no. 01F-
SIW-032.

[114] K. Snively and A. Wilson. “Scalable Reliable Data Dissemination for Distributed

Simulations using Hierarchical Interconnect”, In Proceedings of the 2004 Spring
Simulation Interoperability Workshop, April 18 - April 23, 2004, paper no. 04S-
SIW-073.

[115] S. J. Rak, M. Salisbury, R. S. MacDonald. “HLA/RTI Data Distribution

Management in the Synthetic Theater of War”, In Proceedings of the 1997 Fall
Simulation Interoperability Workshop, Sept 8-12, 1997, paper no. 97F-SIW-119.

[116] Katherine L. Morse. “The Object Model Template Routing Space Table:

Recording Federation-Global DDM Decisions”, In Proceedings of the 1998 Spring
Simulation Interoperability Workshop, March 9-13, 1998, paper no. 98S-SIW-172.

[117] S. Brunett and T. Gottschalk. “An Architecture for Large ModSAF Simulation

Using Scalable Parallel Processors”, In Proceedings of the 1998 Spring Simulation
Interoperability Workshop, March 9-13, 1998, paper no. 98S-SIW-180.

[118] G. Wagenbreth, K. Yao, D. M. Davis, R. F. Lucas and T. D. Gottschalk. “Enabling

1,000,000-Entity simulation on Distributed Linux clusters”, In Proceedings of the
2005 Winter Simulation Conference, Orlando, FL, Dec. 4-7, 2005, pp. 1170-1181.

[119] yaRTI. http://perso.wanadoo.fr/dominique.canazzi/dominique.htm

[120] XRTI: Extensible Run-Time Infrastructure. http://www.npsnet.org/~npsnet/xrti/

[121] CERTI. http://certi.nongnu.org/, http://www.cert.fr/CERTI/

[122] CHRONOS: http://www.magnetargames.com/Products/Chronos/

[123] pRTI 1516. http://www.pitch.se/

http://perso.wanadoo.fr/dominique.canazzi/dominique.htm�
http://www.npsnet.org/~npsnet/xrti/�
http://certi.nongnu.org/�
http://www.cert.fr/CERTI/�
http://www.magnetargames.com/Products/Chronos/�
http://www.pitch.se/�

	Resource-constraint And Scalable Data Distribution Management For High Level Architecture
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF SYMBOLS & ACRONYMS
	CHAPTER ONE: INTRODUCTION
	1.1 Motivation and Goals
	1.2 Dissertation Organization
	1.3 Research Contributions

	CHAPTER TWO: BACKGROUND AND RELATED WORK
	2.1 HLA Architecture
	2.1.1 RTI
	2.1.2 Time Management
	2.1.3 HLA Implementations

	2.2 IEEE 1516 vs. RTI 1.3
	2.3 Concept of Routing Space
	2.4 Related Work

	CHAPTER THREE: OVERVIEW OF DDM ALGORITHMS
	3.1 Region-Matching Algorithm
	3.2 Fixed-Grid DDM
	3.3 Dynamic-Grid DDM

	CHAPTER FOUR: THE P-PRUNING ALGORITHM FOR DDM
	4.1 The P-Pruning Algorithm: An Overview
	4.2 The P-Pruning Algorithm
	4.2.1 List Computation Sub-Procedure
	4.2.2 MCG Population Sub-Procedure
	4.2.3 MCG Pruning Sub-Procedure

	4.3 Illustration of the P-Pruning Algorithm
	4.4 Algorithm Analysis
	4.5 Average-Case Computation Complexity Analysis of P-Pruning DDM Algorithm
	4.5.1 Analysis for Overlap Cases
	4.5.2 Federate Distribution Analysis

	4.6 Size of Multicast Group Analysis
	4.7 Extending the P-Pruning DDM to multidimensional routing space
	4.8 Dynamic P-Pruning Algorithm
	4.8.1 Federate Join and Resign Procedure at Run-Time

	CHAPTER FIVE: PERFORMANCE EVALUATION OF DDM ALGORITHMS
	5.1 Implementation Details
	5.2 Simulation Results Analysis

	CHAPTER SIX: RESOURCE CONSTRAINT MANAGEMENT IN DISTRIBUTED SIMULATION
	6.1 Memory as a Resource
	6.2 I/O Efficient Resource-Constraint Strategy for DDM
	6.2.1 Resource-Constraint Issues in DDM Implementation
	6.2.2 A Memory-Efficient Strategy for Data Distribution Management

	6.3 Performance Evaluation of Resource-Constraint P-Pruning Algorithm
	6.4 Simulation Implementation and Analysis
	6.5 Summary of Memory-Efficient Approach

	CHAPTER SEVEN: INTEGRATION OF THE P-PRUNING DDM ALGORITHM IN FDK
	7.1 An Overview of FDK Architecture
	7.1.1 HLA Functional Components Implemented in FDK

	7.2 Implementation of DDM Services in FDK
	7.3 DDM Functions in FDK
	7.4 Issues with DDM Implementation in FDK
	7.5 Integration with HLA Architecture in FDK
	7.6 Design and Development of the Communicator Module
	7.6.1 Simulation Results of P-Pruning Algorithm Integrated in FDK

	7.7 Distributed FDK Implementation
	7.8 Summary

	CHAPTER EIGHT: DIRECTIONS FOR FURTHER RESEARCH
	8.1 Scalable DDM approach in Distributed Environment
	8.2 Using Real-World DDM Applications for Test

	CHAPTER NINE: CONCLUSIONS
	APPENDIX A: LIST OF RTI SOFTWARE
	APPENDIX B: RESULTS OF SIMULATION EXPERIMENTS
	APPENDIX C: FDK P-PRUNING INTEGRATION OUTPUT
	APPENDIX D: LIST OF PUBLICATIONS
	LIST OF REFERENCES

