182 research outputs found

    Approximation Algorithm for Line Segment Coverage for Wireless Sensor Network

    Full text link
    The coverage problem in wireless sensor networks deals with the problem of covering a region or parts of it with sensors. In this paper, we address the problem of covering a set of line segments in sensor networks. A line segment ` is said to be covered if it intersects the sensing regions of at least one sensor distributed in that region. We show that the problem of finding the minimum number of sensors needed to cover each member in a given set of line segments in a rectangular area is NP-hard. Next, we propose a constant factor approximation algorithm for the problem of covering a set of axis-parallel line segments. We also show that a PTAS exists for this problem.Comment: 16 pages, 5 figures

    Approximation Algorithms for Rectangle Piercing Problems

    Get PDF
    Piercing problems arise often in facility location, which is a well-studied area of computational geometry. The general form of the piercing problem discussed in this dissertation asks for the minimum number of facilities for a set of given rectangular demand regions such that each region has at least one facility located within it. It has been shown that even if all regions are uniform sized squares, the problem is NP-hard. Therefore we concentrate on approximation algorithms for the problem. As the known approximation ratio for arbitrarily sized rectangles is poor, we restrict our effort to designing approximation algorithms for unit-height rectangles. Our e-approximation scheme requires nO(1/ε²) time. We also consider the problem with restrictions like bounding the depth of a point and the width of the rectangles. The approximation schemes for these two cases take nO(1/ε) time. We also show how to maintain a factor 2 approximation of the piercing set in O(log n) amortized time in an insertion-only scenario

    QPTAS for Weighted Geometric Set Cover on Pseudodisks and Halfspaces

    Get PDF
    International audienceWeighted geometric set-cover problems arise naturally in several geometric and non-geometric settings (e.g. the breakthrough of Bansal and Pruhs (FOCS 2010) reduces a wide class of machine scheduling problems to weighted geometric set-cover). More than two decades of research has succeeded in settling the (1 + status for most geometric set-cover problems, except for some basic scenarios which are still lacking. One is that of weighted disks in the plane for which, after a series of papers, Varadarajan (STOC 2010) presented a clever quasi-sampling technique, which together with improvements by Chan et al. (SODA 2012), yielded an O(1)-approximation algorithm. Even for the unweighted case, a PTAS for a fundamental class of objects called pseudodisks (which includes half-spaces, disks, unit-height rectangles, translates of convex sets etc.) is currently unknown. Another fundamental case is weighted halfspaces in R 3 , for which a PTAS is currently lacking. In this paper, we present a QPTAS for all of these remaining problems. Our results are based on the separator framework of Adamaszek and Wiese (FOCS 2013, SODA 2014), who recently obtained a QPTAS for weighted independent set of polygonal regions. This rules out the possibility that these problems are APX-hard, assuming NP DTIME(2 polylog(n)). Together with the recent work of Chan and Grant (CGTA 2014), this settles the APX-hardness status for all natural geometric set-cover problems

    Algorithms for Geometric Covering and Piercing Problems

    Get PDF
    This thesis involves the study of a range of geometric covering and piercing problems, where the unifying thread is approximation using disks. While some of the problems addressed in this work are solved exactly with polynomial time algorithms, many problems are shown to be at least NP-hard. For the latter, approximation algorithms are the best that we can do in polynomial time assuming that P is not equal to NP. One of the best known problems involving unit disks is the Discrete Unit Disk Cover (DUDC) problem, in which the input consists of a set of points P and a set of unit disks in the plane D, and the objective is to compute a subset of the disks of minimum cardinality which covers all of the points. Another perspective on the problem is to consider the centre points (denoted Q) of the disks D as an approximating set of points for P. An optimal solution to DUDC provides a minimal cardinality subset Q*, a subset of Q, so that each point in P is within unit distance of a point in Q*. In order to approximate the general DUDC problem, we also examine several restricted variants. In the Line-Separable Discrete Unit Disk Cover (LSDUDC) problem, P and Q are separated by a line in the plane. We write that l^- is the half-plane defined by l containing P, and l^+ is the half-plane containing Q. LSDUDC may be solved exactly in O(m^2n) time using a greedy algorithm. We augment this result by describing a 2-approximate solution for the Assisted LSDUDC problem, where the union of all disks centred in l^+ covers all points in P, but we consider using disks centred in l^- as well to try to improve the solution. Next, we describe the Within-Strip Discrete Unit Disk Cover (WSDUDC) problem, where P and Q are confined to a strip of the plane of height h. We show that this problem is NP-complete, and we provide a range of approximation algorithms for the problem with trade-offs between the approximation factor and running time. We outline approximation algorithms for the general DUDC problem which make use of the algorithms for LSDUDC and WSDUDC. These results provide the fastest known approximation algorithms for DUDC. As with the WSDUDC results, we present a set of algorithms in which better approximation factors may be had at the expense of greater running time, ranging from a 15-approximate algorithm which runs in O(mn + m log m + n log n) time to a 18-approximate algorithm which runs in O(m^6n+n log n) time. The next problems that we study are Hausdorff Core problems. These problems accept an input polygon P, and we seek a convex polygon Q which is fully contained in P and minimizes the Hausdorff distance between P and Q. Interestingly, we show that this problem may be reduced to that of computing the minimum radius of disk, call it k_opt, so that a convex polygon Q contained in P intersects all disks of radius k_opt centred on the vertices of P. We begin by describing a polynomial time algorithm for the simple case where P has only a single reflex vertex. On general polygons, we provide a parameterized algorithm which performs a parametric search on the possible values of k_opt. The solution to the decision version of the problem, i.e. determining whether there exists a Hausdorff Core for P given k_opt, requires some novel insights. We also describe an FPTAS for the decision version of the Hausdorff Core problem. Finally, we study Generalized Minimum Spanning Tree (GMST) problems, where the input consists of imprecise vertices, and the objective is to select a single point from each imprecise vertex in order to optimize the weight of the MST over the points. In keeping with one of the themes of the thesis, we begin by using disks as the imprecise vertices. We show that the minimization and maximization versions of this problem are NP-hard, and we describe some parameterized and approximation algorithms. Finally, we look at the case where the imprecise vertices consist of just two vertices each, and we show that the minimization version of the problem (which we call 2-GMST) remains NP-hard, even in the plane. We also provide an algorithm to solve the 2-GMST problem exactly if the combinatorial structure of the optimal solution is known. We identify a number of open problems in this thesis that are worthy of further study. Among them: Is the Assisted LSDUDC problem NP-complete? Can the WSDUDC results be used to obtain an improved PTAS for DUDC? Are there classes of polygons for which the determination of the Hausdorff Core is easy? Is there a PTAS for the maximum weight GMST problem on (unit) disks? Is there a combinatorial approximation algorithm for the 2-GMST problem (particularly with an approximation factor under 4)

    Packing and Covering with Non-Piercing Regions

    Get PDF
    In this paper, we design the first polynomial time approximation schemes for the Set Cover and Dominating Set problems when the underlying sets are non-piercing regions (which include pseudodisks). We show that the local search algorithm that yields PTASs when the regions are disks [Aschner/Katz/Morgenstern/Yuditsky, WALCOM 2013; Gibson/Pirwani, 2005; Mustafa/Raman/Ray, 2015] can be extended to work for non-piercing regions. While such an extension is intuitive and natural, attempts to settle this question have failed even for pseudodisks. The techniques used for analysis when the regions are disks rely heavily on the underlying geometry, and do not extend to topologically defined settings such as pseudodisks. In order to prove our results, we introduce novel techniques that we believe will find applications in other problems. We then consider the Capacitated Region Packing problem. Here, the input consists of a set of points with capacities, and a set of regions. The objective is to pick a maximum cardinality subset of regions so that no point is covered by more regions than its capacity. We show that this problem admits a PTAS when the regions are k-admissible regions (pseudodisks are 2-admissible), and the capacities are bounded. Our result settles a conjecture of Har-Peled (see Conclusion of [Har-Peled, SoCG 2014]) in the affirmative. The conjecture was for a weaker version of the problem, namely when the regions are pseudodisks, the capacities are uniform, and the point set consists of all points in the plane. Finally, we consider the Capacitated Point Packing problem. In this setting, the regions have capacities, and our objective is to find a maximum cardinality subset of points such that no region has more points than its capacity. We show that this problem admits a PTAS when the capacity is unity, extending one of the results of Ene et al. [Ene/Har-Peled/Raichel, SoCG 2012]
    • …
    corecore