13,530 research outputs found

    Approximation Algorithm for Vertex Cover with Multiple Covering Constraints

    Get PDF
    We consider the vertex cover problem with multiple coverage constraints in hypergraphs. In this problem, we are given a hypergraph G=(V,E) with a maximum edge size f, a cost function w: V - > Z^+, and edge subsets P_1,P_2,...,P_r of E along with covering requirements k_1,k_2,...,k_r for each subset. The objective is to find a minimum cost subset S of V such that, for each edge subset P_i, at least k_i edges of it are covered by S. This problem is a basic yet general form of classical vertex cover problem and a generalization of the edge-partitioned vertex cover problem considered by Bera et al. We present a primal-dual algorithm yielding an (f * H_r + H_r)-approximation for this problem, where H_r is the r^{th} harmonic number. This improves over the previous ratio of (3cf log r), where c is a large constant used to ensure a low failure probability for Monte-Carlo randomized algorithms. Compared to previous result, our algorithm is deterministic and pure combinatorial, meaning that no Ellipsoid solver is required for this basic problem. Our result can be seen as a novel reinterpretation of a few classical tight results using the language of LP primal-duality

    Algorithms for covering multiple submodular constraints and applications

    Get PDF
    We consider the problem of covering multiple submodular constraints. Given a finite ground set N, a weight function w:Nā†’R+w: N \rightarrow \mathbb {R}_+, r monotone submodular functions f1,f2,ā€¦,frf_1,f_2,\ldots ,f_r over N and requirements k1,k2,ā€¦,krk_1,k_2,\ldots ,k_r the goal is to find a minimum weight subset SāŠ†NS \subseteq N such that fi(S)ā‰„kif_i(S) \ge k_i for 1ā‰¤iā‰¤r1 \le i \le r. We refer to this problem as Multi-Submod-Cover and it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR. arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with r=1r=1 Multi-Submod-Cover generalizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced to Submod-SC. A simple greedy algorithm gives an O(logā”(kr))O(\log (kr)) approximation where k=āˆ‘ikik = \sum _i k_i and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm for Multi-Submod-Cover that covers each constraint to within a factor of (1āˆ’1/eāˆ’Īµ)(1-1/e-\varepsilon ) while incurring an approximation of O(1Ļµlogā”r)O(\frac{1}{\epsilon }\log r) in the cost. Second, we consider the special case when each fif_i is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2ā€“8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems.publishedVersio

    On the Optimality of a Class of LP-based Algorithms

    Full text link
    In this paper we will be concerned with a class of packing and covering problems which includes Vertex Cover and Independent Set. Typically, one can write an LP relaxation and then round the solution. In this paper, we explain why the simple LP-based rounding algorithm for the \\VC problem is optimal assuming the UGC. Complementing Raghavendra's result, our result generalizes to a class of strict, covering/packing type CSPs

    Optimal Distributed Covering Algorithms

    Get PDF
    We present a time-optimal deterministic distributed algorithm for approximating a minimum weight vertex cover in hypergraphs of rank f. This problem is equivalent to the Minimum Weight Set Cover problem in which the frequency of every element is bounded by f. The approximation factor of our algorithm is (f+epsilon). Let Delta denote the maximum degree in the hypergraph. Our algorithm runs in the congest model and requires O(log{Delta} / log log Delta) rounds, for constants epsilon in (0,1] and f in N^+. This is the first distributed algorithm for this problem whose running time does not depend on the vertex weights nor the number of vertices. Thus adding another member to the exclusive family of provably optimal distributed algorithms. For constant values of f and epsilon, our algorithm improves over the (f+epsilon)-approximation algorithm of [Fabian Kuhn et al., 2006] whose running time is O(log Delta + log W), where W is the ratio between the largest and smallest vertex weights in the graph. Our algorithm also achieves an f-approximation for the problem in O(f log n) rounds, improving over the classical result of [Samir Khuller et al., 1994] that achieves a running time of O(f log^2 n). Finally, for weighted vertex cover (f=2) our algorithm achieves a deterministic running time of O(log n), matching the randomized previously best result of [Koufogiannakis and Young, 2011]. We also show that integer covering-programs can be reduced to the Minimum Weight Set Cover problem in the distributed setting. This allows us to achieve an (f+epsilon)-approximate integral solution in O((1+f/log n)* ((log Delta)/(log log Delta) + (f * log M)^{1.01}* log epsilon^{-1}* (log Delta)^{0.01})) rounds, where f bounds the number of variables in a constraint, Delta bounds the number of constraints a variable appears in, and M=max {1, ceil[1/a_{min}]}, where a_{min} is the smallest normalized constraint coefficient. This improves over the results of [Fabian Kuhn et al., 2006] for the integral case, which combined with rounding achieves the same guarantees in O(epsilon^{-4}* f^4 * log f * log(M * Delta)) rounds

    LP-based Covering Games with Low Price of Anarchy

    Full text link
    We present a new class of vertex cover and set cover games. The price of anarchy bounds match the best known constant factor approximation guarantees for the centralized optimization problems for linear and also for submodular costs -- in contrast to all previously studied covering games, where the price of anarchy cannot be bounded by a constant (e.g. [6, 7, 11, 5, 2]). In particular, we describe a vertex cover game with a price of anarchy of 2. The rules of the games capture the structure of the linear programming relaxations of the underlying optimization problems, and our bounds are established by analyzing these relaxations. Furthermore, for linear costs we exhibit linear time best response dynamics that converge to these almost optimal Nash equilibria. These dynamics mimic the classical greedy approximation algorithm of Bar-Yehuda and Even [3]
    • ā€¦
    corecore