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ABSTRACT 

In this dissertation, we present an efficient algorithm, called P-Pruning algorithm, 

for data distribution management problem in High Level Architecture. High Level 

Architecture (HLA) presents a framework for modeling and simulation within the 

Department of Defense (DoD) and forms the basis of IEEE 1516 standard. The goal of 

this architecture is to interoperate multiple simulations and facilitate the reuse of 

simulation components. Data Distribution Management (DDM) is one of the six 

components in HLA that is responsible for limiting and controlling the data exchanged in 

a simulation and reducing the processing requirements of federates. DDM is also an 

important problem in the parallel and distributed computing domain, especially in large-

scale distributed modeling and simulation applications, where control on data exchange 

among the simulated entities is required. 

We present a performance-evaluation simulation study of the P-Pruning 

algorithm against three techniques: region-matching, fixed-grid, and dynamic-grid DDM 

algorithms. The P-Pruning algorithm is faster than region-matching, fixed-grid, and 

dynamic-grid DDM algorithms as it avoid the quadratic computation step involved in 

other algorithms. The simulation results show that the P-Pruning DDM algorithm uses 

memory at run-time more efficiently and requires less number of multicast groups as 

compared to the three algorithms. To increase the scalability of P-Pruning algorithm, we 

develop a resource-efficient enhancement for the P-Pruning algorithm. We also present a 

performance evaluation study of this resource-efficient algorithm in a memory-constraint 

environment. The Memory-Constraint P-Pruning algorithm deploys I/O efficient data-
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structures for optimized memory access at run-time. The simulation results show that the 

Memory-Constraint P-Pruning DDM algorithm is faster than the P-Pruning algorithm 

and utilizes memory at run-time more efficiently. It is suitable for high performance 

distributed simulation applications as it improves the scalability of the P-Pruning 

algorithm by several order in terms of number of federates. We analyze the computation 

complexity of the P-Pruning algorithm using average-case analysis. We have also 

extended the P-Pruning algorithm to three-dimensional routing space. In addition, we 

present the P-Pruning algorithm for dynamic conditions where the distribution of 

federated is changing at run-time. The dynamic P-Pruning algorithm investigates the 

changes among federates regions and rebuilds all the affected multicast groups. 

We have also integrated the P-Pruning algorithm with FDK, an implementation of 

the HLA architecture. The integration involves the design and implementation of the 

communicator module for mapping federate interest regions. We provide a modular 

overview of P-Pruning algorithm components and describe the functional flow for 

creating multicast groups during simulation. We investigate the deficiencies in DDM 

implementation under FDK and suggest an approach to overcome them using P-Pruning 

algorithm. We have enhanced FDK from its existing HLA 1.3 specification by using 

IEEE 1516 standard for DDM implementation. We provide the system setup instructions 

and communication routines for running the integrated on a network of machines. We 

also describe implementation details involved in integration of P-Pruning algorithm with 

FDK and provide results of our experiences. 
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CHAPTER ONE: INTRODUCTION 

Distributed Simulation is a cost-effective technique for system studies in research, 

modeling, and training. The High Level Architecture (HLA) presents a framework for 

modeling and simulation within the Department of Defense (DoD). The goal of this 

architecture is to interoperate multiple simulations and facilitate the reuse of simulation 

components. HLA allows interconnection of simulations, devices, and human operators 

in a common federation. It builds on composability, letting designer construct simulations 

from pre-built components. Each computer-based simulation system is called a federate 

and the group of interoperating systems is called a federation. HLA specifications—

incorporated as IEEE 1516 standard—were developed to provide reusability and 

interoperability. 

The HLA Run-Time Infrastructure (RTI) provides a set of services used to 

interconnect simulation during a federation execution. These RTI services are grouped 

into the six categories: federation management, declaration management, object 

management, ownership management, time management, and data distribution 

management. RTI provides a degree of portability (across computing platforms, operating 

systems, and communication systems) and simulation interoperability. RTI is also 

responsible for information exchange during the execution. It allows federates to join and 

resign, declare their intent to publish information, send information about objects, 

attributes and interaction, and synchronize time. 

A distributed simulation consists of a collection of autonomous simulators, or 

federates, that are interconnected using RTI software. RTI implements relevant services 
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required by the federated simulation environment. The most important services for the 

purposes of this discussion fall into two basic categories: Time Management and Data 

Distribution. The time management services ensure that the simulation time in each of 

the simulator instances stays synchronized with the others, and the data distribution 

services allow for the transitioning of event messages from one simulator to another. 

Data Distribution Management (DDM) services extend Declaration management 

services using routing space and regions in HLA. In distributed simulation environment, 

every action takes place on a simulator that may affect or may be of interest to another 

simulator, requires a message. In a large-scale distributed simulation, such as those 

encountered in defense applications, simulating many objects that are of interest to other 

objects can result in increased communication across a network, on the scale of O(n2). 

Data Distribution Management is responsible for limiting and controlling the data 

exchanged in a simulation. It also aims at reducing the processing requirements of 

simulation hosts, or federates, by communicating updates regarding interactions and state 

information only to federates that require them. 

1.1 Motivation and Goals 
DDM is important not only as a crucial service in HLA/RTI, but also as an important 

problem in the parallel and distributed simulation domain. For a sequential simulation, all 

the simulated entities can exist on single machine and can have direct access to state 

information and events. However, for a distributed simulation environment, especially in 

large-scale simulation such as those in defense applications, control on data exchange 

among the simulated entities is required. 
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Data distribution techniques are also important in diverse computing applications 

such as Web server infrastructure [20], load-balancing schemes [21], Web services [22] 

and parallel computing ([23], [24], [25], [27], [26], [28], [29], [30]). The general nature 

of the problem in these domains is similar to those encountered in distributed simulation. 

Hence, advances in DDM research are applicable to wide areas of computing and 

simulation. 

 

1.2 Dissertation Organization 
The rest of the dissertation is organized as follows. Chapter 2 provides a background on 

the importance of data distribution techniques, concepts of routing space, and a review of 

related work in DDM research. Chapter 3 provides an algorithmic overview of current 

DDM algorithms. The P-Pruning algorithm for DDM matching problem with its three 

sub-procedures and an illustration is presented in Chapter 4. We also analyze the 

computational complexity of P-Pruning algorithm, distribution of federates within the 

routing space, and size of multicast groups in Chapter 4. The performance-evaluation of 

P-Pruning algorithm with other DDM algorithms with implementation details and 

simulation results are discussed in Chapter 5. Chapter 6 highlights the resource constraint 

issues in data distribution management and proposes memory-efficient enhancements in 

P-Pruning algorithm. It also includes the performance-evaluation study details and 

simulation results. The integration of P-Pruning algorithm with FDK software is 

discussed in Chapter 7. Chapter 8 identifies the directions for further research. It lays out 

future directions for development of distributed DDM approach on cluster computers and 

testing with real-world data. Finally, Chapter 9 presents the concluding remarks. 
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1.3 Research Contributions 
The objective of this research work is to design efficient and scalable strategies for Data 

Distribution Management in resource-constraint well as distributed environment. We 

have proposed a new algorithm, called P-Pruning algorithm, for the DDM region 

matching problem. We have also shown that this algorithm performs better than several 

DDM strategies using average-case complexity analysis and through performance 

evaluation experiments. We have also developed a resource-efficient method for DDM. 

We also investigate scalability issues and develop a scalable approach for DDM in 

distributed environment such as cluster computers. Throughout the dissertation, we have 

used IEEE 1516 specifications for representing the federates, and their publisher and 

subscriber regions. 

 



 5

CHAPTER TWO: BACKGROUND AND RELATED WORK 

In this Chapter, we provide a background on HLA, different implementation of RTI in 

commercial and academic institutions, and DDM. Examples of RTI implementations are 

the FDK software developed at the Georgia Institute of Technology and the Light-Weight 

RTI built at George Mason University. We also highlight the importance of DDM 

problem in the parallel and distributed simulation domain and the underlying concept of 

routing space. Finally, we present an overview of current state-of-the-art research work in 

DDM. 

2.1 HLA Architecture 
The High Level Architecture (HLA) was developed by the Department of Defense (DoD) 

under the leadership of the Defense Modeling and Simulation Office (DMSO). It is an 

architecture for reuse and interoperation of simulation components within the DoD. The 

HLA is intended to provide a structure for reuse of capabilities available in different 

simulations, thereby reducing the cost and time required to create a synthetic 

environment for a new purpose and providing developers the option of distributed 

collaborative development of complex simulation applications. In recent years, HLA has 

been applied across a wide range of simulation application areas, including education and 

training, analysis, engineering, and even entertainment, at different levels of resolution. 

HLA specifications do not require a particular implementation, or use of a programming 

language. There are numerous implementations of HLA in industry and academic 

research institutions. Appendix A provides an overview of different implementations of 

HLA with their key characteristics. 
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Figure 1. Components in HLA RTI 

 The HLA is defined by three concepts: 

• Object Model Template 

• Runtime Infrastructure 

• HLA compliance rules 

The RTI and compliance rules are uniform across all HLA-compliant simulations. 

However, each group of interacting simulations, or federates, must define a basis for the 

exchange of data and events between simulations. The format and content of this basis is 

defined by the Object Model Templates. The Object Model Templates are sued to 

describe the objects that will exist in the federation.  



 7

The key components of HLA federation are illustrated in Figure 1. The federation 

is composed of individual simulations or federates who form the first key component of 

HLA. A federate can be a computer simulation, a manned simulator, or supporting utility 

(such as a viewer or data collector), or an interface to a live player or instrumented 

facility. The HLA requires all federates incorporate specified capabilities to allow the 

objects in the simulation through the exchange of data supported by services 

implemented in the RTI. The second key component of HLA is the RTI. The RTI is 

functionally equivalent to a distributed operating system for the federation. It provides a 

set of general purpose services that support federate-to-federate interactions, federation 

management functions. All interactions among the federates are executed through the 

RTI. The third component in HLA federation is the interface to RTI. The HLA runtime 

interface specification provides a standard method for federates to interact with the RTI, 

to invoke the RTI services for supporting runtime interactions among federates and to 

respond to requests from the RTI. This interface is implementation independent and free 

of the specific object models and data exchange requirements of any federation. 

The HLA supports passive collection of simulation data and monitoring of 

simulation activities. Also, HLA supports interfaces to live participants, such as 

instrumented platforms or live systems. Live participants interact with the simulated 

world through an interface that feeds the representation of the live world into the 

simulated world and projects data from the simulated world back to the live world. 

Formally, the HLA is defined by three components: the interface specification, the object 

model template, and the HLA rules.  
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2.1.1 RTI 

The RTI is a collection of software that provides commonly required services to 

simulation system. It is also intended to provide a measure of portability (across 

computing platforms, operating systems, and communication systems) and simulation 

interoperability. There are six classes of services in RTI: Federation Management, 

Declaration Management, Object Management, Ownership Management, Time 

Management, and Data Distribution Management. Federation Management services offer 

basic functions required to create and operate a federation. Declaration management 

services support efficient management of data exchange through the information 

provided by federates defining the data they will provide and will require during a 

federation execution. Object management services provide creation, deletion, 

identification and other services at the object level. Ownership management services 

support the dynamic transfer of ownership of object/attributes during an execution. Time 

management services support synchronization of simulation data exchanges. Finally, data 

distribution management services support the efficient routing of data among federates 

during the course of a federation execution. 

The HLA rules define the principles of HLA in terms of responsibilities that 

federates and federations must uphold. Each federation has a Federation Object Model 

(FOM), which is a common object model for the data exchanged between federates in a 

federation. OMT is the meta-model for all FOMs. The Interface Specification defines the 

standard services and interfaces to be used between the federates and the RTI. While the 

HLA is an architecture, not software, it is the RTI software that facilitates the interaction 
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between federates using a common FOM. Actions of a federate, such as registering an 

object, updating attributes of an object or sending an interaction, are defined as HLA 

events. Each federate has a RTI Ambassador and a Federate Ambassador. During 

simulation, a federate employs RTI Ambassador (RTIAmb) methods to generate events 

and the Federate Ambassador (FedAmb) acts as a callback module to receive events 

originating from other federates. 

2.1.2 Time Management 

There are two principal components to the HLA time management (TM) services.  First, 

a time stamp ordered (TSO) message delivery service guarantees that successive 

messages delivered to each federate have non-decreasing time stamps.  Second, the time 

management services manage simulation time (termed logical time in the HLA) advances 

of each federate. Federates must explicitly request that their logical time be advanced by 

invoking an IFSpec service such as Next Event Request, Time Advance Request, or Flush 

Queue Request. The RTI only grants the advance via the Time Advance Grant service 

(callback) when it can guarantee that no TSO messages will later be delivered with a time 

stamp smaller than the granted advance time.  In this way the RTI ensures federates never 

receives messages with time stamp less than their current logical time. In the HLA, time 

management is distinct from sending and receiving messages (events). Services such as 

Update Attribute Values and Reflect Attribute Values are used to send and receive 

messages, respectively. 
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2.1.3 HLA Implementations 

FDK 

Federated Simulations Development Kit (FDK) is HLA-based RTI software 

system developed at Georgia Institute of Technology ([1], [2], [3]). It contains 

composable modules for building run-time infrastructures (RTI) using which different 

simulations can be integrated together. RTI-Kit, a principal component of FDK, is a 

collection of libraries. It supports development of Run-Time Infrastructures for parallel 

and distributed simulation systems, especially federated simulation systems running on 

high performance computing platforms. FDK is designed so that RTI developers can pick 

and choose from the set of FDK modules that are most appropriate for developing their 

particular RTI implementation. Each library is designed so it can be used separately, or 

together with other RTI-Kit libraries, depending on the functionality required by the user. 

Because each library is designed as a stand-alone component, RTIs that are constructed 

using RTI-Kit are highly modular, with clear, well-defined (and documented) interfaces. 

These libraries can be embedded into existing RTIs to add new functionality. RTI 

developers can benefit from incorporating these ready-made modules, and avoid having 

to develop them on their own.  FDK is a modular and reusable set of libraries designed to 

facilitate the development of RTIs for developing or integrating parallel and distributed 

simulation systems.  
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RTI Prototype 

The RTI Prototype was developed during the mid-1990’s at Massachusetts Institute of 

Technology (MIT) Lincoln Laboratories [4]. The HLA specification was still under 

development and undergoing revisions during this time period, so the creators of the RTI 

Prototype did not implement all of the HLA services (for example, Time Management 

was omitted) or follow the specification to the letter. Instead, their implementation was 

designed as a proof of concept for HLA, with the intent of also providing feedback that 

might impact the development of the HLA itself. The API for the RTI is specified in the 

following in languages: IDL, C++, Java, and Ada. IDL stands for Interface Definition 

Language, a part of the CORBA specification. The RTI Prototype uses the IDL API 

specification, and was developed using C++ and the Iona ORBIX implementation of 

CORBA. The approach to Data Distribution Management (DDM) used in the RTI 

Prototype is known as the Fixed Grid-based Approach, which we discuss in detail in the 

Chapter 2 about different approaches to DDM. 

Before the RTI Prototype was tested in the Synthetic Theater of War (STOW) 

federation, laboratory experiments were conducted. The experimental results available 

deal with only two federates. These experiments seem to have been designed to verify 

that the RTI Prototype was indeed functioning properly, and not to show how it performs 

when each federate is simulating many objects which are moving around in the 

battlespace, as no such scenario was performed. When the STOW exercise was 

conducted, a data logger captured statistics, such as the total number of packets sent over 

the network. These statistics seem to be confined to the data-link level of the simulation, 

where as the HLA deals with a higher level of abstraction. Therefore, this data 
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unfortunately does not give direct insight into the performance of the RTI Prototype or 

the Data Distribution Management system. 

 

RTI 1.3 

The same group at Lincoln Labs that designed the RTI Prototype developed the RTI 1.3 

[5]. The RTI 1.3 is the successor of the RTI Prototype and is so named because it 

implements version 1.3 of the HLA Specification. One of the main changes between the 

RTI Prototype and the RTI 1.3 was the Data Distribution Management strategy that was 

used. The RTI Prototype used a grid-based approach, whereas the RTI 1.3 employs a 

region-based method. The region-based method is described in detail in Chapter 2 on 

DDM algorithm overview. A distinguishing feature of the region-based DDM approach is 

the use of a single database to store information regarding the regions of interest declared 

by all federates in the federation. The database for regions, subscriptions, and 

publications used by the RTI 1.3 is called the Information Manager (IM). Unfortunately, 

no experimental results have been published concerning the performance of the RTI 1.3. 

 

GMU Light-Weight RTI 

The light-weight RTI developed at George Mason University (GMU) focuses on 

Declaration Management and the Data Distribution Management services [6]. Time 

Management and Ownership Management are not implemented, since these services 

were not the primary objective of the project. As a result, the light-weight RTI is best 

suited to real time simulations by federation of small to medium size. A useful feature of 

this RTI is that it can be interfaced to DIS simulations using a DIS to HLA translator 
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developed at GMU. The motivation behind its construction was to understand the HLA 

and to bring the earlier work done by those researchers into compatibility with the HLA. 

We shall now briefly describe the previous works out of which the light-weight RTI 

grew. 

The light-weight RTI uses elements of the Dual Mode Multicast scheme and the 

Selectively Reliable Transmission Protocol. Dual Mode Multicast (DMMC) is a method 

of Data Distribution Management that was developed for use by systems adhering to the 

Distributed Interactive Simulation (DIS) protocol. DMMC uses a multi-level grid-based 

filtering scheme. An exercise-wide multicast group is used on the wide area network 

(WAN) and a fixed grid-based approach is used to determine multicast groups at level of 

the local area network (LAN). 

Selectively Reliable Transmission Protocol (SRTP) is designed for applications, 

such as DIS and HLA, that need reliable multicast communications. SRTP runs in user 

space and forms a sublayer between an application and the Internet protocol stack of the 

operating system. SRTP operates in three modes: best effort multicast reliable multicast, 

reliable multicast, and lightweight reliable transaction-oriented unicast. The reliable 

multicast uses negative acknowledgement with NAK suppression mechanisms to avoid 

congestion at the sender. The major flaw in the light-weight RTI, according to its 

creators, is the poor runtime performance that is partly due to the use of SRTP, which is 

slower than UDP. Improving the performance of the light-weight RTI is the primary goal 

of the future work on this project. 
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RTI 1.3NG 

Science Applications International Corporation (SAIC) developed RTI 1.3NG which was 

sponsored by Defense Modeling and Simulation Office (DMSO) based on competitive 

industry designs ([7], [8]). Like the RTI 1.3, the RTI 1.3NG also supports the HLA 

Specification 1.3. However, the RTI 1.3NG is intended to be a full implementation of all 

HLA services and will supersede the RTI 1.3, which is no longer being supported by 

DMSO ([9], [10], [11], [12], [14], [15], [16]). As yet, no literature has been published 

regarding the design, implementation, or performance of the RTI 1.3NG, which is still 

under development. 

 

MAK RTI 

MAK Technologies, which is based in Cambridge, Massachusetts, and is a leading 

provider of simulation networking software, developed the MAK RTI ([17], [18], [19]). It 

supports the HLA Specification 1.3, and is link-compatible with DMSO RTI 1.3. Like the 

other RTI implementations that we have discussed, the MAK RTI does not implement all 

HLA services. The MAK RTI can be downloaded at no charge, and runs on the Windows 

95/98/NT, Solaris, IRIX, and Red Hat Linux platforms. 

 

HPC-RTI 

RAM Labs, based in San Diego, California, is developing an RTI designed for use in 

high performance computing (HPC) environments. The RTI-HPC is integrated with the 

Synchronous Parallel Emulation Environment for Discrete Event Simulation 

(SPEEDES). SPEEDES is a government-owned software system, managed by RAM 
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Labs, and licensed by NASA. SPEEDES was used in the early 90’s to model global 

ballistic missile defense applications on parallel and distributed supercomputers. 

SPEEDES currently supports various large-scale distributed simulation projects, under 

the sponsorship of the Department of Defense, such as Wargame 2000, Joint Simulation 

System (JSIMS), and Extended Air Defense Test Bed (EADTB). SPEEDES is 

implemented in C++, and supported operating systems are IRIX, HPUX, Solaris, Linux, 

and Windows NT. 

With the HLA gaining popularity in the defense community, SPEEDES is being 

modified and augmented to serve as an RTI that is compatible with the HLA 

specifications, and the result will be the RTI-HPC. The RTI-HPC is the first attempt to 

transform a pre-existing simulation engine into an RTI. There is another element of the 

RTI-HPC that differentiates it from the other RTI implementations, and that is its support 

of time management. The RTI-HPC will provide time-management across all six HLA 

services. The HLA does not require the Declaration Management, Data Distribution 

Management, or Ownership Management services to be time-managed. However, such 

capabilities would be extremely useful for a federation that wanted to enforce casual 

ordering of events, for the purpose of repeatability or other reasons. In the remainder of 

this section, we will discuss how SPEEDES performs Data Distribution Management. 

The SPEEDES Data Distribution Management mechanism follows a grid-based 

approach. Interest regions are mapped to grid cells, which are represented by entities 

called Hierarchical Grid (HiGrids) where region-overlap computations are performed. 

The HiGrids are distributed among the participating nodes. When an overlap is detected, 

HiGrids tell the publisher which subscribers are interested in the publisher’s attributes. 
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The publisher then sends the subscriber its proxy, which represents the state of an entity. 

The proxy is updated whenever the publisher’s attributes change, thus ensuring that the 

subscriber can assess the publisher’s current attributed values.  

The SPEEDES method of performing data distribution management was 

developed prior to the advent of the HLA specification, so some changes will need to be 

made in the transition to the HPC-RTI. The concept of a proxy is not fully compliant with 

the HLA specification. In addition, SPEEDES allows subscriptions and publications on a 

per-object basis, whereas the HLA only allows interests to be declared on a per-federate 

basis. The use of proxies, and the per-object interest expressions, are features that may 

need to be modified as SPEEDES is converted to the RTI-HPC. It remains to be seen 

how closely the RTI-HPC method of supporting the HLA Data Distribution Management 

service resembles the current SPEEDES approach to DDM. 

2.2 IEEE 1516 vs. RTI 1.3 
IEEE 1516 is the HLA standard approved by IEEE in September 2000 as a 

successor of the HLA 1.3 specifications ([31], [32], [33]). It simplifies the DDM 

implementation by removing multiple routing spaces and incorporating all the 

dimensions within this routing space. The regions are composed of dimension name and 

range pairs. Two regions overlap only if they have at one dimension in common. If two 

regions do have one or more dimensions in common, then the regions overlap if and only 

if ranges for all the dimensions that the regions have in common overlap pair-wise.  Petty 

[34] and Morse [35] have discussed the migration of HLA 1.3 based simulation system to 

IEEE 1516 standards in detail.  
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2.3 Concept of Routing Space  
DDM is based on a multi-dimensional coordinate system called a routing space. For 

example, a two-dimensional routing space might represent the play box in a virtual 

environment. A rectangular publisher region within the routing space is associated with 

each update message generated by a publishing federate. Receiving federates declare 

their interests via rectangular subscriber regions within the routing space. If the publisher 

region associated with a message overlaps with the subscriber region of a federate, the 

message is routed to that subscribing federate. By calculating the intersection of publisher 

and subscriber regions, the Run-Time Infrastructure in HLA establishes connectivity 

between sender and receiver federates for routing updates and interactions. Each 

overlapping subscriber and publisher federate joins a multicast group to facilitate the 

message transfer. For example, in Figure 2, updates using publisher region P are routed 

to federates subscribing to region S1, but not to federates subscribing to region S2. 

Figure 2. Two-dimensional routing space with subscriber regions: S1 and S2, and a 
publisher region P 
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The DDM provides flexible mechanism for publishing and subscribing interests 

through multidimensional routing space.  The basic structure of routing space in the IEEE 

1516 standard is as following:  

Routing space: There is a single routing space and all dimensions are included in this 

routing space. 

Regions: A region is a single rectangular subspace within the coordinate space. Regions 

may be defined on any subset of the available dimensions of the coordinate system.  

Region set: Regions are grouped into region sets, which consist of one or more regions. 

The regions in a region set need not all have the same subset of the dimensions of the 

coordinate system.  

Dimension: Dimensions correspond to simulation data and they are used to define 

regions. 

The interest matching process begins by specifying subscription and update 

regions. An object is said to be interested by a federate if and only if at least one of the 

object’s attributes is subscribed by the federate (through declaration management) and at 

least one update region associating with the object overlaps the subscriber region of the 

federate. 
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Figure 3. Concept of region overlap in two-dimensional routing space 

In the Figure 3, a notional federation has three federates; each has declared one region. 

The update region declared by federate A overlaps the subscriber region declared by 

federate B, so updates to the data items associated with the update region are delivered by 

the HLA RTI from federate A to federate B. No data is delivered to federate C. 

For instance, a routing space representing the position of the units on the 

battlefield could be called "Map", with two dimensions "X" and "Y". A region in the 

routing space Map would be the ranges for the dimensions X and Y: [(x
min

, x
max

), (y
min

, 

y
max

)]. A region set would be a set of one or several of such regions. A publisher region 

could be for instance a region with one extent representing the position of a unit. A 



 20

subscriber region could be for instance a region with several extents, each of them 

representing the range of some sensors.  

In Figure 4, we have illustrated the publisher and subscriber regions for a 

squadron of airplanes. The spy plane in region 1 tracks the squadron of planes in region 

3. 

 

Figure 4. Illustration of publisher and subscriber region in an airplane squadron 

2.4 Related Work 
The earliest work on DDM research appears in Van Hook et al. [4]. The HLA 

specification, key elements in its architecture, and implementation are described in 

Dahmann et al. ([36], [37], [38], [39]) and Van Hook [5]. An overview and tutorial of 

DDM and related research work appears in ([40], [41], [42]). 

Boukerche and Roy [43] described taxonomy of DDM schemes and basic 

concepts. Petty [34] presented a comparison of the DoD 1.3 and IEEE 1516 HLA 

specifications. Since 1995, different DDM algorithms have been proposed such as the 

fixed-grid [44], dynamic-grid ([45], [46], [47]), region-matching [4], agent-based [49], 
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and hybrid-method [50]. A sort-based algorithm running in O(n2) time is presented in 

([51], [52]). A partition-based DDM technique is proposed in Kumova [53]. In Liu et al. 

[54], DDM for multidimensional routing space is explored, while a DDM scheme for 

distributed virtual environments is presented in Minson and Theodoropoulos [55]. 

Performance-evaluation study of different DDM strategies appears in Boukerche and 

Dzermajko ([56], [57], [58]), Gupta and Guha [59]. Scalability-related issues for the 

implementation of DDM are addressed in [103]. 

In their doctoral dissertations, Morse [60] and Petty [61] made numerous 

algorithmic contributions to the DDM problem. The problem of dynamic multicast 

grouping is addressed in [60], while an interval-tree based DDM algorithm is presented in 

[61]. A connection-graph based cost-function approach is proposed by Morse in [62]. In 

this method, the latency of data communication is taken into account. A computational 

analysis of various DDM strategies appears in [63]. Petty and Morse have discussed the 

computational complexity of the high level architecture data distribution management 

matching and connecting processes in ([64], [65], [66]). 

Federated Simulations Development Kit (FDK) is an implementation of HLA 

architecture developed at Georgia Institute of Technology [3]. It has been used by 

researchers in academia, industry, and government laboratories as an effective software 

package for evaluating their research contributions to distributed simulation technology. 

FDK has been used as the platform for HLA-based distributed simulation research in ([1], 

[65], [70], [71], [72]). Scalability issues of FDK have been researched by Fujimoto et al. 

in [2] and Perumalla et al. in [103]. Synchronization issues in DDM and their remedies 
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have been proposed in [71]. In Chapter 7, we discuss the integration of the P-Pruning 

DDM algorithm with FDK.  

An interesting merger of distributed simulation with Web services is presented in 

Pullen et al. [22]. This paper describes an approach for extending Web Services to 

distributed simulation environments and providing scalable interoperability across wide 

variety of networked platforms. Advanced memory management schemes such as 

hierarchical data-caching and pre-fetching that can be applicable to resource constraint 

conditions related to DDM appear in ([74], [75]). 

A review of I/O efficient external memory data-structures appears in Arge et al. 

([76], [77]).  Memory-efficient routines and implementation details appear in [78], while 

Meyer et al. [79] provide a good source of algorithms for memory hierarchies. Directions 

on I/O efficient algorithms and dynamic memory allocation in simulation appear in 

(Nielsen [80], Vengroff and Vitter [81], [82]). 

Distributed implementations of HLA been implemented on cluster computers has 

been reported in ([83], [84], [85], [86], [87], [88], [90], [92], [96], [97]). 
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CHAPTER THREE: OVERVIEW OF DDM ALGORITHMS  

In this Chapter, we provide a brief algorithmic overview of three DDM algorithms and 

highlight their implementation issues.  

 

The DDM problem is stated as follows:  

Let,  

FFi ∈ , F = Set of federates,  

PPi ∈ , P = Set of publisher regions, and  

SSi ∈ , S = Set of subscriber regions. 

Then, there exists a matching or clustering of subsets of publisher regions P and 

subscriber region S.  

     Let MCGMCGi ∈ , where MCG = Set of multicast group, such that  

 

The DDM problem is to find all possible iMCG at any time t.  

Now, we discuss three types of DDM Schemes implemented in the current HLA. 

3.1 Region-Matching Algorithm 
In the region-matching DDM approach, a multicast group is defined for each publisher 

region. Updates are simply sent to the multicast group associated with the publisher 

region. A federate subscribes to the multicast group, if one or more of its subscriber 
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regions overlap with the publisher region. When a subscriber region changes, the new 

subscriber region must be matched against all other publisher regions in order to 

determine those that overlap with the new subscriber region.  The federate must then 

subscribe to the multicast groups with overlapping publisher regions. Similarly, when a 

publisher region changes, the new publisher region must be matched against all 

subscriber regions to determine the new composition of the multicast group that include 

this publisher region. This requires examining all subscriber/publisher regions in use by 

the federation. Thus, it does not scale well as the number of regions becomes large. 

The region-matching algorithm implementation has two sub-procedures: Create 

Overlap_List and Create Multicast group. This algorithm needs to scan all the publisher 

and subscriber regions at least once. Hence, its time complexity is quadratic.  

 

Create Overlap_List Sub-procedure 

Initialization 

Overlap: Flag indicating overlap between publisher and subscriber region. 

Pub_overlap_counter: Counter for subscriber regions overlapping with each publisher 

region. 

BEGIN Procedure 

For all publisher region Pi do 

Set Overlap flag to FALSE; 

Begin 

 For all subscriber region Sj do 

 Begin 
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//Check all conditions for overlap between Pi and Sj 

  If Pi and Sj  overlap do 

  Begin 

   Set Overlap flag to TRUE; 

Increment counter Pub_overlap_counter for Pi; 

End 

End 

End 

END Procedure 

 

Create Multicast Group Sub-procedure 

Initialization 

MCG: Multicast group for DDM 

BEGIN Procedure 

For all publisher region Pi having Pub_overlap_counter > 0 do 

Begin 

Assign Multicast Group MCGi to Pi; 

 Add all subscriber regions Sj overlapping with Pi to multicast group MCGi; 
End 

END Procedure 

3.2 Fixed-Grid DDM 
In the fixed-grid DDM algorithm, the routing space is partitioned into non-overlapping 

grid cells, and a multicast group is defined for each cell. A federate subscribes to the 
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group associated with each cell that partially or fully overlaps with its subscriber regions. 

The result associates a region with several multicast groups in a fixed and pre-determined 

manner. A publish operation is realized by sending an update message to the multicast 

groups corresponding to the cells that partially or fully overlap with the associated 

publisher region. The fixed-grid approach eliminates the need to explicitly match 

publisher and subscriber regions. It is less accurate than the region-matching method, 

because the mapping of regions onto grids may not be exact. The actual area covered by 

cell may be larger than the region itself. While grid partitioning eliminates the matching 

overhead, large number of multicast groups is needed if a fine grid structure is defined; a 

coarse grid leads to imprecise filtering, negating the benefits of DDM.  

The fixed grid DDM algorithm implementation consists of three sub-procedures: 

Grid Initialization, Federate-to-Grid mapping, and Multicast Group creation. 

 

Grid Initialization Sub-Procedure 

BEGIN Procedure 

Divide the routing space into grid cells Gi of given dimension in routing space; 

 Each cell is uniquely identified by a cell ID; 

Each grid cell maintains counters for number of publisher regions overlapping and 

their federate ID; 

Each grid cell maintains counters for number of subscriber regions overlapping and 

their federate ID; 

END Procedure 
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Federate-to-Grid Mapping Sub-Procedure 

Initialization 

For each grid cell Gi, the following variables are maintained: 

Pub_Fed_ID: Array for storing the federate ID of each publisher region overlapping with 

Gi, 

Pub_Region_Counter: Counter for number of publisher regions overlapping with Gi, 

Sub_Fed_ID: Array for storing the federate ID of each subscriber region overlapping 

with Gi, 

Sub_Region_Counter: Counter for number of subscriber regions overlapping with Gi. 

BEGIN Procedure 

For all federates Fi do 

Begin 

 // For the publisher region Pi 

 For all grid cells Gi  covered by publisher region Pi  do 

 Begin 

  Add publisher region Pi information to grid cell Gi; 

Increment the Pub_Region_Counter for grid cell Gi; 

 End 

 // For the subscriber region Si 

For all grid cells Gi  covered by subscriber region Si  do 

 Begin 

Add subscriber region Si information to grid cell Gi; 
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  Increment the Sub_Region_Counter for Gi; 

 End 

End 

END Procedure 

 

Create Multicast Group Sub-procedure 

Initialization 

MCG: Multicast group for DDM. 

Each grid cell Gi is assigned a multicast group MCGi. 

BEGIN Procedure 

For all grid cell Gi do 

Begin 

 Add all publisher regions in grid cell Gi to MCGi; 

 Add all subscriber regions in grid cell Gi to MCGi; 

End 

END Procedure 

3.3 Dynamic-Grid DDM 
The fixed-grid method offers no mechanism to prevent publishers from sending data on a 

multicast group that no subscribers have joined. The dynamic-grid method addresses this 

drawback of the fixed-grid scheme. Like fixed-grid approach, the routing space has grid 

overlay that defines the cells. This scheme dynamically allocates multicast groups, based 

on the current publisher and subscriber regions in the system and triggers hosts to join 

those groups, as in the region-based method. Only those cells, in which there is at least 
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one publishing and one subscribing federate, are assigned to a multicast group. Thus, a 

multicast group is allocated to each cell that is part of the intersection of a publisher 

region and a subscriber region. Publisher federates join and transmit on a multicast group, 

if there is at least one subscriber region interested in its data. Similarly, subscriber 

federates join and listen on multicast group, only if there is at least one publisher federate 

transmitting on that group.  

This technique prevents the publishing federates from transmitting data on a 

multicast group with no subscribers and reduces the number of multicast groups that a 

federate needs to join. 

The dynamic-grid DDM algorithm implementation consists of three sub-

procedures: Grid Initialization, Federate-to-Grid mapping, and Multicast Group creation.  

The Grid Initialization and Federate-to-Grid mapping sub-procedures are similar to the 

fixed grid algorithm. Hence, we are listing only the Multicast Group creation sub-

procedure.  

 

Create Multicast Group Sub-procedure 

Initialization 

MCG: Multicast group for Dynamic Grid DDM. 

Each Grid Cell Gi is assigned a multicast group MCGi. 

BEGIN Procedure 

For all grid cell Gi  

Begin 

 If grid cell Gi has at least one publisher region Pi  
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  AND at least one subscriber region Sj 

 Begin  

  Add all publisher regions in grid cell Gi to MCGi; 

  Add all subscriber regions in grid cell Gi to MCGi; 

 End 

End 

END Procedure 
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CHAPTER FOUR: THE P-PRUNING ALGORITHM FOR DDM 

In this Chapter, we present the P-Pruning DDM algorithm with its three sub-procedures. 

We also provide an illustration of the steps involved in P-Pruning algorithm using a small 

example. Finally, we analyze the computational complexity of P-Pruning algorithm using 

average-case analysis and the effect of federate distribution within routing space on its 

performance. 

4.1 The P-Pruning Algorithm: An Overview 
The P-Pruning DDM algorithm computes the multicast groups in three steps: List 

Computation, MCG Population, and MCG Pruning. Each publisher and subscriber region 

is described by four-coordinate system in the routing space (Px1, Px2, Py1, Py2)  and  (Sx1, 

Sx2, Sy1, Sy2), respectively. Each federate Fi has one publisher region Pi and one subscriber 

region Si, where i denotes the federate ID (Fed_ID). 

The entire algorithm is based on an array, ListX, whose size is equal to R, i.e., the 

length of the routing space X-axis. The elements in ListX array correspond to the 

coordinates in X-axis of the routing space. The List Computation sub-procedure scans all 

the publisher and subscriber regions once, and stores the information about their 

coordinates at each point of the axis. A multicast group is assigned to an element of the 

ListX array, if there is a publisher region Pi whose XiP
1

)( coordinate coincides with this 

element of ListX. 

The MCG Population sub-procedure creates the DDM multicast group based on 

information stored in ListX array, but it considers only the overlap information on X-

dimension of the routing space. A multicast group is created at a point on ListX only if 
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there exists at least one publisher region and there is at least one subscriber region 

overlapping with this publisher region on X-axis. Thus, this sub-procedure creates a set 

of multicast groups that may include some multicast groups that are having publisher and 

subscriber region as members, but these member regions may not actually overlap on the 

Y-axis of the routing space. Overall, this sub-procedure computes the entire information 

faster by avoiding the simultaneous checking of X-axis and Y-axis overlap. 

The errors in creation of multicast group MCG are now corrected by the final 

MCG Pruning sub-procedure. The pruning sub-procedure verifies that the regions in 

multicast group MCG actually overlap on Y-axis, and it eliminates any non-overlapping 

subscriber from the specific multicast group. It also verifies that every multicast group 

has at least one subscriber region after this step.  At the end of this process, it deletes any 

multicast group having no subscriber region. 

Since the two main sub-procedures in the algorithm perform the function of 

multicast group Population and Pruning, the  algorithm is called P-Pruning algorithm 

throughout the remainder of this report. The P-Pruning algorithm is efficient because, 

unlike other algorithms, it focuses on creation of multicast groups right from the 

beginning. Also, it consumes less CPU and memory resources by avoiding the 

simultaneous checking of X and Y axis overlap.  
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4.2 The P-Pruning Algorithm 
We now present the three sub-procedures in the P-Pruning DDM algorithm. 

4.2.1 List Computation Sub-Procedure 

Initialization: 

ListX: List of all the coordinates for all publishers regions P and subscriber regions S in 

ascending order. 

Each publisher and subscriber region is described by four-coordinate system in the 

routing space.  

( )YiYiXiXi PPPP
2121

)(,)(,)(,)(  are coordinates of publisher region Pi. 

( )YiYiXiXi SSSS
2121

)(,)(,)(,)( are coordinates of subscriber region Si. 

Each federate Fi has one publisher region Pi and one subscriber region Si, where i denotes 

the federate ID (Fed_ID). 

ListX = Array of size R, where R is the maximum coordinate of the routing space. 

For each element in ListX, following variables are maintained: 

List_ID;                                                  //Identifier for each element in ListX 

Pub_Region_Counter = 0;                      //Counter for publisher regions having XiP
1

)(  = 

List_ID 

X1_Sub_Region_Counter = 0;               //Counter for subscriber region having XiS
1

)(  = 

List_ID 

X2_Sub_Region_Counter = 0;               //Counter for subscriber regions having XiS
2

)(  = 

List_ID 
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BEGIN Procedure 

For each federate Fi do 

Begin 

 //Processing the publisher region of federate Fi 

 List_ID = XiP
1

)( ; 

Copy the publisher region counter of ListX[List_ID] into Pub_Region_Counter; 

ListX[List_ID].Pub_Region[Pub_Region_Counter].Fed_ID = Fi; 

Copy coordinates of publisher region Pi at 

ListX[List_ID].Pub_Region[Pub_Region_Counter] ; 

 Increment Pub_Region_Counter; 

 Update the publisher region counter of ListX[List_ID]; 

 

 //Processing the X1 subscriber region of federate Fi 

 List_ID = XiS
1

)( ; 

Copy the X1 subscriber region counter of ListX[List_ID] into 

X1_Sub_Region_Counter; 

ListX[List_ID].X1_Sub_Region[X1_Sub_Region_Counter].Fed_ID = Fi; 

Copy coordinates of subscriber region Si at 

ListX[List_ID].Sub_Region[X1_Sub_Region_Counter]; 

 Increment X1_Sub_Region_Counter; 

Update the X1 subscriber region counter of ListX[List_ID]; 
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// Processing the X2 subscriber region of federate Fi 

List_ID = XiS
2

)( ; 

Copy the X2 subscriber region counter of ListX[List_ID] into 

X2_Sub_Region_Counter; 

ListX[List_ID].X2_Sub_Region[X2_Sub_Region_Counter].Fed_ID = Fi; 

Copy coordinates of subscriber region Si at 

ListX[List_ID].Sub_Region[X2_Sub_Region_Counter]; 

Increment X2_Sub_Region_Counter; 

 Update the X2 sub region counter of ListX[List_ID]; 

End 

END Procedure 

 

4.2.2 MCG Population Sub-Procedure 

Initialization: 

MCG_Counter = Counter for recording the number of Multicast groups MCG so far.  

XiP
1

)(  and XiP
2

)(  are coordinates on X-axis for publisher region Pi. 

XjS
1

)( and XjS
2

)(  are coordinates on X-axis for subscriber region Sj. 

BEGIN Procedure: 

For each List element List_ID of ListX with Pub_Region_Counter > 0 do 

Begin 

For all publisher region Pi whose XiP
1

)(  coordinate coincides with List_ID do 
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 Begin 

Note XiP
1

)( and XiP
2

)( coordinates of publisher region Pi ; 

Add Fed_ID of Pi to publisher region of MCG[MCG_Counter]; 

Increment the publisher region counter of MCG[MCG_Counter]; 

 

  //Complete Overlap Condition 

  For all points j from 0 to XiP
1

)( on X-axis do 

  Begin 

For all X1 subscriber region Sj at point j on X-axis do 

   Begin 

Note XjS
1

)( and XjS
2

)( coordinates of subscriber region Sj ; 

If subscriber region Sj completely overlaps publisher region 

Pi do 

    Begin 

Add Fed_ID of Sj to subscriber region of 

MCG[MCG_Counter]; 

Increment the subscriber region counter of 

MCG[MCG_Counter]; 

    End 

   End 

  End 
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  // XiP
1

)( to XiP
2

)( range Overlap Condition 

  For all points j from XiP
1

)( to XiP
2

)(  on X-axis do 

  Begin 

//Checking for XjS
1

)(  overlap in range XiP
1

)( to XiP
2

)(  

For all X1 subscriber region Sj at point j on X-axis do 

   Begin 

Note XjS
1

)( and XjS
2

)( coordinates of subscriber region Sj ; 

If subscriber region Sj overlaps publisher region Pi do 

    Begin 

Add Fed_ID of Sj to subscriber region of 

MCG[MCG_Counter]; 

Increment the subscriber region counter of 

MCG[MCG_Counter]; 

    End 

End  

 
//Checking if XjS

2
)( of any subscriber region fall in range 

// XiP
1

)( to XiP
2

)(  

For all X2 subscriber region Sj at point j on X-axis do 

   Begin 

Note XjS
1

)( and XjS
2

)( coordinates of subscriber region Sj ; 

If subscriber region Sj overlaps publisher region Pi do 
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    Begin 

Add Fed_ID of Sj to subscriber regions of 

MCG[MCG_Counter]; 

Increment the subscriber region counter of 

MCG[MCG_Counter]; 

    End 

   End 

  End 

 
If current multicast group (MCG[MCG_Counter]) has no subscriber 

region 

  Begin 

Re-initialize publisher region and subscriber region count of 

MCG[MCG_Counter] to 0; 

  End 

   

If current multicast group (MCG[MCG_Counter]) has subscriber region 

  Begin 

Increment the multicast group counter; MCG_Counter; 

  End 

 End 

End 

END Procedure 
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4.2.3 MCG Pruning Sub-Procedure 

Initialization: 

( )YiYiXiXi PPPP
2121

)(,)(,)(,)(  are coordinates of publisher region Pi. 

( )YjYjXjXj SSSS
2121

)(,)(,)(,)(  are coordinates of subscriber region Sj. 

Y_Overlap: Flag indicating overlap condition. 

DELETE_MCG: Flag indicating deletion of current multicast group. 

 

BEGIN Procedure: 

For all multicast group MCGi do 

Begin 

Set Y_Overlap to FALSE; 

Set DELETE_MCG to FALSE; 

Note 
1

)( YiP and 
2

)( YiP coordinates of publisher region Pi ; 

For all subscriber region Sj of multicast group MCGi do 

 Begin 

Note 
1

)( YjS and 
2

)( YjS coordinates of subscriber region Sj; 

  //Complete Overlap Condition 

  If Sj completely overlaps Pi on Y-axis 

   Set Y_Overlap = TRUE; 

  //Partial Overlap condition on Y-axis 

  If  Pi overlaps Sj on Y-axis 

   Set Y_Overlap = TRUE; 
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  If Y_Overlap flag is FALSE 

  Begin 

   //Prune the subscriber region Sj 

Decrement the subscriber region count of MCGi; 

   Erase the Fed_ID of current subscriber region Sj ; 

   Reset Y_Overlap to FALSE; 

  End 

 End 

  

 If MCGi has no subscriber region 

 Begin 

  Decrement publisher region count of current MCGi; 

  Set DELETE_MCG flag to TRUE; 

 End 

 

 If MCGi has no publisher region 

 Begin 

  Set DELETE_MCG flag to TRUE; 

  Delete current multicast group MCGi; 

 End 

  

 If DELETE_MCG = TRUE 
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 Begin 

  Delete current multicast group MCGi ; 

  Decrement the total count for multicast groups; 

 End 

End 

END Procedure 

 

4.3 Illustration of the P-Pruning Algorithm 
Now, we will illustrate step-by-step execution of the P-Pruning algorithm using the 

example shown in Figure 5. The example consists of a two-dimensional routing space 

with size 10 x 10 units. As stated earlier, the set of federate F = {F1, F2, F3} such that 

federate F1 has two publisher regions (P11, P12) and three subscriber regions (S11, S12, 

S13). Federate F2 has three publisher regions (P21, P22, P23) and two subscriber regions 

(S21, S22). Federate F3 has one publisher region P31 and one subscriber region S31. This 

example demonstrates the region-matching calculation by P-Pruning algorithm for three 

federates. In practice, a distributed simulation can involve hundreds of federates. 

    In the following discussion, XiP
1

)(  and XiP
2

)( are coordinates on X-axis for any 

publisher region Pi. XjS
1

)( and XjS
2

)( are coordinates on X-axis for any subscriber region 

Sj. We now walkthrough each step of the P-Pruning algorithm as it computes the 

multicast group. 
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Figure 5. Routing space layout for illustration of P-Pruning DDM algorithm 

 

List Computation Step: The ListX[1,2,3,...,10] array stores three important details for 

each point on X-axis: publisher region counter, X1 subscriber region counter, and X2 

subscriber region counter. For a given point x in ListX: publisher region counter records 

the number of publisher regions, whose XiP
1

)(  coordinate coincides with point x; X1 

subscriber region counter records the number of subscriber regions, whose XjS
1

)(  

coordinate coincides with point x; and X2 subscriber region counter records the number 

of subscriber regions, whose XjS
2

)( coordinate coincides with point x. 

     In this step, the publisher and subscriber regions of each federate, F1, F2 and F3, are 

examined. After this, the ListX element corresponding to the X1 and X2 coordinates of 

each publisher and subscriber region is updated. The state of ListX array at the end of this 
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step is shown in Table 1. The table shows (region counter, federate ID) pair for each 

entry. Entry ‘*’ in this table indicates that there is no publisher or subscriber region, 

whose XiP
1

)(  or XjS
1

)(  or XjS
2

)( coordinate coincides with this point of ListX array. Row 

Pub indicates region counter = 1 for the points in ListX whose value coincides with XiP
1

)(  

coordinate of a publisher region, and it indicates 0 otherwise. The region counter for each 

point on ListX (in row Pub) also records the number of publisher regions, whose XiP
1

)(  

coordinate coincides with this point. So, it can be more than one. The federate ID 

corresponds to the identifier for the federate owning the publisher region Pi. Row S_X1 

indicates region counter = 1 for the points in ListX whose value coincides with XjS
1

)(  

coordinate of a subscriber region, and it indicates 0 otherwise. The region counter for 

each point on ListX (in row S_X1) also records the number of publisher regions, whose 

XjS
1

)(  coordinate coincides with this point. So, it can be more than one. The federate ID 

corresponds to the identifier of the federate owning the subscriber region Sj. Row S_X2 

indicates region counter = 1 for the points in ListX whose value coincides with XjS
2

)(  

coordinate of a subscriber region, and it indicates 0 otherwise. The region counter for 

each point on ListX (in row S_X2) also records the number of publisher regions, whose 

XjS
2

)( coordinate coincides with this point. So, it can be more than one. The federate ID 

corresponds to the identifier for the federate owning the subscriber region Sj. 
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Table 1. Status of ListX array after List Computation step. Each entry has (region 
counter, federate ID) pair. 

ListX 1 2 3 4 5 6 7 8 9 10 

Pub * 1, 1 1, 3 1, 1 1, 2 * 1, 2 1, 2 * * 

S_X1 1,2 * 1, 2 1, 1 * 1, 1 1, 3 1, 1 1, 1 * 

S_X2 * * * * 2, 2 1, 1 * * 1, 3 2, 1 

 

MCG Population Step: This step checks the overlapping status of publisher and 

subscriber regions based on the X-axis information. It also creates the multicast group 

MCG for the DDM. 

     This step scans the ListX entries, from the Table 1 shown above, that have at least one 

publisher region. A multicast group is assigned to each such entry in the beginning. All 

the subscriber regions that are not owned by the federate of the publisher region and 

overlapping with this publisher region are added to the multicast group. We describe the 

formation of two multicast groups MCG1 and MCG2 in detail. 

     ListX[2] has a publisher region entry in its Pub position, which corresponds to the 

publisher region P11. So, the first multicast group MCG1 is created with P11 as its 

member. This implies that federate F1 (which owns P11) is added to MCG1 as the 

publishing federate. Since, P11 = [(2, 3), (4, 5)], the ListX array is scanned from the range 

of (P11)X1 to (P11)X2 (i.e., 2 to 4) to check any XjS
1

)( coordinate of an overlapping 

subscriber region. The subscriber region, S21 = [(3, 2), (5, 4)], has S_X1 entry at ListX[3] 

in Table 1, which implies that S21 overlaps with P11. Hence, S21 is added to multicast 

group MCG1. In addition to this, the ListX array is also scanned from 0 to (P11)X1 (i.e., 0 

to 2) to check XjS
1

)( coordinate of an overlapping subscriber region. The subscriber region 
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S22 = [(1, 7), (5, 10)] has S_X1 entry at ListX[1] in Table 1, which implies that S22 also 

overlaps with publisher region P11. Hence, S22 is also added to multicast group MCG1. 

Now, the multicast group MCG1:P11 has two subscriber members: {S21, S22}. This implies 

that federate F2 (which owns regions S21 and S22) is added to MCG1 as the subscribing 

federate. Finally, ListX array is scanned in range (P11)X1 to (P11)X2 (i.e., 2 to 4) to check 

for any XjS
2

)( coordinate of an overlapping subscriber region. In this case, there are no 

such overlapping subscriber regions. 

     After this step, the next entry in ListX array having a publisher region entry in its Pub 

position is ListX[3], which corresponds to the publisher region P31. So, the second 

multicast group MCG2 is created with P31 as its member. This implies that federate F3 

(which owns P31) is added to MCG2 as the publishing federate. Since, P31 = [(3, 6), (5, 

8)], the ListX array is scanned from the range of (P31)X1 to (P31)X2 (i.e., 3 to 5) to check 

any XjS
1

)( coordinate of an overlapping subscriber region. The subscriber region, S21 = 

[(3, 2), (5, 4)], has S_X1 entry at ListX[3] in Table 1, which implies that S21 overlaps 

with P31. Hence, S21 is added to multicast group MCG2. The subscriber region, S11 = [(4, 

7), (6, 9)], has S_X1 entry at ListX[4] in Table 1, which implies that S11 overlaps with 

P31. Hence, S11 is also added to multicast group MCG2. In addition to this, the ListX array 

is also scanned from 0 to (P31)X1 (i.e., 0 to 3) to check XjS
1

)( coordinate of an overlapping 

subscriber region. The subscriber region S22 = [(1, 7), (5, 10)] has S_X1 entry at ListX[1] 

in Table 1, which implies that S22 overlaps with publisher region P11. Hence, S22 is also 

added to multicast group MCG2. Now, the multicast group MCG2:P31 has three subscriber 

members: {S11, S21, S22}. This implies that federates F1 (which owns region S11) and F2 
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(which owns regions S21 and S22) is added to MCG2 as the subscribing federate. Finally, 

ListX array is scanned in range (P31)X1 to (P31)X2 (i.e., 3 to 5) to check for any 

XjS
2

)( coordinate of an overlapping subscriber region. In this case, there are no such 

overlapping subscriber regions. 

     Using the steps described above the P-Pruning algorithm creates four more multicast 

groups for this example. The final list of multicast groups is shown below.  

MCG1: P11 = {S21, S22}, 

MCG2: P31 = {S11, S21, S22}, 

MCG3: P12 = {S21, S21, S22}, 

MCG4: P23 = {S11}, 

MCG5: P22 = {S12, S13, S31}, and 

MCG6: P21 = {S12, S13, S31}. 

MCG Pruning Step: This step examines the overlap information of every region within 

all multicast groups on Y-axis and prunes any regions that do not overlap. 

     First, multicast group MCG1: P11 = {S21, S22} is examined. Since, publisher region P11 

= [(2, 3), (4, 5)], we scan only the range from (P11)Y1 to (P11)Y2 (i.e., 3 to 5). The 

subscriber region S21 = [(3, 2), (5, 4)] overlaps with P11 on Y-axis. However, S22 = [(1, 7), 

(5, 10)] with (S22)Y1 = 7 and (S22)Y2 = 10 does not overlap with P11 on Y-axis. Hence, it is 

pruned from MCG1. The final composition this group is MCG1: P11 = {S21}. 

     The second multicast group MCG2: P31 = {S11, S21, S22} has publisher region P31 = [(3, 

6), (5, 8)]. The subscriber region S21 = [(3, 2), (5, 4)] does not overlap with P31 on Y-axis 

and hence, it is pruned from MCG2. Subscriber regions S11 and S22 are retained in MCG2 
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after verifying that they overlap with P31 on Y-axis. The final composition of MCG2: P31 

= {S11, S22}. 

     Similarly, the remaining multicast groups are also examined and pruned to have 

correct overlapping publisher and subscriber regions. For the multicast group MCG4, the 

subscriber region S11 is pruned as it does not overlap with P23 on Y-axis. Since, there is 

no subscriber region in this multicast group, MCG4 is deleted from the list of multicast 

groups. 

     The list of multicast groups created by the P-Pruning at the end of all three steps is as 

follows: 

MCG1: P11 = {S21}, 

MCG2: P31 = {S11, S22}, 

MCG3: P12 = {S21}, 

MCG5: P22 = {S12}, and 

MCG6: P21 = {S12, S13}. 

     Thus, using this example, we have demonstrated the formation of multicast groups in 

P-Pruning algorithm for two federates. The multicast groups created using P-Pruning 

algorithm can then be used by RTI for communication amongst federates. 

4.4 Algorithm Analysis 
The P-Pruning algorithm focuses on the computation of multicast groups right from the 

beginning. For the List Computation sub-procedure, complexity is O(n), where n is the 

number of federates in the distributed simulation. The MCG Computation sub-procedure 

runs for between O(n) and O(n2) depending on the density of the regions within the 

routing space. For the MCG Pruning sub-procedure, complexity is O(n) times.  The total 
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number of multicast groups in this algorithm is limited by O(n), which is significantly 

lesser than the number of multicast groups in fixed-grid and dynamic-grid algorithms. 

We prove this property in Section 4.6. In the next section, we present the computational 

complexity analysis of the P-Pruning algorithm in detail. 

The P-Pruning algorithm is faster than region-matching, fixed-grid, and dynamic-

grid DDM algorithms, as it avoid the quadratic computation step involved in these 

algorithms. By populating the multicast group, first only on the basis of X-axis 

information, and pruning the multicast group of unwanted subscriber regions in another 

step, it avoids the computational overheads of other algorithms.  

4.5 Average-Case Computation Complexity Analysis of P-Pruning DDM Algorithm 
We now present the complexity analysis of the P-Pruning algorithm. In particular, we 

prove its correctness and efficiency analytically through average-case analysis. We are 

using the average-case analysis as it is better representative of publisher and subscriber 

region distribution within the routing space. 

Assumptions:  

Let, F, P, and S be the set of federates, publisher regions and subscriber regions in 

the distributed simulation system, respectively. In our complexity analysis and simulation 

experiments, each federate Fi has one publisher region Pi and one subscriber region Si, 

where i denotes the federate ID. 

n = |F| = Number of federates, and  

|P| = |S| = Number of publisher and subscriber regions. 

R = Length of the x-dimension of routing space. For simplicity, we assume that the 

routing space is a square two-dimensional coordinate system.  



 49

MCG = Set of multicast groups and |MCG| is the number of multicast groups.  

Each publisher region is identified by four coordinates (Px1, Px2, Py1, Py2) as shown in 

Figure 6. Similarly, each subscriber region is identified by four coordinates (Sx1, Sx2, Sy1, 

Sy2). 

For all publisher regions: 

Px1 < Px2 and Py1  <  Py2.  

For all Subscriber regions: 

Sx1 < Sx2 and Sy1  <  Sy2.  

Figure 6. Routing space layout for a single publisher region P 

In order to have distinct variable names and clear understanding, we will be 

denoting probability of random variable x as Pr[x]. First, we analyze the different overlap 

cases between publisher/subscriber regions. After this, we find the expected number of 

subscriber regions that can overlap with a given publisher region Pi on X-axis of the 

routing space. 

R

P

Px1
Px2

Py2

Py1

X-Axis

Y-
A

xi
s

A publisher region P in routing space R



 50

For a publisher region, Pi, Px1 and Px2 can fall in the range 0-R with equal 

probability. 

Hence, for any coordinate x on X-axis,  

    Probability Pr[Px1 = x ] = 
R
1 , and 

   Probability Pr[Px2 = x ] = 
R
1 .  

Similarly, we can see that for a subscriber region, Sj, Sx1 and Sx2 will have 

probability 

Pr[Sx1 = x ] = 
R
1 ,         and Pr[Sx2 = x ] = 

R
1 . 

We need to find all subscriber regions that overlap with publisher region Pi and 

add them to multicast group MCGi.  

4.5.1 Analysis for Overlap Cases 

Given a publisher region Pi and a subscriber region Sj, there are four distinct cases for 

overlap of Pi and Sj. We only consider X-axis overlap information for the MCG 

Population sub-procedure. 

Case (a): In this case, as shown in Figure 7, subscriber region Sj overlaps 

publisher region Pi such that Sx1 is less than Px1 and Sx2 lies between Px1 and Px2.  
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Figure 7. Region overlap analysis for case (a) 
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Therefore, the probability that a subscriber region Sj overlaps publisher region Pi 

in case (a) is  
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Case (b): In this case, as shown in Figure 8, subscriber region Sj overlaps 

publisher region Pi such that Sx2 is greater than Px2 and Sx1 lies between Px1 and Px2.   

 

Figure 8. Region overlap analysis for case (b) 
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Thus, the combined probability for case (b) is  
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Case (c): In this case, as shown in Figure 9, publisher region Pi completely 

overlaps subscriber region Sj such that Sx1 is greater than Px1 and Sx2 is less than Px2. 
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Figure 9. Region overlap analysis for case (c) 
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Thus, the combined probability for case (c) is  
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Case (d): In this case, as shown in Figure 10, subscriber region Sj completely 

overlaps publisher region Pi such that Sx1 is less than Px1 and Sx2 is greater than Px2. 

The probability that Sx1 is less than Px1 is given as 
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Also, the probability that Sx2 is greater than Px2 is 
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Thus, the combined probability for case (d) is  
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Figure 10. Region overlap analysis for case (d) 

 

In all, we have n subscriber regions spread over R length, where R is the length of 

X-dimension of routing space. Hence, assuming a uniform distribution of regions over the 

routing space, the expected number of subscriber regions at any point on X-axis of the 

routing space is 
n
R
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The expected value of a random variable x is given as ∑= )(.)( xPrxxE , where 

Pr(x) is the probability of x. So, we can calculate the expected number of subscriber 

regions for each case, and then the total expected number of subscriber region 

overlapping with publisher region Pi for case (a) is given as: 
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Since, the entire X-dimension of routing space is used for summation, the limits 

of above sum is from 0 to R. Therefore, the above equation is   
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For simplicity, we consider n = R. Thus, the expected number of subscriber 

regions in case (a) is given as: 

R
PPP

acaseE xxx )(
)]([ 121 −×
= . 

Similarly, we can derive the average-case values for remaining cases.  They are as 

follows: 

R
PRPP

bcaseE xxx )()(
)]([ 212 −×−
= , 
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The overall average-case (expected value) for the number of subscriber regions 

overlapping with publisher region Pi is given as  
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Since, all the terms in above equation are constants, the average number of 

subscriber regions overlapping with any publisher region Pi is O(1), i.e., constant.  

 

Observation 1: 

The MCG Population sub-procedure in Section 4.2.2 runs for n times and calculates the 

subscribe regions overlapping with the publisher regions at all coordinates. This step 

takes constant time on average. Hence, the average case complexity of MCG Population 

sub-procedure is O(n).  

 

Observation 2: 

List Computation sub-procedure in Section 4.2.1 runs in O(n) time in both average and 

worst-case scenarios. This is because the publisher and subscriber regions of all federates 

are scanned only once. 
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Observation 3: 

MCG Pruning sub-procedure in Section 4.2.3 prunes the unnecessary subscriber regions 

from multicast groups. It checks only the Y-axis coordinates of pre-existing subscriber 

regions. Since, there are O(1) subscriber regions and O(n) multicast groups, this 

procedure also takes O(n) on average. 

From observations 1, 2, and 3, we conclude that the P-Pruning algorithm takes 

O(n) in average case and O(n2) in worst-case scenario. 

4.5.2 Federate Distribution Analysis 

We now analyze two more cases related to distribution of federates within the routing 

space. In the preceding section, we considered the case when number of federates is equal 

to the size of routing space. Here, we consider the remaining two possibilities. 

Case (i): n < R 

In this condition, the number of federates is significantly fewer than the length of 

the routing space. Hence, communication channels are relatively free and this facilitates 

message transfer among federates. Also, we have a sparse distribution of publisher and 

subscriber regions. Thus, the expected number of subscriber regions in overlap case (a) is 

given as 
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The overall average-case (expected value) for the number of subscriber regions 

overlapping with publisher region Pi is given as  
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Therefore, the average-case complexity for MCG population sub-procedure in 

Section 4.2.2 is )( 2

2

R
nO . Since, Rn < , it implies that the DDM computations in the P-

Pruning algorithm are faster in this case. 

Case (ii): n > R 

In this condition, the number of federates is significantly greater than the length of 

the routing space. Hence, communication channels are overloaded and this impedes 

message transfer among the federates. Also, we have dense distribution of publisher and 

subscriber regions. Thus, the expected number of subscriber regions in overlap case (a) is 

given as 
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The overall average-case (expected value) for the number of subscriber regions 

overlapping with publisher region Pi is given as [ ].constant
2
×

R
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Therefore, the average-case complexity for MCG Population sub-procedure in 

Section 4.2.2 is )( 2

2

R
nO . Since, Rn > , this implies that the DDM computations in the P-

Pruning algorithm will take O(n2) time. 

4.6 Size of Multicast Group Analysis 

We now prove that P-Pruning algorithm is efficient in terms of space required to 

represent the multicast groups. 

Lemma: The P-Pruning DDM algorithm requires less memory space to store the 

multicast groups. 

Proof: The fixed-grid algorithm creates a multicast group for each grid cell. If the 

dimension of each grid cell is aa× , then the number of multicast group is ⎟
⎠
⎞

⎜
⎝
⎛

×
×

aa
RR .The 

dynamic-grid algorithm requires fewer memory space than ⎟
⎠
⎞

⎜
⎝
⎛

×
×

aa
RR because it assigns 

multicast groups to only those cells that have at least one overlapping subscriber and one 

publisher region. However, dynamic-grid algorithm does not save significant memory. If 

the size of grid cell is increased, then it requires less memory, but at the cost of accuracy. 

The region-matching algorithm requires n = |F| multicast groups, where n is the number 

of federates in the distributed simulation. The P-Pruning DDM algorithm first assigns n 

memory space for the multicast groups, and then prunes the unwanted multicast groups 

which have publisher and subscriber regions that do not overlap on Y-axis. Hence, the 

total space required to store the multicast groups in the P-Pruning DDM algorithm is 

fewer than the other three algorithms. 
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4.7 Extending the P-Pruning DDM to multidimensional routing space 

A region represents interests. Region = {(XL, YL, ZL), (XH, YH, ZH)}. Thus, a publisher 

region Pii is represented as {(XiiL, YiiL, ZiiL), (XiiH, YiiH, ZiiH)}. 

The three-dimensional P-Pruning algorithm assumes that all the 3-D coordinates are 

present. 

 

Input: Federate F = {F1, F2, F3, …, Fn}. Every federate Fi has publisher regions {Pi1, Pi2, 

…, Pix}. Every Fi has subscriber regions {Si1, Si2, …, Six}. 

Output: Multicast group MCG = {MCG1, MCG2, …, MCGn} such that MCGi: Pj = {S1, 

S2, …, Sk}. 

 

First, we project all regions on the ListX array and compute the multicast groups MCG 

using the MCG Population procedure. Then, we apply the MCG pruning process 

successively first on the Y-axis and then on the Z-axis. Here, we only show the MCG 

Pruning procedure on Z-axis here.  

 

MCG Pruning on Z-axis Procedure 

BEGIN Procedure 

For all multicast groups MCGi do 

Begin 

Pi is the publisher region in multicast group MCGi; 

For all subscriber regions Sj in MCGi do 

Begin 
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 If subscriber region Sj does not overlap publisher region Pi  on Z-axis of routing 

space 

 Begin 

  Delete subscriber region Si from MCGi; 

  Decrement the subscriber region count of MCGi; 

 End 

End 

 

If MCGi has no subscriber region 

Begin 

 Delete current multicast group MCGi; 

 Decrement the multicast group counter in MCG; 

End 

End 

END Procedure 

 

 

 

 

4.8 Dynamic P-Pruning Algorithm 
We now describe the extension of P-Pruning algorithm to dynamic situations where 

federates can join and leave multicast groups. In this approach, the multicast groups 
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produced by P-Pruning algorithm are corrected whenever a federate joins or resigns from 

the routing space. 

4.8.1 Federate Join and Resign Procedure at Run-Time 

Federate Join Procedure 

Input: Federate Fi (with federate ID Fed_ID) joining the federation. Federate Fx has 

publisher regions {Pi1, Pi2, …, Pix} and subscriber regions {Si1, Si2, …, Six}. 

Output: Updated multicast group MCG. 

BEGIN Procedure 

For all publisher regions Pi of federate Fi do 

Begin 

 Create Multicast group MCGx+1: Pix 

 Find all subscriber regions overlapping with publisher region Pix and add them to 

MCGx+1 

End 

 

For all subscriber regions Six of federate Fi do 

Begin 

 Scan all publisher regions Pix in multicast groups to check if Six and Pix overlap 

 If (Overlap Scan = TRUE) Then add Six to MCG:Pix 

End 

END Procedure 
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Federate Resign Procedure 

Input: Federate Fi (with federate ID Fed_ID) resigns from the federation. Federate Fx has 

publisher regions {Pi1, Pi2, …, Pix} and subscriber regions {Si1, Si2, …, Six}. 

Output: Updated multicast group MCG. 

BEGIN Procedure 

For all multicast groups MCGi do 

Begin 

 If Fed_ID of publisher region in MCGi = Fed_ID of Fi 

 Begin 

  Delete multicast group MCGi 

 End 

 Else  

 Begin 

  //Check if any subscriber regions in MCGi are owned by federate Fi 

  If Fed_ID of any subscriber region in MCGi = Fed_ID of Fi 

  Begin 

   Delete subscriber region Si from MCGi 

  End 

 End 

End 

END Procedure 
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CHAPTER FIVE: PERFORMANCE EVALUATION OF DDM 
ALGORITHMS 

In this Chapter, we describe the performance evaluation of the P-Pruning DDM algorithm 

against three other algorithms: region-matching, fixed-grid, and dynamic-grid DDM 

algorithms. The simulations were implemented in C++ on Windows XP running on a 

Pentium IV 3 GHz PC. We used object-oriented class structures to represent federates, 

their publisher and subscriber regions, the grid cells and the multicast groups. 

 

Figure 11. Performance evaluation of P-Pruning algorithm for routing space 50 x50 and 
grid size 2 x 2 
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whose coordinates were randomly distributed within the routing space. Each federate Fi 

has one publisher region Pi and one subscriber region Si. In the  graphs from Figure 11 

through Figure 19, we have shown the results for three set of distributed simulation 

environment: 50 x 50 routing space with 2 x 2 grid cells, 50 x 50 routing space with 5 x 5 

grid cells, and 100 x 100 routing space with 5 x 5 grid cells. The grid cell dimensions are 

applicable only for the fixed-grid and dynamic-grid algorithms. The number of federates 

in this simulation environment was increased from 10 to 50 for 50 x 50 routing space and 

from 20 to 40 for the 100 x 100 routing space. In all the graph charts, the data 

corresponding to DDM algorithm is referred as P-Pruning DDM. In Chapter 6, we 

discuss the impact of system resources such as memory constraints on data distribution 

strategies. To ensure consistency in the simulation results, all DDM algorithms access the 

same federates at run-time. 

 

Figure 12. Performance evaluation of P-Pruning algorithm for routing space 50 x50 and 
grid size 5 x 5 
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The graphs in Figures 11, 12, and 13 show the comparison of computation time 

required for different DDM algorithms. The routing space is 50 x 50 in Figure 11 and 12, 

while it is 100 x 100 for Figure 13. The grid size is 2 x 2 for Figure 11, and 5 x 5 for 

Figures 12 and 13. The results show that the P-Pruning DDM algorithm computes the 

multicast groups for DDM faster than any of the three algorithms. 

 

Figure 13. Performance evaluation of the P-Pruning algorithm for routing space 100 x 
100 and grid size 5 x 5 

 

We compared the memory usage at run-time for the four algorithms and the 

results are shown in Figures 14, 15, and 16. The routing space is 50 x 50 in Figure 14 and 

15, while it is 100 x 100 for Figure 16. The grid size is 2 x 2 for Figure 14, and 5 x 5 for 
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simulations. Chapter 6 discusses the memory constraint management issues in more 

detail. 

 

Figure 14. Comparison of memory usage by DDM algorithms for routing space 50 x 50 
and grid size 2 x 2 

 

All DDM algorithms provide the multicast groups as an output. The size of the 

multicast groups is an important metric for evaluating the performance of DDM 

algorithms. The graphs in Figures 17, 18, and 19 show the comparison of DDM 

algorithms in terms of size of multicast groups required to provide the region overlap 

information. The routing space is 50 x 50 in Figure 17 and 18, while it is 100 x 100 for 

Figure 19. The grid size is 2 x 2 for Figure 17, and 5 x 5 for Figures 18 and 19. The 

results show that the P-Pruning DDM algorithm requires significantly fewer multicast 

groups as compared to fixed-grid and dynamic-grid algorithm. 
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Figure 15. Comparison of memory usage by DDM algorithms for routing space 50 x 50 
and grid size 5 x 5 

 

 

Figure 16. Comparison of memory usage by DDM algorithm for routing Space 100 x 
100 and grid size 5 x 5 

 

R
eg

io
n 

M
at

ch
in

g 

Fi
xe

d
G

rid
 D

D
M

D
yn

am
ic

G
rid

 D
D

M

P-
P

ru
ni

ng
D

D
M

10
20

30
40

50

0

50

100

150

200

250

300

Memory (MB)

Type of Algorithm

No. of Federates

DDM Algorithm Memory Usage

10
20
30
40
50

Region 
Matching Fixed

Grid DDM Dynamic
Grid DDM P-Pruning

DDM

20

400

200

400

600

800

1000

1200

1400

1600

Memory (MB)

Type of Algorithm

No. of Federates

DDM Algorithm Memory Usage

20
40



 71

 

Figure 17. Comparison of multicast group size in DDM algorithms for routing space 50 
x 50 and grid size 2 x 2 

 

 

Figure 18. Comparison of multicast group size in DDM algorithms for routing space 50 
x  50 and grid size 5 x 5 
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Figure 19. Comparison of multicast group size in DDM algorithms for routing space 100 
x100 and grid size 5 x 5 
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However, if we increase the size of grid cells, the grid algorithms become fast, but at the 

cost of accuracy [99]. The P-Pruning algorithm does not suffer from this constraint. 

Hence, it is both efficient and accurate. The computations in all DDM algorithms can be 

extremely memory intensive. Therefore, system memory can become a huge constraint 

on the performance. Also, managing the communication overhead with increase in 

number of federates--and their overlapping regions--is very crucial for scalable 

distributed simulation. We discuss these important aspects of DDM research in the next 

Chapter. 
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CHAPTER SIX: RESOURCE CONSTRAINT MANAGEMENT IN 
DISTRIBUTED SIMULATION 

In this Chapter, we present the design and implementation of a resource-efficient 

enhancement to the P-Pruning algorithm. We also present a performance evaluation 

study in a memory-constraint environment. 

6.1 Memory as a Resource 
The memory system of current machines is composed of several levels:   

Memory = L1 Cache (On-Chip) + L2 Cache (Secondary) + RAM (Main Memory) + Disk  

A cache provides temporary storage that can be accessed quicker than RAM. By placing 

computationally intensive portions of a program in the cache, the processor can avoid the 

overhead involved in continuous access of RAM. L1 cache is a storage space that is 

located on the processor itself, while L2 cache is typically a RAM chip outside the 

processor (e.g., the Intel Pentium 4 features a 256 or 512KB L2 advanced transfer cache). 

In this hierarchy, memory gets larger and slower as it gets further away from the 

processor. A typical access time to internal main memory (RAM) is in the order of 

nanoseconds, while access time to external memory (such as hard disk) is in the order of 

milliseconds. Thus, the access times of internal and external memory differ by a factor of 

million. In many large-scale distributed simulation applications, the communication 

between internal and external memory, and not the internal computation time, is actually 

bottleneck in the computation. Also, as the application size is scaled, the Input/Output 

(I/O) requirements can lead to serious memory crunch. Modern operating systems use 

sophisticated paging and data pre-fetching strategies to minimize the effect of I/O 
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bottleneck and ensure that the accessed data is present in the internal memory. However, 

these strategies are general in nature and cannot exploit the properties of a specific 

problem. Hence, we need to design solutions which consider a memory of limited size. 

In memory-constraint approach, we view the system memory as a resource that 

has to be optimally allocated among the processes. The problem is how to deploy 

efficient data-structures and reorganize the data at run-time so that the DDM computation 

is not as memory intensive as encountered in practical simulations. I/O efficient data-

structures are the key tools in developing a resource-efficient approach. Also, dynamic 

memory-management strategy that provides efficient garbage collection to reduce 

unnecessary memory leak at run-time is crucial. The primary motivation in the resource-

constraint approach is to devise a scalable, memory-efficient solution for high-

performance distributed simulation applications. 

6.2 I/O Efficient Resource-Constraint Strategy for DDM  

In this section, we explore the resource-constraint issues in the DDM algorithms and 

present a memory-efficient enhancement to the P-Pruning algorithm. 

6.2.1 Resource-Constraint Issues in DDM Implementation 

In Chapter 5, we compared the performance of P-Pruning algorithm with region-

matching, fixed-grid and dynamic-grid DDM algorithm through simulation studies. 

During the simulation experiments, it was observed that the performance of DDM 

algorithms is adversely affected as the number of federates is increased in the simulation 

environment. In practice, system scalability can be seriously inhibited by limits on 
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bandwidth and computation. While this is not totally unexpected; for a DDM algorithm to 

be effective and deployable in high performance modeling and simulation applications, it 

must be scalable. In general, the performance of all DDM algorithms is severely affected 

by limitations in system resources such as communication bandwidth, memory, and CPU 

availability. Hence, we have considered the system memory as a resource in this research. 

In practical distributed simulation applications, the designers should deploy efficient data 

structures to achieve the dual goal of reducing computation time and memory utilization. 

6.2.2 A Memory-Efficient Strategy for Data Distribution Management 

The P-Pruning algorithm is not resource-efficient because it does not conserve memory. 

In a resource-constraint environment, the system memory is limited and special routines 

are needed for developing scalable solutions. We now present a memory-efficient 

enhancement to the P-Pruning algorithm. We consider the system memory as a resource 

and modify the P-Pruning algorithm for optimal utilization of this resource. In memory-

efficient P-Pruning algorithm, the List Computation Sub-Procedure in Chapter 4 is 

modified by incorporating a resource-efficient data structure. We define a node which 

maintains three different types of lists: Publisher region list, X1 subscriber region list, 

and X2 subscriber region list. The set of node is represented as list which replaces the 

ListX array in the List Computation sub-procedure. The set of nodes can be viewed as 

disjoint set of forests, where each node stores three different trees. This representation 

reduces the memory allocated at run-time significantly for the DDM computation and 
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also improves the computation time as evident from the performance evaluation results in 

next sub-section. 

 

Figure 20. Representation of memory-efficient data structure 

 

Data Structure Design: The structure of each node in the disjoint set is shown in Figure 

20. There are n nodes in the list, and each node maintains three different lists of size p, q, 
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shown in Figure 20. The three lists in disjoint set are populated in List Computation sub-
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sub-procedure. Using the new structure, we can reduce the memory allocated at run-time 

and reduce the access time during computations. 
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performance distributed simulation scenario and implemented in C++ under Windows 

XP running on a Pentium IV 2.8 GHz PC with 512 MB RAM and 2500 MB virtual 

memory. We used object-oriented class structures. as shown in Figure 21, to represent 

federates, their publisher and subscriber regions, the grid cells and the multicast groups. 

 

Figure 21. Class structure to represent the disjoint set of forest 

6.4 Simulation Implementation and Analysis 
In the simulation experiments, we generated federates with publisher and subscriber 

regions, whose coordinates were randomly distributed within the routing space. Each 

federate Fi has one publisher region Pi and one subscriber region Si. The graph in Figure 

22 shows the comparison of memory utilized at run-time by the Memory-Constraint P-

Pruning and P-Pruning algorithms for distributed simulation having routing space of 

4,000 x 4,000 and number of federates ranging from 100 to 4,000. Figure 23 shows the 

comparison of computation time required for the Memory-Constraint P-Pruning and 

conventional P-Pruning implementation for the similar range of routing space and 

class List_Node 

{ public: 

 vector<Region> Pub_Region; 

 vector<Region> X1_Sub_Region; 

 vector<Region> X2_Sub_Region; 

 List_Node(); 

~List_Node(); 

}; 
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number of federates in simulation environment. It is evident from these graphs that the 

Memory-Constraint version uses constant memory as compared to the P-Pruning 

algorithm. It also requires less computation time.  

Figure 22. Comparison of memory utilization by the Memory-Constraint and P-Pruning 
DDM algorithms 

 

 

Figure 23. Comparison of computation time for routing space from 100 x 100 to 4000 x 
4000 
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Memory Utilization Graph
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The graph in Figure 24 shows the memory utilization for the routing space upto 20000 x 

20000 and the number of federates ranging from 100 to 20,000. This result demonstrates 

the scalable nature of Memory-Constraint P-Pruning algorithm. The P-Pruning algorithm 

could simulate only upto 4,000 federates due to inefficient memory utilization at run-

time. 

 

Figure 24. Memory utilization for distributed simulation with 20,000 federates 

     From the performance evaluation study of two versions of the P-Pruning DDM 

algorithm, it is clear that the Memory-Constraint P-Pruning DDM algorithm provides the 

region overlapping information efficiently with respect to important metrics: computation 

time and memory usage at run-time. The list of disjoint forests minimizes I/O 

requirements and optimizes memory access at run-time. 
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6.5 Summary of Memory-Efficient Approach 

In this Chapter, we presented the design and performance evaluation of a resource-

efficient enhancement to the P-Pruning algorithm for DDM. By deploying efficient data 

structures, the resource-constraint P-Pruning DDM algorithm scales well in high 

performance distributed-simulation environment. It shows better performance in terms of 

computation time and memory usage at run-time in simulation environment. 
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CHAPTER SEVEN: INTEGRATION OF THE P-PRUNING DDM 
ALGORITHM IN FDK 

In this Chapter, we describe the integration of the P-Pruning algorithm with FDK. FDK is 

an implementation of HLA architecture developed at Georgia Institute of Technology.  It 

has been widely used by researchers in academia, industry, and government laboratories 

as an effective software package for evaluating their research contributions to distributed 

simulation technology. We first provide an overview of the FDK architecture with 

emphasis on the DDM component. After this, we discuss the issues with FDK DDM 

module and areas of improvement. Then, we describe the integration of the P-Pruning 

algorithm with FDK and provide results of our experiences. We also describe the 

enhancements made to FDK from its existing HLA 1.3 specification to the IEEE 1516 

standard for DDM implementation. Finally, we provide the concluding remarks. 

7.1 An Overview of FDK Architecture 

Federated Simulations Development Kit (FDK) is an open source implementation of 

HLA-based RTI software system developed at Georgia Institute of Technology. It has 

been used by researchers in academia, industry, and government laboratories as an 

effective software package for evaluating their research contributions to distributed 

simulation technology. 

 FDK contains composable modules for building run-time infrastructures (RTI) 

using which different simulations can be integrated together. RTI-Kit, a principal 

component of FDK, is a collection of libraries. It supports development of Run-Time 
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Infrastructures for parallel and distributed simulation systems, especially federated 

simulation systems running on high performance computing platforms. Figure 25 and 

Figure 26 show an architectural overview of FDK and its interconnection with the 

Federate and the underlying network. 

 

Figure 25. Architectural Overview of FDK 

 

FDK enables its users to develop the functions of RTI, and more importantly, 

provides developers with the flexibility to expand the functionality. FDK is designed so 

that RTI developers can pick and choose from the set of FDK modules that are most 

appropriate for developing their particular RTI implementation. Each library can be used 

separately, or together with other RTI-Kit libraries, depending on the functionality 

required by the user. Because each library is designed as a stand-alone component, RTI 

implementations that are constructed using RTI-Kit are highly modular, with clear, well-
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defined (and documented) interfaces. These libraries can be embedded into existing RTI 

to add new functionality. RTI developers can benefit from incorporating these ready-

made modules, and avoid having to develop them on their own.  Thus, FDK is a modular 

and reusable set of libraries designed to facilitate the development of RTI for developing 

or integrating parallel and distributed simulation systems.  

Figure 26. FDK Architecture (source: FDK user Manual) 

 

The RTI-Kit consists of the following modules all of which implemented in 

C/C++: 

• Buffer Management and Queues Library. 

• Time Management Kit (TM). 

• Multicast Kit (MCAST). 
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• Fast Messages (FM). 

Buffer Management is a common module for the MCAST-Kit (Multicast), TM-

Kit (Time Management) and FM-Lib (Fast Messages) modules for the management of 

buffers and queues. The Fast Messages module, FM-Lib, is a low-level messaging layer. 

Fast Messages is designed to enable convenient and high performance layering of other 

APIs and protocols on top of it. MCAST-Kit handles the management of multicast groups 

including communication in multicast groups. The Time Management (TM) module, TM-

Kit, provides basic primitives for synchronizing events in HLA distributed simulations. It 

also enables message delivery in both Receive Order (RO) and Time Stamp Order (TSO). 

In addition to the RTI-Kit, FDK contains two HLA Interface Specification 

complaint RTI implementations: 

• Baby RTI (BRTI), C implementation. 

• Debbie’s RTI (DRTI), C++ implementation. 

While these two implementations are not complete realization of the HLA 

Interface Specification, sufficient HLA services are already in place for simple 

simulations and benchmarking. The MCAST and FM modules are of particular interest in 

this paper. The MCAST module is responsible for the management of multicast groups 

and group communications while the FM module provides the low-level primitives for 

communications on the underlying network. 
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7.1.1 HLA Functional Components Implemented in FDK 

The HLA Interface Specification defines sets of services to support realization of 

distributed simulations. The Runtime Infrastructure (RTI) in HLA is software that 

implements those services. 

The DRTI software implements services in five of the categories defined in the HLA 

Interface Specification: 

FEDERATION MANAGEMENT: These services initialize the execution of the 

federation.  

The joinFederationExecution service is used to initialize the RTI and to define the object 

classes and interaction classes that are valid for the federation. No other RTI function 

should be invoked prior to making this call. Constants indicating the number of federates 

(RTIKIT_numnodes) and the ID of this federate (RTIKIT_nodeid) are undefined until 

this procedure is called. Note that all federates joining the federation must supply 

identical fed files. Otherwise, the handles assigned to go with the names will not match, 

and the federation will not work correctly. 

 

DECLARATION MANAGEMENT: These services define object and interaction classes 

and set up communications between federates using a newsgroup-like publish/subscribe 

paradigm.  

The declaration management services are used to specify those object and interaction 

classes for which a federate intends to send messages, and specifies those classes for 

which a federate desires to receive messages. Some means is required to specify which 
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federates are to be notified when an interaction is sent, an object instance is created, or an 

attribute of an object instance is updated. A publish/subscription mechanism not unlike 

Internet newsgroups is used for this purpose. Specifically, the HLA uses something called 

"class-based filtering." This means a federate can subscribe to receive all updates to all 

instances of objects of a certain class. For example, to get a message whenever any tank 

moves, a federate can subscribe to the Tank class. Note there is no mechanism to only get 

updates for a specific object instance, only for all objects of some class. DDM 

mechanisms are defined in the HLA for this type of data filtering. 

OBJECT MANAGEMENT: These services allow federates to declare object instances, 

update attributes, send interactions, receive updates to attributes, and receive interactions 

produced by other federates. 

The object management services are used to transmit messages between federates. A 

message will be sent whenever a federate creates (registers) an instance of an object 

class, updates the attributes of an object instance, or sends an interaction. Callbacks are 

used to receive messages. When the RTI is ready to deliver a message to the federate, it 

calls one of the methods of the FederateAmbassador class. FederateAmbassador is an 

abstract class. This means the federate developer has to derive a class from 

FederateAmbassador and provide definitions for each of the methods. When a federate 

creates an instance of an object (of some class specified in the FedFile), it must notify the 

RTI of this fact by registering this instance. When an instance is registered, the RTI 

returns a handle for the object instance that is used in future references to it, e.g., to 

update attributes of the object. The type ObjectHandle denotes a reference to an object 

instance. 



 88

 

TIME MANAGEMENT: These services control the advancement of simulation time 

within each federate, and prevent federates from receiving messages in their past (i.e., 

time stamp less than the federate's current simulation time). 

The time management services ensure that messages sent with a time stamp are delivered 

to each federate in time-stamp order, and that no federate receives a time-stamped 

message in its past, i.e., a message with time stamp less than the federate's current 

simulation time. In the current implementation, updates and sends that include a time 

stamp are delivered in time-stamp order. All other messages are delivered in receive 

order. Time management is implemented by services where the federate requests that its 

simulation time be advanced, and the RTI responds by issuing a GRANT when it can 

guarantee the time advance will not later result in a message in the federate's past. 

Specifically, there are two services to request simulation time advances. The grant is 

implemented via a callback to the federate. 

Use of these services always results in the following scenario: 

1) Federate requests a time advance and then calls tick,  

2) RTI delivers zero or more messages to the federate via the reflectAttributeValues 

and/or receiveInteraction callbacks in FederateAmbassador,  

3) RTI notifies the federate its simulation time has been advanced via a 

timeAdvanceGrant callback. No additional reflectAttributeValues and/or 

receiveInteraction callbacks *with time stamps* will be made until the next time an 

advance in simulation time is requested. (If messages without time stamps are received, 
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they will be delivered the next time the federate calls tick, regardless of whether an 

advance in simulation time has been requested.) 

 

Support services provide mapping between string representations of names and integer 

handles used in the other services, and provide miscellaneous utilities which do not neatly 

fit into other categories. 

There are two other sets of services defined in the HLA. The Ownership Management 

services allow one federate to transfer ownership of object instance attributes to another 

federate (at which point the second federate would be responsible for updating those 

attributes). These are not implemented in the current version of FDK DRTI. The Data 

Distribution Management services allow you to attach "regions" of interest to 

publications and subscriptions (to allow minimization of unnecessary network traffic). 

An initial version of a library for realizing the DDM services, called DDM-Kit, is 

included. All of the data types used in the RTI interface are declared within a class named 

RTI which acts as a namespace (requiring the scope qualifier RTI:: before each type 

name). 

 

7.2 Implementation of DDM Services in FDK 

FDK uses RTI 1.3 standard for implementing DDM services.  Hence, regions are 

composed of extents, which in turn are rectangular portions of k-dimensional routing 

space. In that way, a geometric shape can be approximated with a collection of extents. A 
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publisher region is associated with each publish message generated by a federate. 

Federates express their interests via subscription regions. If the publisher region 

associated with a message overlaps with a subscriber region, the message is routed to that 

subscribing federate. In a distributed simulation application, the DDM services map the 

name space, description, and interest expressions to the communication services provided 

by the underlying network. The multicast services are used to realize communications 

among federates using MCAST libraries. MCAST provides standard group 

communication services (join, leave, and send messages to groups). Thus, the central 

problem addressed by DDM-Kit software is mapping description and interest expressions 

represented as (region, class attributes) pair to groups. Interest expressions must be 

mapped to groups to which the federate must join. Description expressions associated 

with a message are mapped to one or more groups to which the message must be sent. 

For any particular description, expression, DDM-Kit in FDK can determine a set of 

multicast groups. Creating and managing multicast groups is done outside DDM-Kit. 

However, DDM-Kit specifies how many groups are needed during DDM_init, and uses 

DDM_modify_groups callback to inform an RTI process when to join or leave groups. 

Multicast groups are referred to uniquely across all RTI processes by an integer value 

taken from [0, total groups required – 1] range. 

     Users of DDM-Kit have to map their attributes to integers by invoking 

DDM_get_attribute_handle. This integer representation is used to pass attributes back to 

users when DDM_filter_and_promote is invoked. In addition, special integer value, not 

assigned to any of the attributes is passed in DDM_init. It is used for 

DDM_filter_and_promote to designate an attribute as being filtered out. 
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7.3 DDM Functions in FDK 

Each RTI process must call the following procedures when it begins to execute in order 

to ensure proper initialization of the library.  These procedures must be called before 

RTIKIT_Init() is called. 

void DDM_UsingDDM( void) 

This procedure sets a flag in RTI-Kit to indicate the DDM-Kit library will be used. 

void DDM_init( long p_fed_id, long p_n_feds, long p_n_dimensions, 

const char *p_FedFileName, long 

p__DDM_filtered_out_attr_index_value, 

DDM_modify_groups_proc p_DDM_modify_groups, long 

*r_DDM_n_groups, long *r_DDM_size_tag) 

 

Data Types and Support Services 

The following types and support services are provided by DDM-Kit: 

DDM_expression_handle: a handle that serves as a pointer to a description or interest 

expression 

attribute_handle: a handle for an attribute 

class_handle: a handle for a class 

 

The next two services are used to obtain attribute and class handles. 

int DDM_get_class_handle( char *p_class_name, class_handle *r_class) 

DDM_get_class_handle returns a class handle to be used in subsequent DDM-Kit service 

calls.  p_class_name is a hierarchical name of the class which uniquely identifies it. 
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r_class is the returned handle. The value returned by this function can be one of the 

following: 

•  DDM_success indicates the operation completed successfully. 

•  DDM_no_class_error indicates no class with this name exists. 

int DDM_get_attribute_handle( char *p_attr_name, class_handle 

p_class, long p_attr_index, attribute_handle *r_attr) 

DDM_get_attribute_handle returns an attribute handle to be used in subsequent DDM-Kit 

service calls. p_class is the class handle and p_attr_name is an attribute name. 

p_attr_index is an integer value assigned to attribute by the user. The user must map each 

attribute to a unique integer value. This integer representation is used to pass attributes 

back to users when DDM_filter_and_promote is invoked. r_attr is the returned handle. 

The value returned by this function will be one of the following: 

•  DDM_success indicates the operation completed successfully. 

•  DDM_no_class_error indicates no class with this handle exists. 

•  DDM_no_attribute_error indicates no attribute with this name and class exists. 

Finally, each region is represented as follows. A region is a sequence of extents.  An 

extent is a sequence of ranges, one for each dimension. A range is a half closed interval 

[lower_bound, upper_bound). Dimensions are numbered from 0 to the N-1 in an N-

dimensional routing space. 

Ranges are specified in order of increasing dimensions to define an extent. An extent can 

be shared among multiple regions. 



 93

7.4 Issues with DDM Implementation in FDK 

FDK implements HLA 1.3 specifications. Hence, it uses the system of multiple routing 

spaces, where regions can span across different routing spaces. Also, the number of 

extents per region and number of regions per federate is limited to 5 and 10, respectively. 

The maximum number of federates is limited to 256. Moreover, DDM services are not 

available as a standard functionality. To overcome these drawbacks, we have developed 

the P-Pruning DDM algorithm and integrated it with FDK. 

7.5 Integration with HLA Architecture in FDK  

FDK is an implementation of HLA architecture developed at Georgia Institute of 

Technology. It has been widely deployed as the platform for HLA-based distributed 

simulation research. Hence, we have integrated the P-Pruning DDM algorithm with FDK 

software as a library and compare the performance of P-Pruning DDM algorithm with 

other DDM algorithms using the FDK simulated environment for some applications with 

certain characteristics. This unified FDK-DDM architecture will improve current HLA 

implementations and advance the current state-of-the-art distributed simulation 

methodologies. 
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Figure 27. A modular overview of P-Pruning algorithm 

 

Figure 28. Architectural layout for integration of P-Pruning DDM algorithm with FDK 

RTI-Core

MCAST Other UtilitiesRM-KIT TM-KIT

Shared Memory IP Protocols Network Interface

Fast Message Interface

Physical Network

DDM-Module
P-Pruning Algorithm

Region Interface

List Computation

Multicast Groups

Population Module

Pruning Module

List 
Computation 

Module

Region 
Mapping 
Interface

Population 
Module

D
istributed S

im
ulation Interface

Pruning 
Module

Multicast 
Group
Output



 95

 

     The integrated architecture of FDK with P-Pruning DDM algorithm is shown in 

Figure 27. Figure 28 presents the DDM module used within FDK. We now describe the 

setup procedures involved in the integration process. 

Setup Instructions: 

To Compile: 

       nmake /f PDDM_Makefile.win 

This creates pddm_fdk.exe, the federate executable, in current folder.  

To Run on Single Machine:  

Edit MyFed.net to relect the IP of the machine and decide the number of nodes. 

Set the COMM_NODE_ID = 0, = 1 and so on.  

Run the executable from different DOS windows to simulate the federates. 

Setup:  

PDDMFed.fed is the new Federation info file. It is based on the MyFed.fed file in 

minsim simulation. The federation name has been changed to PDDMFed from MyFed in 

the original simulation. 

 

Structure of MyFed.NET File 

(Communication 

  (Device fm-tcp                           ;; Use FM/MCAST over TCP 

      (Mode sync fixed)                    ;; the mode supported by fm-tcp 

  ) 

  (Memory Static 16 4096)                 ;; use 128 16K buffers 

  (Topology  
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    (Network 4 

 

      (Host 132.170.109.231  33333) 

      (Host 132.170.109.231) 

      (Host 132.170.109.231) 

      (Host 132.170.109.231) 

 

;;    (Host hostname_of_first_node port) 

;;    (Host hostname_of_next_node) 

;;    (Host hostname_of_next_node) 

;;    (Host hostname_of_next_node) 

    ) 

  ) 

) 

 

Communication Across Network 

(Communication 

  (Device fm-tcp                           ;; Use FM/MCAST over TCP 

      (Mode sync fixed)                    ;; the mode supported by fm-tcp 

  ) 

  (Memory Static 16 4096)                 ;; use 128 16K buffers 

  (Topology  

    (Network 2 

 

      (Host 132.170.109.231  33333) 

      (Host 132.170.109.246) 

 

;;    (Host hostname_of_first_node port) 

;;    (Host hostname_of_next_node) 

;;    (Host hostname_of_next_node) 
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;;    (Host hostname_of_next_node) 

    ) 

  ) 

) 

 

7.6 Design and Development of the Communicator Module 

We now describe the integration of P-Pruning algorithm with FDK. First, we present the 

design of a communicator module and then a minimal simulation in FDK. 

The integration of P-Pruning algorithm with FDK consists of following steps: 

• Design of P-Pruning to FDK communicator module 

• Integration of FDK software and the communicator module 

     We now describe the design of the communicator module for integrating the P-

Pruning algorithm with FDK. The communicator module provides connection between P-

Pruning DDM and the FDK federate. It enables conversion of the federate and region 

representation formats from the IEEE 1516 to the HLA 1.3 as required in FDK. The 

template of communicator module is useful in any implementation of simulation 

involving P-Pruning algorithm. Thus, it acts as an API for further simulation 

experiments. 

In the current version of FDK, the number of processors used during the execution 

does not change and all the processors are available during initialization and entire 

execution. Each processor s assigned unique number. According to the FDK user manual, 

FDK has implemented only 25% of the total DDM services from the RTI1.3 Interface 

specification. Hence, the integration of P-Pruning algorithm with FDK can provide help 
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with implementation of DDM services in FDK. The information about regions created by 

federates are stored in two classes: RegionInfo and RegionSets. A RegionInfo class is 

created upon calling CreateRegion, and contains an array of extents. Since this 

information also may relate to routing, ClassInfo retains information about multicast 

groups. During join, the parsing of the fed file results in the creation of multicast groups 

based on the value of ClassSet.CreateMCast. 

     IEEE 1516 is the HLA standard approved by IEEE in September 2000 as a successor 

of the HLA 1.3 specifications. It simplifies the DDM implementation and the basic 

components in this specification are as follows: 

Routing space: There is a single routing space and all dimensions are included in this 

routing space. 

Regions: A region is a single rectangular subspace within the coordinate space. Regions 

may be defined on any subset of the available dimensions of the coordinate system. 

Region set: Regions are grouped into region sets, which consist of one or more regions. 

The regions in a region set need not all have the same subset of the dimensions of the 

coordinate system. 

Dimension: Dimensions correspond to simulation data and they are used to define 

regions. 
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7.6.1 Simulation Results of P-Pruning Algorithm Integrated in FDK 

In Figure 29, we have shown the interface setting for a simulation using FDK and its 

integration with P-Pruning. A simulation that is developed in FDK needs to deliver the 

information on federates to P-Pruning module. This information includes details about 

the publisher and subscriber region in each federates in the IEEE 1516 specifications. The 

P-Pruning algorithm then computes the multicast groups and sends this to the distributed 

simulation which is used by the federation for DDM. 

 

Figure 29. Integrated architecture of FDK with P-Pruning algorithm 
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number of elements. Extent, in turn, referred to as extent is an array of ranges, one for 

each dimension, whereas range is a half closed interval [lower_bound, upper_bound). 

 

     In the FDK, at any point during an execution there is a set of description and interest 

expressions, each of which may either be registered (i.e. active) or not. Registered 

expressions are used to determine data distribution connectivity. Two procedures are used 

to tag an expression as being active or not. These are registering and unregistering an 

expression. They can only be invoked after obtaining a handle for a description or interest 

expression. Besides registering expressions, it is also possible to modify description and 

interest expressions. For these purpose, two procedures are defined: 

typedef struct range_Struct range; 

typedef struct range_Struct *extent; 

struct range_Struct { 

long lower_bound; /* lower bound for a range */ 

long upper_bound; /* upper bound for a range */ 

}; 

 

typedef struct region_handle_Struct region_handle; 

struct region_handle_Struct { 

extent *p_extents_value; /* sequence of extents */ 

int p_n_extents; /* number of extents for this region */ 

}; 



 101

DDM_modify_expression and DDM_modify_region. The first procedure allows 

changing an expression’s value by atomically changing all arguments of an expression’s 

(region, class attribute) pair. The second procedure is used to change a region’s argument 

only.  

     The DDM_register_expression(DDM_expression_handle p_exp) procedure registers 

an expression with the handle p_exp. The returned parameter may have one of the 

following values: DDM_success indicates the operation completed successfully and  

DDM_no_expression_error indicates no interest or description expression with this 

handle could be found. 

int DDM_unregister_expression( DDM_expression_handle p_exp) 

     This procedure deactivates an expression with the handle p_exp. The return value is 

the same as for DDM_register_expression.  

int DDM_modify_expression( DDM_expression_handle p_exp, 

region_handle p_region, attribute_handle *p_attrs, int p_n_attrs) 

     Expression p_exp is modified by modifying all parts of an expression value, that is, its 

region p_region, attributes p_attrs with p_n_attrs.  

class pRegion 
{ 
public: 
 int Xrange1, Xrange2; 
 int Yrange1, Yrange2; 
 int Region_Type; 
 
 int ID; 
 pRegion (); 
}; 
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The return value is the same as  DDM_register_expression. 

int DDM_modify_region( DDM_expression_handle p_exp, region_handle p_region). 

Modifying the region part of an expression value, that is, its region p_region, modifies 

expression p_exp. The return value is the same as for DDM_register_expression. 

     The P-Pruning algorithm can be invoked as library for a distributed simulation 

application. Based on the federate information provided by the RTI, it generates the 

multicast groups. In the implementation of the P-Pruning algorithm, we used the 

following data-structure to represent a region: 

 
     In our integration environment, we created a simulation using 4 nodes under Windows 

XP based on the minsim simulation in FDK version 4.2b3. The DDM services were 

invoked in the simulation to utilize the P-Pruning region-matching routines. Finally, the 

multicast groups information generated by the P-Pruning was delivered to the simulation 

for inter-federate communication. Using this experimental setup, we have demonstrated 

the P-Pruning algorithm can be used a library for implementing DDM services in FDK. 

 

7.7 Distributed FDK Implementation  

The performance of DDM algorithms is strongly dependant on the availability of 

system resources such as memory, CPU time, and communication bandwidth. In the 

performance-evaluation simulations, we compared the memory usage of four DDM 

algorithms and found that system memory becomes a bottleneck as the number of 

federates in increased. Hence, resource-efficient DDM algorithms that can deliver results 

in constrained conditions are critical in distributed simulation. The constraints become 
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more relevant as we incorporate real-world large-scale distributed simulations 

applications in the experiments. Advanced memory management schemes such as 

hierarchical data-caching and pre-fetching routines can help in solving the memory 

constraint issues. In the near future, we plan to adapt the P-Pruning DDM algorithm in a 

resource-constraint environment. 

In memory-constraint approach, we view the system memory as a resource that 

has to be optimally allocated among the processes. The problem is how to deploy 

efficient data-structures and reorganize the data at run-time so that the DDM computation 

is not as memory intensive as encountered in practical simulations. I/O efficient data-

structures are the key tools in developing a resource-efficient approach. Also, dynamic 

memory-management strategy that provides efficient garbage collection to reduce 

unnecessary memory leak at run-time is crucial. The primary motivation in the resource-

constraint approach is to devise a scalable, memory-efficient solution for high-

performance distributed simulation applications. 

7.8 Summary 

In this Chapter, we presented the integration of P-Pruning DDM algorithm with FDK. 

FDK has been widely deployed as the platform for HLA-based distributed simulation 

research. We believe that integration of P-Pruning DDM algorithm with FDK software 

can improve the current HLA implementations, and help advance the modeling and 

simulation technology. 
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CHAPTER EIGHT: DIRECTIONS FOR FURTHER RESEARCH 

8.1 Scalable DDM approach in Distributed Environment 
During the performance evaluation experiments, it was observed that the performance of 

DDM algorithm is adversely affected as the number of federates is increased in the 

simulation environment. In large-scale distributed simulation application, system 

scalability can be seriously inhibited by limits on resources such communication 

bandwidth, memory, and CPU availability [98]. 

 

Figure 30. Cluster computer architecture 

 

A distributed DDM algorithm implementation on cluster computers (Figure 30) 

can scale well as the number of simulation entities increases ([86], [113], [117], [118]). 

An interesting extension to our work could be a parallel/distributed DDM algorithm that 

incorporates resources such as communication bandwidth in the resource-constraint 
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analysis, and address the scalability issues. Figure 31 shows a visual image of the 48-

node dual-processor Ariel cluster running on SUN Solaris operating system in the School 

of Computer Science at University of Central Florida.  

 

Figure 31. 48-node dual-processor Ariel Solaris cluster at UCF 

Data distribution management services provided by the RTI should scale in terms 

of (1) computational complexity for handling requests, (2) message traffic and/or 

bandwidth for distributing information, and (3) memory requirements for storing attribute 

information, maintaining tables, etc. The parameters that normally affect scalability are: 

(a) the number of federates (or hosts) in the federation, (b) the number of simulated 

entities per federate, (c) the average complexity concerning the interests of each entity 

(i.e., an entity may have a number of different kinds of sensors), (d) the interaction rates 

between objects after they discover each other, (e) the locality of objects, and indirectly 

(f) the scenario. 
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Figure 32. Layout of a distributed computing application sharing data resources 

In large-scale distributed simulation application, system scalability can be 

seriously inhibited by limits on resources such communication bandwidth, memory, and 

CPU availability. While this is not totally unexpected; for a DDM algorithm to be 

effective and deployable in high performance modeling and simulation applications, it 

must be scalable. Our work can be extended to a distributed DDM algorithm 

implementation on cluster computers, incorporate resources such as communication 

bandwidth in the resource-constraint analysis, and investigate the scalability issues. 

Figure 32 shows the layout of a distributed computing application as often encountered in 

DDM scenarios sharing resources across geographically distributed locations. The 

distributed implementation of P-Pruning algorithm will provide a scalable and resource-

efficient DDM approach. The P-Pruning DDM algorithm on integration with FDK 
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software will improve the current HLA implementations, and advance the modeling and 

simulation technology.  

8.2 Using Real-World DDM Applications for Test 
We can apply the DDM techniques developed in this research using data derived from 

real-world applications. Now, we present three scenarios for illustrating the use of DDM 

in real-world applications ([104], [106], [107], [108], [111], [112]). The following 

applications are considered:  

i) Ground-Based Radar (GBR) tracking tanks with limited operating range. 

ii) JSTARS (airborne radar) flying and tracking tanks with limited operating range. 

iii) AWACS flying and tracking airborne aircrafts. 

Application (i) represents static condition, i.e., neither the publisher or subscriber 

regions, once set, are modified. As illustrated in Figure 33, ground-based radars GBR1 

through GBR2 cover an area and their subscriber regions are shown. Tanks T1 through 

T6 have limited operating range reflected by their respective publisher regions. The 

subscriber region for radar GBR1 is shown overlaps publisher regions of tanks T1 and 

T2. 
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Figure 33. Application having ground-based radars tracking tank with limited range 
 

Application (ii) represents semi-dynamic condition, which have either the publisher or 

subscriber regions fixed. In this case, the publication region of JSTARS is not fixed. As 

illustrated in Figure 34, a dynamic JSTARS (Joint Surveillance Target Attack Radar 

System) is circling over the entire area and its subscriber region is shown. Tanks T1 

through T6 have limited operating range reflected by their respective publisher regions. 

At this particular instance, the subscriber region for JSTARS overlaps publisher regions 

of tanks T1, T2, and T3. 

 

 

T1
T2

T3
T4

T5

T6

GBR1

GBR2GBR3

GBR4
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Figure 34. Application having JSTARS flying and tracking tanks with limited range 

 

Application (iii) represents the dynamic DDM test-case, where both subscriber 

and publisher regions are dynamically modified. In this case, the publication region of 

JSTARS is fixed. As illustrated in Figure 35, a dynamic AWACS (Airborne Warning and 

Control System) is circling over the entire area and its subscriber region is shown. 

Airborne aircrafts A1 through A6 are circle over the area and move in and out of 

AWACS range. At this particular instance, the subscriber region for AWACS overlaps 

publisher regions of aircrafts A1, A2, and A3. Table 2 shows the classification of three 

applications based on the nature of subscriber region. 

 

T4

JSTARS

T5

T6 T1
T2

T3
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Figure 35. Application having AWACS flying and tracking airborne aircrafts 

 

 

Table 2. Classification of real-world scenarios based on subscriber region update 

Sensor / Target Sensor Subscription Target Update 

GBR/Tank Static Static 

JSTAR/Tank Dynamic Static 

AWACS/Aircraft Dynamic Dynamic 

 

 

AWACS
A6

A4

A5

A2

A1

A3
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CHAPTER NINE: CONCLUSIONS 

DDM is necessary for large-scale distributed simulation applications as information 

exchange and delivery become more complex. In this thesis, we presented the design, 

analysis, and performance evaluation of an efficient algorithm for DDM. The P-Pruning 

DDM algorithm shows better performance in terms of computation time, memory usage 

at run-time, and size of multicast groups as compared to other algorithms in a simulated 

environment. We have also presented the design and performance evaluation of a 

resource-efficient enhancement to the P-Pruning algorithm for DDM. By deploying 

efficient data structures, the resource-constraint P-Pruning DDM algorithm scales well in 

high performance distributed-simulation environment. It shows better performance in 

terms of computation time and memory usage at run-time in simulation environment. We 

have also extended our DDM research work by incorporating resource constraints and 

develop resource-efficient approaches in constrained environments. A distributed 

implementation of DDM on cluster computers will provide scalable solution to this 

problem. The P-Pruning DDM algorithm when integrated with FDK software will 

improve the current HLA implementations, and advance the modeling and simulation 

technology. 
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Table 3. List of commercial RTI software and their details 

RTI 

Name 

Vendor HLA 

Spec. 

DDM 

Method 

Langu

age 

Platform Compil

er 

Latest 

Release 

Date 

Notes 

pRTI Pitch AB IEEE 
1516, 
1.3 

Unknown Java, 
C++ 

Java2, 
Win32 

JDK 1.4, 
MSVC+
+ 

Aug. 05 www.pitc
h.se 

ERTI Mitsubishi 
Space 
Software 
(MSS) 

1.3 Unknown C++ SunOS 8, 
Windows, 
Linux 

MSVC+
+, 
gcc, 
Sun 
Visual 
C++ 

Apr. 02 * 

MAK 
RTI 

MAK 
Technolog
ies 

1.3 Unknown C++ Win32, 
Linux, 
IRIX 

MSVC+
+, 
gcc, 
MIPS 
Pro C++ 

Jan. 03 www.ma
k.com 

RTI-
NG Pro 

VTC & 
SAIC 

1.3 Unknown C++ Solaris, 
Linux  

C++ 
Forte 6, 
gcc 

May 05 www.virt
c.com 

RTI 
NG 

SAIC 1.3 Unknown C++ Solaris 2.6 Sun C++ 
4.2 

May 04 * 

Matrex 
RTI 
NG 

VTC 1.3 Unknown C++ Linux gcc May 05 * 

HPC-
RTI 

RAM 
Labs 

1.3 Grid * * * * www.ra
mlabs.co
m 

 

* denotes that data is not available. 

 

 

 

http://www.pitch.se/�
http://www.pitch.se/�
http://www.mak.com/�
http://www.mak.com/�
http://www.virtc.com/�
http://www.virtc.com/�
http://www.ramlabs.com/�
http://www.ramlabs.com/�
http://www.ramlabs.com/�
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Table 4. List of academic RTI software 

NAME Institute Version DDM 

Method

Platform Website 

DRTI Georgia 
Institute of 
Technology 

1.3 * C++ on 

Win32 

and 

Linux 

http://www.cc.gatech.edu/computing/pads

Light-

Weight 

RTI 

George 

Mason 

University 

1.0 * * http://netlab.gmu.edu/rti 

RTI 1.3 MIT 
Lincoln 
Labs 

1.0 Grid * http://dss.ll.mit.edu 

 

* denotes that data is not available. 

 

http://www.cc.gatech.edu/computing/pads�
http://netlab.gmu.edu/rti�
http://dss.ll.mit.edu/�
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APPENDIX B: RESULTS OF SIMULATION EXPERIMENTS 
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Table 5. Computation time results (in Seconds) for routing space 50 x 50 and grid size 2 

x 2 

Routing 
Space 

Dimensions 
No. of  

Federates 
Region  

Matching  
Fixed 

Grid DDM 
Dynamic 
Grid DDM 

P-
Pruning

DDM 
50 10 0.813 4.828 7.078 0.265 
50 20 0.766 6.672 11.547 0.218 
50 30 2.032 10.593 20.172 0.219 
50 40 2.953 15.282 21.654 0.219 
50 50 5.36 18.516 23.125 0.218 

 

Table 6. Computation time results (in Seconds) for routing space 50 x 50 and grid size 5 

x 5 

Routing 
Space 

Dimensions 
No. of  

Federates 
Region  

Matching  
Fixed 

Grid DDM 
Dynamic 
Grid DDM 

P-
Pruning

DDM 
50 10 0.547 0.421 0.75 0.219 
50 20 1 0.516 1.359 0.25 
50 30 1.094 0.766 1.953 0.218 
50 40 2.625 0.969 1.172 0.219 
50 50 3.297 0.984 1.75 0.218 

 

Table 7. Computation time results (in Seconds) for routing space 100 x 100 and grid size 

5 x 5 

Routing 
Space 

Dimensions 
No. of  

Federates 
Region  

Matching 
Fixed 

Grid DDM 
Dynamic 
Grid DDM 

P-Pruning
DDM 

100 20 0.734 8.078 8.781 0.688
100 40 4 11.203 15.922 0.922
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Table 8. Memory usage (in MB) results for routing space 50 x 50 and grid size 2 x 2 

Routing 
Space 

Dimensions 
No. of  

Federates 
Region  

Matching 
Fixed 

Grid DDM 
Dynamic 
Grid DDM 

P-Pruning
DDM 

50 10 215.641 334.125 334.289 213.961 
50 20 209.555 443.297 443.289 201.719 
50 30 219.68 565.797 565.629 201.852 
50 40 232.945 719.879 720.105 232.848 
50 50 250.141 861.102 861.113 250.09 

 

Table 9. Memory usage (in MB) results for routing space 50 x 50 and grid size 5 x 5 

Routing 
Space 

Dimensions 
No. of  

Federates 
Region  

Matching 
Fixed 

Grid DDM 
Dynamic 
Grid DDM 

P-Pruning
DDM 

50 10 186.867 274.773 274.773 177.168 
50 20 197.117 274.969 274.969 177.363 
50 30 207.281 275.164 275.164 177.559 
50 40 217.449 275.359 275.359 177.754 
50 50 227.621 275.563 275.563 177.957 

 

 

Table 10. Memory usage (in MB) results for routing space 100 x 100 and grid size 5 x 5 

Routing 
Space 

Dimensions 
No. of  

Federates 
Region  

Matching 
Fixed 

Grid DDM 
Dynamic 
Grid DDM 

P-Pruning
DDM 

100 20 232.668 813.805 813.324 200.711
100 40 328.059 1430.27 1429.92 201.512
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Table 11. Multicast group size results for routing space 50 x 50 and grid size 2 x 2 

Routing 
Space 

Dimensions 
No. of  

Federates 
Region  

Matching 
Fixed 

Grid DDM 
Dynamic 
Grid DDM 

P-Pruning
DDM 

50 10 10 625 235 8 
50 20 20 625 408 20 
50 30 30 625 476 30 
50 40 40 625 476 40 
50 50 50 625 478 50 

 

 

Table 12. Multicast group size results for routing space 50 x 50 and grid size 5 x 5 

Routing 
Space 

Dimensions 
No. of  

Federates 
Region  

Matching 
Fixed 

Grid DDM 
Dynamic 
Grid DDM 

P-Pruning
DDM 

50 10 10 100 34 9 
50 20 20 100 79 18 
50 30 30 100 89 28 
50 40 40 100 85 40 
50 50 50 100 77 50 

 

 

Table 13. Multicast group size results for routing space 100 x 100 and grid size 5 x 5 

Routing 
Space 

Dimensions 
No. of  

Federates 
Region  

Matching 
Fixed 

Grid DDM 
Dynamic 
Grid DDM 

P-Pruning
DDM 

100 20 20 400 263 19 
100 40 40 400 290 40 
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Table 14. Memory-constraint P-Pruning algorithm scalability result for routing space 
20000 x 20000 

Routing Space 
Dimensions 

No. of  
Federates 

P-Pruning 
DDM 

Memory 
Constraint 

DDM 
100 100 215.035 214.293 
500 500 208.227 189.242 

1000 1000 268.352 191.926 
3000 3000 909.316 222.535 
4000 4000 1469.2 248.504 
5000 5000   283.059 
7500 7500   402.465 
10000 10000   570.445 
15000 15000   1049.01 
17000 17000   1294.45 
18000 18000   1429.02 
19000 19000   1570.9 
20000 20000   1752 

 
 
 

Table 15. Comparison of computation time between Memory-Constraint and normal P-
Pruning routing space 4000 x 4000 

Routing Space 
Dimensions 

No. of  
Federates 

P-Pruning 
DDM 

Memory 
Constraint DDM 

100 100 0.281 0.266 
500 500 0.328 0.906 

1000 1000 0.5 1.265 
3000 3000 80.672 6.672 
4000 4000 204.782 12.656 
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Table 16. Comparison of memory usage at run-time by Memory-Constraint and normal 
P-Pruning routing space 4000 x 4000 

Routing Space 
Dimensions 

No. of  
Federates 

P-Pruning 
DDM 

Memory 
Constraint 

DDM 
100 100 215.035 214.293 
500 500 208.227 189.242 

1000 1000 268.352 191.926 
3000 3000 909.316 222.535 
4000 4000 1469.2 248.504 
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APPENDIX C: FDK P-PRUNING INTEGRATION OUTPUT 
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RESULTS on Two Nodes 

Node 0: 

C:\FDK\New_minsim>node0.bat 

 

C:\FDK\New_minsim>set COMM_NODE_ID=0 

 

C:\FDK\New_minsim>minsim 

Debug set to DEBUG_DRTI 

Initializing Instance tables 

Registering Handlers 

RTI Ambassador Initialized 

double:        8 

rti13::Double: 8 

TM_Time:       8 

float:         4 

Creating federation execution... created. (sort of) 

Current simulation time: 0 

Joining federation execution... 

myID initialized 

Begin Join 

Pass 1 complete 

Pass 2 complete 

  Transports:   0 

  Spaces:       1 

  Dimensions:   1 

  Classes:      2 

  Attributes:   1 

  Interactions: 2 

  Parameters:   1 
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Allocating a heap of max 16 elements. 

Info: commkit: loaded fm-tcp: sockets-based TCP using the FM library 

Info: commkit: execution is synchronous (single-threaded) 

Info: commkit: net topolgy is fixed 

Number of FM Nodes: 2 

0: Initializing RTI-KIT(Version: 4.0)...Node 0 initialized logging services. 

Join: Creating Object Class Multicast Groups 

Join: Creating Interaction Class Multicast Groups 

Join: Entering Barrier 

Join: Leaving Barrier 

Join: Entering Final Barrier 

 

Out of the call now joined. 

Publishing and subscribing...Creating HVPS..done. 

Enabling Time Constraint...enabled. 

Entering initial barrier...done. 

Publishing an object class and its attributes...getObjectClassHandle for Name: o 

bjectRoot.MyObjectClass 

done 

Subscribing to that object class...done 

Tick now...done 

Create a AHVPS...done 

Sending update message for attribute values of MyObjectClass...done 

Sending delete message for MyObjectClass object...Received update attributes 

message. 

done 

Sending a message for time 3.500000 ...done. 

Requesting time... 1.000000 ...done. 

Granted to time: 1.000000 
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Requesting time... 2.000000 ...done. 

Granted to time: 2.000000 

Requesting time... 3.000000 ...done. 

Granted to time: 3.000000 

Requesting time... 4.000000 ...done. 

Granted to time: 4.000000 

Requesting time... 5.000000 ...done. 

Granted to time: 5.000000 

Requesting time... 6.000000 ...done. 

Granted to time: 6.000000 

Entering final barrier...done 

Requesting time... 7.000000 ...done. 

Exited with tick_count 1000 

Resigning from Federation...service_this_socket: myid 0 readn() error; proc 1 so 

ck 1860 bytes_read = -1 

 

Node 1 

C:\FDK\New_minsim>node1.bat 

 

C:\FDK\New_minsim>set COMM_NODE_ID=1 

 

C:\FDK\New_minsim>minsim 

Debug set to DEBUG_DRTI 

Initializing Instance tables 

Registering Handlers 

RTI Ambassador Initialized 

double:        8 

rti13::Double: 8 

TM_Time:       8 

float:         4 
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Creating federation execution... created. (sort of) 

Current simulation time: 0 

Joining federation execution... 

myID initialized 

Begin Join 

Pass 1 complete 

Pass 2 complete 

  Transports:   0 

  Spaces:       1 

  Dimensions:   1 

  Classes:      2 

  Attributes:   1 

  Interactions: 2 

  Parameters:   1 

 

Allocating a heap of max 16 elements. 

Info: commkit: loaded fm-tcp: sockets-based TCP using the FM library 

Info: commkit: execution is synchronous (single-threaded) 

Info: commkit: net topolgy is fixed 

Number of FM Nodes: 2 

1: Initializing RTI-KIT(Version: 4.0)...Node 1 initialized logging services. 

Join: Entering Barrier 

Join: Leaving Barrier 

Join: Joining Groups 

Join: Entering Final Barrier 

 

Out of the call now joined. 

Publishing and subscribing...Creating HVPS..done. 

Enabling Time Constraint...enabled. 

Entering initial barrier...done. 
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Publishing an object class and its attributes...getObjectClassHandle for Name: o 

bjectRoot.MyObjectClass 

done 

Subscribing to that object class...done 

Tick now...done 

Create a AHVPS...done 

Sending update message for attribute values of MyObjectClass...done 

Sending delete message for MyObjectClass object...Received update attributes 

message. 

done 

Requesting time... 1.000000 ...done. 

Granted to time: 1.000000 

Requesting time... 2.000000 ...done. 

Granted to time: 2.000000 

Requesting time... 3.000000 ...done. 

Granted to time: 3.000000 

Requesting time... 4.000000 ...done. 

Granted to time: 4.000000 

Requesting time... 5.000000 ...done. 

Granted to time: 5.000000 

Requesting time... 6.000000 ...done. 

Granted to time: 6.000000 

Entering final barrier...done 

Setting not constrained 

Thrown Exception: TimeRegulationWasNotEnabled because: Time Regulation 

was not enabled. 

Destroying Federation...done. 
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