
Approximation Algorithms for Rectangle Piercing

Problems

by

Abdullah-Al Mahmood

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2005

c©Abdullah-Al Mahmood 2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144141528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Piercing problems arise often in facility location, which is a well-studied area of

computational geometry. The general form of the piercing problem discussed in this

dissertation asks for the minimum number of facilities for a set of given rectangular

demand regions such that each region has at least one facility located within it. It

has been shown that even if all regions are uniform sized squares, the problem is

NP-hard. Therefore we concentrate on approximation algorithms for the problem.

As the known approximation ratio for arbitrarily sized rectangles is poor, we restrict

our effort to designing approximation algorithms for unit-height rectangles. Our

ε-approximation scheme requires nO(1/ε2) time. We also consider the problem with

restrictions like bounding the depth of a point and the width of the rectangles. The

approximation schemes for these two cases take nO(1/ε) time. We also show how to

maintain a factor 2 approximation of the piercing set in O(log n) amortized time

in an insertion-only scenario.
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Chapter 1

Introduction

Computational geometry focuses on problems involving geometric objects rang-

ing from simple geometric primitives like points and intervals to complex higher-

dimensional polyhedra. While some geometric problems motivate investigation for

a solution in a general setting, many combinatorial problems are studied in the

geometric context as well. The latter is applicable to problems that are difficult

to solve in a general setting but special properties of geometric objects render the

geometric instance more tractable. Geometric instances or analogues are found to

be interesting also because they can be related more closely to real problems than

their combinatorial counterparts. Furthermore, geometric objects can be subjected

to reasonable restrictions, simplifications and transformations while maintaining

adherence to the original problem. This dissertation focuses on one such geomet-

ric problem – the piercing problem. The piercing problem is discussed by some

researchers along with the packing problem [Cha03, KNM03], which in turn is re-

lated to the covering problem [FPT81, HM85]. The following sections provide a

brief introduction to these related geometric optimization problems.

1



CHAPTER 1. INTRODUCTION 2

1.1 The Piercing or Stabbing Problem

A piercing set for n given objects in d-dimensional space Rd is a set of points

such that each object contains at least one of the points in the set. The minimum

cardinality of a piercing set is known as the piercing number. The general piercing

problem asks for finding the piercing number of the n given objects in Rd. The

piercing problem is sometimes termed as the stabbing problem as well. However

stabbing problems can refer to intersecting the given objects with geometric objects

other than points, e.g., lines [HM91, GIK02, KS04]. In this thesis, stabbing and

piercing will refer to hitting objects with points only. An instance of 2-dimensional

piercing problem for a set of rectangles with a minimum piercing set is shown in

figure 1.1.
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6

Figure 1.1: Rectangle piercing in 2 dimensions

The combinatorial counterpart of the piercing problem is the hitting set prob-

lem [GJ79]: given a collection C of subsets of a finite set S, find a subset X ⊆ S

with minimum cardinality such that for any subset Si in C, Si ∩ X 6= ∅. The

piercing problem can be cast in a graph-theoretic setting as well. An intersection

graph of the given objects is formed by mapping each object to a different vertex

and placing an edge between two vertices if the corresponding objects intersect,

i.e., have at least one point in common (see figure 1.2). A clique in a graph is a

subgraph in which every pair of vertices are adjacent (i.e., connected by an edge)
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Figure 1.2: Intersection graph for set of rectangles in figure 1.1

and a clique cover of a graph is a set of cliques such that each vertex is contained

in at least one of the cliques. The piercing problem thus asks for a clique cover of

the intersection graph using minimum number of cliques. For arbitrary graphs the

problem is widely known as minimum clique cover.

1.2 Geometric Packing

The general geometric packing problem asks for finding the largest sub-collection

of objects among a given collection of objects in Rd such that no two objects in

the sub-collection intersect. Although prohibiting translation and rotation of the

objects make the nomenclature somewhat misleading, the term is in wide use in lit-

erature [FPT81, HM85, Cha03]. The number of objects in the largest sub-collection

is called the packing number. In general the piercing number (see section 1.1) is

at least as large as the packing number and in many cases approximation results

for the packing problem carries over to the piercing problem. The packing problem

may also be viewed from an alternative point of view: given a collection of place-

holders of known geometric shapes and a corresponding collection of objects that

fit the placeholders, we want to place as many objects as possible in appropriate

placeholders in a non-intersecting fashion. A typical application conforming to this

interpretation is found in map labeling, where non-intersecting rectangular labels

are to be placed on a map with fixed points so that each point becomes a corner
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of one of the labels [FW91]. This is a special case of the planar geometric pack-

ing problem involving rectangles. The general planar geometric packing problem

allows arbitrarily shaped objects in 2-dimensional space R2. Figure 1.3 shows an

instance of planar geometric packing problem involving arbitrarily sized rectangles.

The four rectangles with darker boundary can be packed together.

Figure 1.3: Planar rectangle packing

The combinatorial analogue for geometric packing is the set packing prob-

lem [GJ79] which is defined in the same manner: given a collection of sets, find

a sub-collection with the maximum number of sets such that the sets in the sub-

collection are pairwise disjoint. In the graph-theoretic formulation, the geometric

packing problem actually seeks the maximum independent set in the intersection

graph (see section 1.1). The maximum independent set problem asks for a subset,

of maximum cardinality, of vertices such that no two vertices in the set are adjacent.
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1.3 Geometric Covering

For a collection of n given points in d-dimensional space Rd, the general geometric

covering problem asks for a set of geometric objects such that each point is con-

tained in at least one object, and the cardinality of the set is minimum. For d = 2,

the problem is known as planar geometric covering problem. The covering problem

is related to both packing and piercing problems. In particular, special cases of the

covering problem are equivalent to corresponding instances of the piercing problem.

In a covering problem, the objects usually are of similar shape or property, e.g.,

all objects are rectangles or all objects are disks. The objects can be non-convex

as well [HM87]. Figure 1.4 shows an instance of planar geometric covering with

squares. The dashed lines indicate square boundaries used for the cover.

Figure 1.4: Covering with squares in 2 dimensions

Geometric covering is analogous to the well known set cover problem [GJ79,

CLRS01]: given a finite set S and a collection C of subsets of S such that each

element of S is contained in at least one of the subsets in C, we have to choose

the minimum number of subsets in C such that each element of S is contained in

at least one of the chosen subsets. A graph representing an instance the geometric

covering problem is different from an intersection graph (see section 1.1). In such a

representation a vertex usually represents a point and two vertices are considered
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adjacent if they can be covered by the same object. Sometimes a graph represen-

tation is difficult to produce, as different sized objects impose different adjacency

relationship between the same pair of vertices. For instances where such a repre-

sentation can be formed, the covering problem reduces to a minimum clique cover

problem (see section 1.1) as the piercing problem does.

1.4 Interval Piercing

The interval piercing problem is the one-dimensional case of the general piercing

problem. It is related to piercing in higher dimensions. The well-known algorithm

for finding the piercing number of a set of given intervals is quite simple and works

in a greedy manner. The intervals are sorted by their right endpoints for conve-

nience. The algorithm then chooses the leftmost right endpoint as the first piercing

point and removes the intervals pierced by the point. The process of finding the

leftmost right endpoint and removal of intervals pierced by it is repeated until no

interval is left for piercing. The number of piercing points selected in this manner

is optimum [CLRS01] and is reported as the piercing number. The process of iden-

tifying the leftmost right endpoint and removal of intervals can be done in a single

scan over the sorted list of intervals [CLRS01]. For n intervals the scan takes only

O(n) time. The overall time is O(n log n) due to time required for presorting the

intervals according to right endpoints. The algorithm can proceed in a right to left

direction as well with the intervals sorted according to the left endpoints and the

rightmost left endpoints chosen iteratively as piercing points.
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1.5 Motivation for the Piercing Problem

The piercing problem has applications in facility location. In typical facility location

problems, a collection of demand points, a parameter p and a distance function are

given. The objective is to find a set of p supply points or facilities so that the maxi-

mum distance between a demand point and its nearest facility is minimized [AS98].

This formulation is widely known as the p-center problem. The piercing problem

addresses a different formulation of the facility location problem: given a set of

demand regions and probable locations for facilities, the objective is to minimize

the number of facilities to be established so that all demands are served. There

is also another form of piercing problem known as the p-piercing problem. The

number of points, p, to be used for piercing is given in advance, and the p-piercing

problem asks to decide whether the set of given objects can be pierced using p

points [SW96]. However, the values of p for which solutions exist are usually very

small.

1.6 Organization of the Thesis

We have introduced in this chapter the basic concepts and definitions used in the

rest of the thesis. In chapter 2 we mainly discuss the complexity and earlier work

related to the piercing problem. In chapter 3, which embodies a significant portion

of our contribution, we discuss approximation schemes for the piercing problem in

the case of a set of unit-height rectangles under different conditions. We consider

the piercing problem in a dynamic context in chapter 4. In this chapter we discuss

earlier work on interval piercing in one dimension, which is related to approximation

algorithms for unit-height rectangles. We show how to efficiently maintain the
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piercing set for intervals in an insertion-only case. Part of our contributions in

chapters 3 and 4 will be presented at the Canadian Conference on Computational

Geometry 2005 [CM05]. Finally we present some open questions in chapter 5.



Chapter 2

Background

2.1 The Complexity of Piercing

The covering problem was the first to receive attention [Tan79]. Tanimoto and

Fowler investigated the problem of 2-dimensional covering with squares in the con-

text of image processing [TF80]: find the minimum number of square “patches”

for storing information such that all points with information are contained in at

least one of the patches. However, they advocated the use of heuristics, because

even for the very special case of axis-aligned squares, the decision version of the

covering (and packing) problem has been shown to be NP-complete by Fowler et

al. [FPT80, FPT81]. The proof is by reduction from the well known 3-SAT prob-

lem. The optimization versions of the problems are consequently NP-hard (for a

discussion on NP-completeness, refer to the text by Garey and Johnson [GJ79]).

The complexity result of the covering problem for axis-aligned squares easily car-

ries over to piercing axis-aligned squares in the plane by a simple transformation:

consider the points in the covering problem as the center of the axis-aligned squares

9
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in the piercing problem and replace the covering squares with their center points.

The center points become a piercing set for the newly formed squares. Thus the

piercing problem for axis-aligned identical squares in the plane is also NP-hard.

More generally, the piercing problem for axis-aligned hyperrectangles in Rd is NP-

hard whenever d ≥ 2. The one dimensional case involving intervals can be solved

optimally in polynomial time (see section 1.4 for details).

2.2 Approximation Algorithms and Schemes

An algorithm with sub-exponential running time has not yet been found for any of

the NP-complete problems. Research efforts for these problems are therefore shifted

towards finding “near-optimal” solutions in polynomial time. Algorithms for finding

near-optimal solutions are called approximation algorithms. Approximation ratio

provides a measure of the quality of the solutions produced by these algorithms.

For a problem with any input of size n and the cost or value of the optimal solution

being Z, an approximation algorithm is said to have approximation ratio ρ(n) if

Z∗, the cost or value returned by the algorithm, satisfies

max

(

Z∗

Z
,
Z

Z∗

)

≤ ρ(n),

i.e., Z∗ is within a factor ρ(n) of Z [CLRS01]. The solution returned by the

algorithm is called a ρ(n)-approximation.

Definition 2.1 (ε-approximation algorithm) We define an approximation al-

gorithm to be an ε-approximation algorithm if the approximation ratio of the algo-

rithm is 1 + ε.
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Definition 2.2 (ε-approximation scheme) We define an approximation algo-

rithm to be an ε-approximation scheme if the algorithm takes ε > 0 as part of its

input, and the solution returned by the algorithm for a fixed value of ε is a (1 + ε)-

approximation.

The running time of an ε-approximation scheme increases with 1
ε
as well as the input

size. If the nature of growth of the running time is polynomial both in the size of

the input and 1
ε
, then the scheme is called a fully polynomial time approximation

scheme (FPTAS). If the running time is polynomial only in input size then the

scheme is called a polynomial time approximation scheme (PTAS). The problem of

covering with squares and consequently the piercing problem for squares are NP-

complete in the strong sense, and there are no FPTAS for these problems, nor for

packing squares in the plane [GJ79, HM85]. The aim of further research is therefore

the design of PTAS for these problems and their extensions.

2.2.1 The Shifting Technique

Hochbaum and Maass provide a generic technique of grid shifting that can be

applied to a broad range of problems in covering, packing and piercing [HM85].

They consider the square packing problem, disk covering problem and covering

with squares problem arising respectively in VLSI layout design, facility location

(see section 1.5) and image processing (see section 2.1). They demonstrate the

technique for covering points with disks of diameter D. The whole extent of the

given points is divided into semi-open vertical strips of width D. The strips are

closed on the left and open on the right. A shifting parameter k is selected and

k consecutive strips are considered as a group. The grouping strategy produces a

partition of the area into semi-open regions of width kD. Evidently there can be
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k ways of partitioning the area into groups of k strips, where each partition can

be transformed into another by shifting the partition boundary to a distance D.

After k shifts in a single direction, e.g., to the right only, each partition is repeated.

kD¾ -

D D D

(a) Initial partition

(b) Partition shifted to the right by D

Figure 2.1: The shifting technique

Thus a finite number of “scans” over the possible partitions allows selection of a

solution close to the optimal. A local algorithm for each group is run and in each

partition the solutions of all groups are combined together. The local algorithm can

be either an approximation algorithm for one group of strips or an exact algorithm

that solves the problem in that group. The final solution is obtained by choosing

the “best” solution among all possible partitions.

The key observation for the disk cover problem (and the other two as well) is the

near-decomposability of solutions within partition boundaries. Although a number

of disks can cover points in two adjacent groups, no disk can straddle partition

boundaries in two different shifted partitions. Combining the argument with the

strategy of choosing the minimum number of disks among all shifted partitions,

they are able to prove an approximation ratio for the technique.
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Lemma 2.1 (Hochbaum and Maass’ Shifting Lemma) If ρlocal is the approx-

imation ratio of a local algorithm and k is the shifting parameter then the shifting

strategy provides an approximation ratio ρ within a factor of (1 + 1
k
) of ρlocal, i.e.,

ρ ≤ ρlocal

(

1 +
1

k

)

.

If the local algorithm is exact and k = 1
ε
, the shifting technique yields an ε-

approximation scheme. The idea of the shifting technique is very similar to the one

introduced by Baker for approximation algorithm for some NP-complete problems

involving planar graphs [Bak94]. Baker removes vertices based on level and parti-

tions the graph. Solutions of partitions are combined using dynamic programming

in order to construct final solution. The ε-approximation scheme of Hochbaum and

Maass for covering with disks problem requires nO(1/ε2) time. The running time of

ε-approximation schemes for covering with squares (or uniform sized boxes) and

square packing is same.

Feder and Greene later consider the covering problem in the context of cluster-

ing [FG88] and Gonzalez considers the covering problem in the context of facility

location [Gon91]. They consider shifting in vertical direction instead of horizontal,

and both works make use of dynamic programming for solving the local covering

problem within a slab, the height of which is determined by the shifting parameter.

After application of the shifting algorithm the running time of the ε-approximation

schemes turns out to be nO(1/ε). In a relatively more recent work, Chan considers

the rectangle packing problem, i.e., maximum independent set problem in the rect-

angle intersection graphs and provides an nO(1/ε) time ε-approximation scheme for

rectangles with unit height [Cha04]. This scheme also uses dynamic programming

for exact local solution and approximates the optimal solution using the shifting

technique.
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2.2.2 Other Divide-and-Conquer Algorithms

For axis-aligned boxes or hyperrectangles in d-dimensional space, Nielsen provides

an algorithm for piercing based on a simple divide-and-conquer approach [Nie00].

The algorithm computes a “median” axis-aligned hyperplane and partitions the set

of input hyperrectangles into three sets — one set consisting of the hyperrectangles

intersected by the hyperplane, the second one consisting of hyperrectangles lying

entirely in one halfspace determined by the hyperplane and the remaining set con-

sisting of hyperrectangles lying in the other halfspace. The piercing problem for the

first set reduces to a piercing problem involving (d−1)-dimensional hyperrectangles

defined by the median hyperplane. Recursive solutions are computed for the latter

two sets. The base case is the interval stabbing problem and is solved optimally.

The running time of the algorithm is O(n logd−1 n), which is much better than the

ε-approximation schemes. However, the approximation factor achieved is logd−1
2 n.

A more advanced divide-and-conquer approach based on geometric separators

has been proposed by Chan for fat objects [Cha03]. Chan provides the following

definition for fat objects:

A collection C of objects is fat if for any r and size-r boxR, we can choose

a constant number c of points such that every object that intersects R

and has size at least r contains one of the chosen points.

This definition includes, but is not limited to, collections of boxes with bounded as-

pect ratio. The shifting technique is not suitable for the piercing problem involving

fat objects of arbitrary size. Chan’s algorithm computes an ε-approximation of the

piercing number for a collection of fat objects in nO(1/εd) time. An earlier algorithm

for approximating the piercing set of fat objects is due to Efrat et al. [EKNS00].
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Their algorithm produces a constant factor approximation and uses incremental

elimination of objects from the collection.



Chapter 3

Piercing Unit-Height Rectangles

The piercing number for arbitrary rectangles is not known to be approximable

within a constant factor in polynomial time. Hence we investigate the piercing

problem for rectangles with some restrictions. The focus is on rectangles that are

not restricted by uniformity of size in all dimensions as in the case considered by

Hochbaum and Maass [HM85]. However, in order to accommodate “thin” and

“long” rectangles, instead of fat objects of varying sizes [Cha03], we restrict one

of the dimensions of all the rectangles, either height or length, to be same. For

convenience, we shall discuss only the unit-height case, since the analysis for the

other dimension, i.e., length, will be similar, and a set of uniform height rectangles

can be easily scaled to a set of unit-height rectangles.

3.1 PTAS with Depth Restriction

The advantage of all rectangles being of unit-height is that the problem may be sub-

jected to divide-and-conquer strategies like the shifting technique (see section 2.2.1)

16
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using horizontal dividing lines. In order to do so we, in principle, want to solve

subproblems in a defined subregion efficiently, and dynamic programming is a pow-

erful tool for this task. Noticeably, the domain of the problem instance is almost

the same as that of the packing problem considered by Agarwal et al. [AvKS98]

and later by Chan [Cha04]. However the dynamic programming paradigm does

not readily yield a solution for our problem. The difficulty lies in finding a family

of constant-sized sets of rectangles that can characterize a feasible solution to the

problem. Such sets are necessary for formulating a recursive definition to be used

in the dynamic programming solution. Taking this factor into account, we first

restrict the problem to those instances where a point is not allowed to be contained

by an arbitrary number of rectangles. We adopt the notion of depth (used also by

Chan [Cha04]).

Definition 3.1 (Depth of a Point) The depth of a point is the maximum num-

ber of rectangles containing the point.

We propose a PTAS for the piercing problem for the special case of a set of unit-

height rectangles where the maximum depth of a point is a constant. In terms of

the intersection graph (see section 1.1) of the rectangle set, this condition restricts

the largest clique size, i.e., the maximum possible number of vertices in a clique

of the graph. From an application point of view, this scenario is helpful if a large

number of demand regions do not overlap and each of the supply points can serve

up to a certain number of demand regions.

Lemma 3.1 If a set of n axis-parallel rectangles can be stabbed by k horizontal

lines where k ≥ 1, then the piercing number of the rectangles can be computed in

O(n log n+ k∆n22k∆) time, where ∆ is the maximum depth.
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Proof: Let R = {R1, R2, R3, . . . , Rn} be a set of axis-parallel rectangles that can

be stabbed by k horizontal lines. The piercing set of R can be found by dynamic

programming. Let the set of x-coordinates of the corner points (and thereby of the

intersection points) of the rectangles in R be {a1, a2, a3, . . . , am}. Without loss of

generality, say a1 < a2 < · · · < am.

At each vertical line x = ai, we want to find the piercing number of the rectangles

that have their left endpoint on or to the left of the line. The index of the current

vertical line is an obvious parameter for the dynamic programming formulation. If

we know the optimal solution for the previous vertical line, we can try to combine

the solution with the optimal one for rectangles beginning on the current vertical

line. However, the points on the current line may stab rectangles considered in the

solution of the previous line. In figure 3.1, the rectangle drawn in dashed line is

considered for piercing by the line on the left of x = ai and pierced by the new

piercing point on x = ai as well. Therefore we need to add a second parameter

x = ai

Figure 3.1: Piercing point causing rectangle exclusion

to the dynamic programming formulation for sets of rectangles that we want to

exclude from stabbing.

We can create a dynamic programming table A for each of the vertical lines

x = ai and each subset of rectangles that intersect any of these lines. Since the

rectangles can be stabbed by k horizontal lines, the maximum cardinality of such a
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set will be k∆. For the vertical line x = ai and a set S of rectangles, the dynamic

table entry A[i, S] indicates the minimum number of points that stab all rectangles

with left endpoint on or to the left of the line x = ai except the rectangles in S.

We let Si denote the set of all rectangles intersected by x = ai and also let CS be

the minimum number of points required to stab S. The table A can be filled up as

follows:

1. Base case: For a set S ⊆ S1, set A[1, S]← CS1\S.

2. For i← 2 to m do

For a set S ⊆ Si, set

A[i, S]← min
S′

(A[i− 1, Si−1 ∩ (S ∪ S ′)] + CS′∪((Si\Si−1)\S))

where the minimum is taken over all subsets S ′ ⊆ Si\S.

The cardinality of the minimum piercing set is A[m, ∅].

While computing A[i, S], all possible subsets S ′ of Si\S are combined with the

restricted set S for exclusion on the line x = ai−1 (i.e., to the left of the line x = ai).

By taking the intersection of S ∪ S ′ with Si−1, we omit rectangles that have their

left endpoint on the line x = ai from exclusion. The entry A[i− 1, Si−1 ∩ (S ∪ S ′)]

thus provides the piercing number of the rectangles that have their left endpoint to

the left of the line x = ai except any rectangle in S ∪ S ′. Now we must pierce the

rectangles in S ′ separately. In addition, we must also pierce rectangles that have

their left endpoint on the line x = ai except for rectangles in S (i.e., (Si\Si−1)\S).

The piercing number of S ′ ∪ ((Si\Si−1)\S) can be computed from the intervals

formed by the rectangles on the line x = ai using the algorithm for interval piercing

(see section 1.4). The final value of A[i, S] is correct since all possible exclusions

are considered and the minimum value is chosen.
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Evidently there are O(n) vertical lines and for each vertical line there are O(2k∆)

candidate subsets of rectangles. Each table entry can be filled up in O(k∆2k∆) time,

since in the worst case there are O(2k∆) sets to choose from for minimizing the entry

and intersection can be performed in O(k∆) time. Thus filling up the necessary

entries of the table requires O(k∆n22k∆) time. If the members of a subset S ′ are

generated based on their vertical extent (or vice versa) then a CS′∪((Si\Si−1)\S) value

can be computed (or pre-stored) in O(k∆) time using the algorithm in section 1.4,

since |S| ≤ k∆. Thus enumeration of the sets and computation of their extent

as well as C values can be done in O(k∆n2k∆) time. Including the O(n log n)

time required for sorting, the overall running time of the algorithm is O(n log n +

k∆n22k∆). The space requirement, mainly due to the storage for the dynamic

programming table, is O(n22k∆). 2

Theorem 3.1 Fix an integer constant k ≥ 1. For a set of n axis-parallel unit-

height rectangles with constant maximum depth of points ∆, the cardinality of its

minimum piercing set can be approximated within a factor of
(

1 + 1
k

)

in O(n log n+

k2∆n22k∆) time.

Proof: The approximation is based on the idea of shifting as outlined in the

following algorithm:

1. For i← 0 to k − 1 do

Define a nonempty subset R(i,j) of the rectangles for each possible j ≡ i

(mod k) as follows: let R(i,j) be the subset of unit-height rectangles

that are stabbed by one of the k consecutive horizontal lines y = j, j +

1, . . . , j+k−1 but not by the line y = j+k (see figure 3.2). The horizontal
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lines are chosen to be unit distance apart because of the height of the

rectangles.

(a) Solve the problem exactly for eachR(i,j) by the algorithm in lemma 3.1.

Let C(i,j) be the number of stabbing points returned for the subset

R(i,j).

(b) Set C(i) ←
∑

j C
(i,j).

2. Return the minimum C among C(0), C(1), . . . C(k−1).

y = j

y = j + 1

y = j + k − 1

y = j + k

R(i,j)

y = tk + i− 1

y = tk + i

Z(i,t−1)

y = tk + i+ k − 1

y = (t+ 1)k + i

Z(i,t)

Z(i) =
⋃

t Z
(i,t)

Figure 3.2: Illustration of R(i,j) and Z(i,t)

Let Z denote the set of stabbing points in an optimal solution. For an integer

t, let Z(i,t) denote the set of stabbing points in that optimal solution that lie in

the semi-open strip tk + i + k − 1 ≤ y < (t + 1)k + i (see figure 3.2). By this

definition of Z(i,t), we have Z(i,t1)∩Z(i,t2) = ∅ whenever t1 6= t2. Let Z
(i) =

⋃

t Z
(i,t).

Consequently

|Z(i)| =
∑

t

|Z(i,t)|. (3.1)

Let X(i,j) be the number of points in Z that stab the rectangles in R(i,j). Then

C(i,j) ≤ X(i,j) since C(i,j) is the optimal number of points stabbing all rectangles in
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R(i,j), and therefore

C(i) =
∑

j

C(i,j) ≤
∑

j

X(i,j). (3.2)

For a fixed i, the points in Z(i,t) are counted at most twice in
∑

j X
(i,j) and the

rest of the points in Z are counted once. Thus

∑

j

X(i,j) ≤ |Z|+
∑

t

|Z(i,t)|. (3.3)

From (3.2), (3.3) and (3.1) we have

C(i) ≤ |Z|+
∑

t

|Z(i,t)| ≤ |Z|+ |Z(i)| (3.4)

It can also be seen that Z(i1) ∩Z(i2) = ∅ whenever i1 6= i2, and Z =
⋃k−1

i=0 Z
(i). This

implies that
k−1
∑

i=0

(|Z|+ |Z(i)|) ≤ (k + 1)|Z|. (3.5)

Therefore

C = min
i=0,...,k−1

C(i) ≤
1

k

k−1
∑

i=0

C(i)

≤
1

k

k−1
∑

i=0

(|Z|+ |Z(i)|) using (3.4)

≤

(

1 +
1

k

)

|Z| using (3.5).

Sorting the rectangles can be done in a preprocessing step. For a fixed i, running

the exact algorithm for all the R(i,j) subsets will require O(k∆n22k∆) time. As the

process is repeated for k possible values of i, the overall running time for the

approximation scheme is therefore O(n log n+ k2∆n22k∆). 2
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3.2 PTAS for Almost Squares

A PTAS for covering a set of points in the plane with squares is already known and

this translates to a PTAS for piercing a set of squares with points.

Theorem 3.2 (Feder and Greene, Gonzalez) For ε > 0, the piercing number

of a set of n axis-parallel unit squares can be approximated within a factor of (1+ε)

in nO(1/ε) time.

Corollary 3.2.1 An ε-approximation of the cardinality of the minimum piercing

set of a collection of uniform-sized axis-parallel rectangles can be computed in nO(1/ε)

time.

Proof: By appropriate scaling, the set of rectangles can be turned into a set of unit

squares while preserving the intersection graph (see section 1.1). By theorem 3.2,

an ε-approximation of the piercing set of the transformed set of squares can be

computed in nO(1/ε) time. 2

Although the algorithms make use of dynamic programming, it is not obvious

how those algorithms can be adapted for unit-height rectangles with bounded width.

Our approach for a depth-restricted set of unit-height rectangles, however, can

be utilized for a set of unit-height rectangles that have width between constant

lower and upper bounds. By appropriate scaling, the bounds on the widths of the

rectangles can be mapped to the range 1 ≤ width ≤ α, where α is the upper-to-

lower-bound ratio, without modifying the intersection graph. We also make the

following observations regarding the minimum piercing sets of such rectangles.
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Observation 3.1 In an optimal solution of the piercing problem in the case of

a set of axis-parallel squares, there can be at most four stabbing points within an

axis-parallel unit square window.

Proof: For contradiction, let there be an optimal solution which contains a set

Figure 3.3: Unit square window containing piercing points

of more than four points that fit within a unit square window. Since every axis-

parallel square intersecting the window contains a corner point of the window, that

set of points can be replaced by the four corner points of the unit square window

without leaving any square unstabbed (see figure 3.3). The replacement produces a

new solution which has fewer points than the original solution and thus contradicts

the assumption that the original solution is optimal. 2

Observation 3.2 Let α ≥ 1 be a constant. In an optimal solution for the piercing

problem in the case of a set of unit-height axis-parallel rectangles with 1 ≤ width ≤

α, there can be at most 2(1 + dαe) stabbing points within a unit-height window of

width α.

Proof: A window of unit height and α width can have dαe−1 adjacent unit squares

and the remaining space is a rectangular area of unit height and at most unit

width [figure 3.4]. When any unit-height rectangle with 1 ≤ width ≤ α intersects

this window, the rectangle intersects at least one of the squares or the remaining

rectangle. By observation 3.1, any of the squares (or the remaining rectangle)
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1 2 dαedαe − 1

¾ -α

Figure 3.4: Rectangular unit-height window of width α

can contain at most four stabbing points. These internal stabbing points can be

replaced by the corner points of a square (or the remaining rectangle) without

leaving any rectangle unstabbed. Applying the replacement to all such squares (or

the remaining rectangle) imply that there can be at most 2(1+dαe) stabbing points

within the window with at most 1 + dαe stabbing points lying on each horizontal

line. 2

Lemma 3.2 Let α ≥ 1 be a constant and fix an integer k ≥ 1. If a set of unit-

height axis-parallel rectangles with 1 ≤ width ≤ α can be stabbed using k horizontal

lines, then the cardinality of its minimum piercing set can be computed exactly in

O
(

n2k(1+dαe)+1
)

time.

Proof: Let R = {R1, R2, R3, . . . , Rn} be a set of unit-height axis-parallel rectangles

with 1 ≤ width ≤ α that can be stabbed by k horizontal lines. Let {a1, a2, . . . , am}

be the sorted set of x-coordinates of the corner points of the rectangles in R with

a1 < a2 < · · · < am. Let Pi be the set of candidate stabbing points, i.e., corners

and intersection points of the squares, on the line x = ai.

We can extend observation 3.2 for a vertical strip of width α when the squares

can be stabbed by k horizontal lines. In this case there can be at most k(1 + dαe)

points lying within the strip. Let Wi be the vertical strip of width α with the left

side of the strip on x = ai. A dynamic programming table can be created for each
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vertical line x = ai and each subset of at most k(1 + dαe) stabbing points lying

within a vertical strip of width α.

Let Si be the set of rectangles that are intersected by the line x = ai. Also for

set of candidate stabbing points P , let SP be the set of rectangles stabbed by the

points in P , and let CS be the minimum number of points needed to stab a set S

of rectangles. The dynamic table entry A[i, P ], defined for each vertical line x = ai

and each set of k(1 + dαe) stabbing points lying within a vertical strip of width α,

indicates the cardinality of an optimal set of points X(i,P ) such that

i) X(i,P ) stabs all rectangles having their left endpoint on or to the left of the

vertical line x = ai except the rectangles stabbed by any point in P , and

ii) there are at most k(1 + dαe) stabbing points within a vertical strip of width

α for P ∪X(i,P ).

The necessary entries of table A can be filled up as follows:

1. Base case: For each set of candidate stabbing points P lying within W1 and

with |P | ≤ k(1 + dαe), set

A[1, P ]← CS1\SP

2. For i← 2 to m do

For each set of candidate stabbing points P lying within Wi and with

|P | ≤ k(1 + dαe), set A[i, P ] to

min
P ′

(A[i− 1, (P ∪ P ′) ∩Wi−1] + CSP ′\SP
+ C(Si\Si−1)\SP

)

where the minimum is taken over the subsets P ′ ⊆ Pi−1 such that |P ′| ≤

k and |(P ∪P ′)∩Wi−1| ≤ k(1+dαe). The term A[i−1, (P ∪P ′)∩Wi−1] is
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a previously computed result in the table where the window containing

the points excluded from piercing rectangles is shifted to the left and

aligned with the previous event line. The term CSP ′\SP
accounts for

the rectangles omitted due to the inclusion of P ′ in the restricted set

of points. Finally the term C(Si\Si−1)\SP
corresponds to the minimum

number of piercing number for the additional rectangles beginning on

the line x = ai and not pierced by any point in P .

3. Return A[m, ∅].

The algorithm is similar to that in lemma 3.1, but here we place a bound on the

number of piercing points within a constant sized window instead of restricting the

size of rectangle sets.

Enumerating the candidate stabbing points takes O(n2) time. The points are

sorted based on x-coordinates in O(n2 log n) time as part of preprocessing. The

computation of Pi and Wi can also be done in the preprocessing and takes O(n2)

time. Unlike the algorithm in lemma 3.1, the C values are computed only for the

necessary sets determined during the execution of the algorithm. However, since

any of such sets can be stabbed by a vertical line and at most n intervals formed by

the squares on a vertical line need to be sorted, the computation will take O(n log n)

time using the method of section 1.4. Exclusion of a set of rectangles stabbed by at

most k(1+dαe) points takes O(kn) time. Therefore the time required for generating

the additive C term in the recursive formula is O(kn) +O(n log n). Generating all

subsets of size j from a set of n points takes O
(

(

n
j

)

)

= O(nj) time. Therefore for

a fixed value of i, generating appropriate P and P ′ sets and evaluating the recur-

sive definition take O
(

∑k
j=0O (nj)

[

O
(

(n2)
k(1+dαe)−j

)

+O(n log n) +O(kn)
])

=

O
(

∑k
j=0 n

2k(1+dαe)−j
)

= O
(

n2k(1+dαe)
)

time. With m being O(n), step 2 requires
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O
(

n2k(1+dαe)+1
)

time, which in turn is the running time of the algorithm. This time

complexity subsumes the time required for other preprocessing. 2

Theorem 3.3 Let α ≥ 1 be a constant and fix an integer k ≥ 1. If a set of unit-

height axis-parallel rectangles with 1 ≤ width ≤ α can be stabbed using k horizontal

lines, then the cardinality of its minimum piercing set can be approximated within

a factor of (1 + 1
k
) in O

(

kn2k(1+dαe)+1
)

time.

Proof: The approximation is done by running the algorithm in theorem 3.1 with

the following exception: the algorithm used for solving the subproblem is the algo-

rithm in lemma 3.2. The proof of correctness of the approximation in theorem 3.1

holds even with this modification. The running time is however O
(

kn2k(1+dαe)+1
)

since an iteration over the entire set of rectangles takes at most O
(

n2k(1+dαe)+1
)

time. 2

Our ε-approximation scheme for bounded width unit-height rectangles thus

takes nO(1/ε) time. Chan’s algorithm for piercing fat objects can be applied to

such rectangles; however, the algorithm still requires nO(1/ε2) time [Cha03].

3.3 PTAS for General Unit-Height Case

Designing an approximation scheme for unit-height rectangles of arbitrary width

that takes running time comparable to that for bounded width is still difficult.

The reason is that arbitrarily long, i.e., thin rectangles require that the algorithm

must “remember” a lot more information for making an optimal choice. Therefore

we propose a two-step approximation, the first one along the horizontal direction
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by using incremental division of rectangles and the second one along the vertical

direction using the shifting technique. In order to be able to divide the rectangles

in the first step, we make use of a linear-time factor 2 approximation algorithm

described in lemma 3.3.

Lemma 3.3 For a set of n unit-height axis-parallel rectangles, sorted according to

their right boundaries, a factor 2 approximation of its piercing set can be computed

in O(n) time.

Proof: The algorithm for factor 2 approximation simply uses the linear time so-

lution for one-dimensional case (see section 1.4):

1. Consider all horizontal lines x = i that intersect at least one rectangle in the

set, where i is an integer. On each of these horizontal lines, compute in linear

time the piercing set of the one-dimensional intervals formed by the rectangles

intersecting that line. Let P (i) be the solution for the line x = i.

2. Return P =
⋃

i P
(i).

Since each rectangle can be intersected by at most two of the horizontal lines, the

overall running time of the algorithm is O(n).

Let Podd =
⋃

i: i odd P
(i) and Peven =

⋃

i: i even P
(i), and also let Z be a piercing

set for the entire set of rectangles. By this definition, P = Podd ∪ Peven and Podd ∩

Peven = ∅, i.e., |P | = |Podd| + |Peven|. Let Rodd be the set of rectangles that are

stabbed by Podd and Reven be the set of rectangles stabbed by Peven. Let Rj be

the maximum set of rectangles in Rodd intersected by a line x = j, where j is

odd. Because of unit height, any rectangle in Rj does not intersect any other

rectangle in Rodd\Rj. A similar argument holds for rectangles in Reven. This
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property of disjointedness and the optimality of local solutions imply that |Podd|

is a minimum piercing set for |Rodd|, and thus |Podd| ≤ |Z| and |Peven| ≤ |Z|.

Therefore |P | = |Podd|+ |Peven| ≤ 2|Z|. 2

We can divide a subregion or horizontal slab by vertical boundaries and add

additional piercing points along the boundaries. Application of lemma 3.3 to the

rectangles within a window returns at most twice the piercing number of the rectan-

gles. Inversely, we need at least half of the number of points returned by lemma 3.3

to pierce the rectangles, and thus obtain a lower bound on the piercing number of

the rectangles. By careful placement of the boundaries based on the lower bounds,

it is possible to approximate the piercing number of rectangles in a horizontal slab

in polynomial time. Lemma 3.4 describes the strategy in detail.

Lemma 3.4 For k′ > 0 and an integer k ≥ 1, if a set of n unit-height axis-parallel

rectangles can be stabbed by k horizontal lines, its piercing set can be approximated

within a factor of
(

1 + 1
k′

)

in O((2dkk′e+ k − 1)n4dkk
′e+2k−1) time.

Proof: Let R = {R1, R2, R3, . . . , Rn} be a set of axis-parallel unit-height rectangles

that can be stabbed by k horizontal lines. Let the sorted set of x-coordinates of

the corners of the rectangles in R be {a1, a2, a3, . . . , am} with a1 < a2 < · · · < am.

An approximation of the piercing set of R can be computed as follows:

1. Set S ← R, P ← ∅, i← 0.

2. Repeat

Set i← i+ 1.

Let Si ⊆ S be the set of rectangles intersected by the vertical line x = ai.

Also let S ′
i ⊆ S be the set of rectangles that have their right endpoint to
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the left of the line x = ai. Compute a lower bound of the piercing set of

S ′
i using the algorithm in lemma 3.3. If the lower bound is at least dkk ′e

or if i = m, then

(a) Compute the piercing set Pi of Si in linear time using the intervals

formed by rectangles in Si on the vertical line x = ai.

(b) Find the exact piercing set P ′
i of S ′

i using exhaustive search.

(c) Set P ← P ∪ Pi ∪ P ′
i , S ← S\(Si ∪ S ′

i).

while S 6= ∅.

3. Return P .

Let I be the set of values of i for which steps 2(a)-2(c) are executed. The

algorithm in effect partitions R into sets Si and S ′
i, i ∈ I. Since m ∈ I, every

rectangle in R is considered. Therefore each rectangle in R is considered exactly

once for stabbing. This justifies correctness. Furthermore, for i, j ∈ I and i 6= j, no

rectangle in S ′
i overlaps or intersects with any rectangle in S ′

j. Therefore P
′
i ∩P

′
j = ∅

for i 6= j and i, j ∈ I. Also Pi ∩ P ′
i = ∅, since all points in Pi lie on the line x = ai

whereas none of the points in P ′
i lie on that line. For i, j ∈ I and i 6= j, it is also

the case that Pi∩Pj = ∅ as the sets lie on different vertical lines x = ai and x = aj.

Thus the sets Pi and P ′
i , i ∈ I, form a partition of P and hence

|P | =
∑

i∈I

(|Pi|+ |P
′
i |). (3.6)

Let Z be a piercing set of R. Also let Z ′
i ⊆ Z be the set of points stabbing the

rectangles in S ′
i. The disjointedness property of P ′

i sets also hold for Z ′
i sets and

therefore
∑

i∈I

|Z ′
i| ≤ |Z|. (3.7)
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Evidently |P ′
i | ≤ |Z

′
i| as P

′
i is a piercing set of S ′

i. Using this fact and (3.7), we have

∑

i∈I

|P ′
i | ≤

∑

i∈I

|Z ′
i| ≤ |Z|. (3.8)

We can now calculate a bound for the approximation ratio:

|P |

|Z|
=

∑

i∈I |P
′
i |

|Z|
+

∑

i∈I |Pi|

|Z|
from (3.6)

≤ 1 +

∑

i∈I |Pi|

|Z|
using (3.8)

≤ 1 +

∑

i∈I |Pi|
∑

i∈I |P
′
i |

using (3.8) again (3.9)

≤ 1 +
maxi∈I\{m} |Pi|

mini∈I\{m} |P ′
i |

. (3.10)

In (3.10), we can ignore the case where i = m because for that value of i, |Pi| = 0,

and consequently the bound in (3.9) does not exceed the bound in (3.10) with

that particular exclusion. Also we shall consider only the cases where I\{m} 6= ∅,

because in the other cases the whole set of rectangles requires less than dkk ′e

stabbing points that are computed exactly. Therefore, without loss of generality,

we get mini∈I\{m} |P
′
i | ≥ dkk

′e. Also maxi∈I\{m} |Pi| ≤ k, since the rectangles can

be stabbed by k horizontal lines. Using (3.10) and these bounds, we get:

|P | ≤

(

1 +
k

dkk′e

)

|Z|

≤

(

1 +
1

k′

)

|Z|,

i.e., P is a
(

1 + 1
k

)

-factor approximation of Z.

In the preprocessing step, the rectangles need to be sorted based on their left

endpoints and this takes O(n log n) time. At each iteration of step 2, the lower

bound computation takes O(|S ′
i|) time. The overall time spent for this operation

is
∑m

i=1O(|S ′
i|) = O(n2) as m = O(n) and |S ′

i| ≤ n. For a brute force method, the
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candidate points are the corner points and the intersection points. The number of

these points is maximized if the rectangles intersect at points other than corners,

and there can be at most two such points for a pair of rectangles. For S ′
i, the

maximum number of candidate points is therefore 2

(

|S ′
i|

2

)

+ 4|S ′
i| = |S

′
i|
2 + 3|S ′

i|.

Checking whether j points stab the rectangles in S ′
i takes O(j|S ′

i|) time without

using any special data structure (like range trees). The number of stabbing points

required to stab all rectangles in S ′
i, i ∈ I, can be at most 2dkk′e+k−1, because at

each vertical line at most k additional stabbing points can appear and the algorithm

uses a 2-approximation for determining whether dkk′e points are needed. Therefore

computation of P ′
i , i ∈ I, can take O

(

(2dkk′e+ k − 1)|S ′
i|

(

|S ′
i|
2 + 3|S ′

i|

2dkk′e+ k − 1

))

=

O((2dkk′e + k − 1)S ′
i
4dkk′e+2k−1) time. Since

∑

i∈I |S
′
i| ≤ n, computation of all P ′

i ,

i ∈ I, takes O((2dkk′e+k−1)n4dkk
′e+2k−1) time. Also

∑

i∈I Pi ≤ n, and calculating

the Pi’s takes O(n) time. The overall time required for the algorithm is therefore

O(n log n+ (2dkk′e+ k − 1)n4dkk
′e+2k−1) = O((2dkk′e+ k − 1)n4dkk

′e+2k−1). 2

Theorem 3.4 An ε-approximation scheme for the piercing problem for a given a

set of n unit-height axis-parallel rectangles takes nO(1/ε2) time.

Proof: The approximation algorithm is similar to the algorithm in theorem 3.1:

1. Set k ← d3
ε
e, k′ ← k.

2. For i← 0 to k − 1 do

Group rectangles into R(i,j)’s in the same manner as in the algorithm in

theorem 3.1. Find P (i,j), the (1 + 1/k)-factor approximation of piercing

set, for each R(i,j) using the algorithm in lemma 3.4. Let P (i) =
⋃

j P
(i,j).
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3. Return the set P with minimum cardinality among P (0), P (1), . . . , P (k−1).

Following the definition of Z and Z (i) in theorem 3.1, it can be shown that

|P (i)| ≤

(

1 +
1

k

)

(|Z|+ |Z(i)|)

and therefore

|P | ≤

(

1 +
1

k

)2

|Z|.

Since k = d3
ε
e ≥ 1, 1

k
≥ 1

k2 . Hence we have

|P | ≤

(

1 +
2

k
+

1

k2

)

|Z|

≤

(

1 +
3

k

)

|Z|

=

(

1 +
3

d3/εe

)

|Z|

≤ (1 + ε)|Z|.

Each iteration of step 2 takes O((2k2 + k − 1)n4k
2+2k−1) time and the overall

running time of the algorithm is O(k(2k2 + k − 1)n4k
2+2k−1). As k = O(1/ε), the

running time of the ε-approximation scheme becomes nO(1/ε2). 2



Chapter 4

Dynamic Piercing

The assumption behind all the approximation schemes (see section 2.2) for rectangle

piercing presented in the previous chapter is that complete information regarding

the entire set of rectangles is available beforehand and is randomly accessible. This

type of algorithms are regarded as static. It is natural to seek algorithms for the

dynamic version of the problem. In a dynamic setting, rectangles can be added

or removed from the set and the modification to the set must take place accord-

ing to the order of arrival of request for modification. The approximate piercing

number (see section 1.1) for the modified set is reported at each modification. It

is desired that the time required for updating the approximate piercing number

for a set of n rectangles be within a factor of 1
n
of the running time for the static

algorithm. But the running time of the approximation schemes for the static case is

rather large (nO(1/ε2)). Consideration of a dynamic ε-approximation algorithm (or

scheme) seems to be unappealing with that much running time. However, a factor

2 approximation algorithm takes O(n log n) time in the static case, taking into ac-

count the time required for sorting the rectangles. Achieving an O(log n) update
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time for the dynamic rectangle piercing problem is not a trivial task. The problem

of dynamically maintaining a factor 2 approximation of the piercing number for a

set of unit-height rectangles reduces to the dynamic interval piercing problem in

the same way as the static case does in lemma 3.3. Interval piercing is interesting

in its own right, since it is equivalent to finding maximum independent set (see sec-

tion 1.2) in interval graphs, i.e., intersection graphs (see section 1.1) for intervals.

In other words, the piercing number equals the packing number (see section 1.2) in

one dimension. Finding the maximum independent set in an interval graph is of-

ten studied as the activity selection problem [CLRS01]. In this chapter we provide

an algorithm for interval piercing problem in a non-static setting with an effort to

make the update time comparable to O(log n).

4.1 Dynamic Interval Piercing

Katz et al. provide a data structure for maintaining a minimum piercing set of

intervals under insertion and deletion of intervals [KNM03]. They also mention

several applications of dynamic piercing. The algorithm begins with a number

of initial intervals and allows addition and deletion of intervals. If the number of

intervals does not exceed n after any insertion of intervals, then their data structure

can report the minimum piercing set and consequently the piercing number in

O(p log n) time, where p is the piercing number of the updated set of intervals. It

should be noted that without any kind of restriction on the intervals, p can be O(n).

Their algorithm first computes a right-to-left piercing set of the intervals using the

algorithm of section 1.4, but in the right to left direction as outlined at the end of

that section. They then construct a data structure of O(n) size using a cascade of

balanced binary search trees (BST) (see figure 4.1). The cascading scheme works
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as follows:

Balanced BST on

piercing points

Balanced BST’s on

associated intervals

Figure 4.1: Data structure for dynamic piercing

The first balanced binary search tree is constructed for the piercing points of the

initial intervals with each node corresponding to a separate piercing point. For each

node of this tree a separate balanced binary search tree is maintained. An auxiliary

tree is constructed using the right endpoints of the intervals pierced by the point

corresponding to a node. Each node in the auxiliary tree also stores information

about the rightmost left endpoint of the intervals represented within the subtree

rooted at that node. The construction process take O(n log n) time.

When a new interval arrives and it does not cause the piercing set to change,

only an auxiliary tree needs to be updated. The auxiliary tree is associated with

the node representing the piercing point that intersects the interval. This update

can be done in O(log n) time. When the newly arrived interval is not pierced by

any of the current piercing points, several changes may occur to the primary search

tree besides related auxiliary trees. Moreover, a new piercing point may cause a

sequence of updates as some of the old piercing points may change. The number of

updates required for the insertion of an interval is bounded by the size of the new

minimum piercing set. With each change in the piercing set, adjustments in the
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trees take O(log n) time and a sequence of at most p changes to the piercing set (due

to insertion of a single interval) needs O(p log n) time in the worst case. Therefore

the time spent for insertion of an interval is O(p log n), where p is the updated

piercing number. Similarly in the case of deletions, when the left endpoint of the

interval is not a piercing point, changes to auxiliary trees suffice and take O(log n)

time. Whereas in other cases, a sequence of updates to the relevant tree structures

may be necessary and thus need O(p log n) time with p being the updated piercing

number. Katz et al. claim the bound to be O(p log n
p
) by application of Hölder’s

inequality.

Theorem 4.1 (Katz et al.) For a set of intervals, the size of which never exceeds

n, it is possible to construct a data structure of size O(n) in O(n log n) time such

that the minimum piercing set of the intervals (or the maximum independent set

of the interval graph) can be maintained under insertion and deletion of intervals

from the set in O(p log n
p
) time per update, where p is the updated piercing number

(or the size of the maximum independent set).

4.2 Incremental Piercing in O(log n) Update Time

We consider the incremental or insertion-only scenario for intervals with the intent

of improving the update time. We provide a data structure that can efficiently

maintain the piercing set for intervals under insertions. Let I = {I1, . . . , In} be a

set of n intervals with Ik = [lk, rk], sorted by their right endpoints rk. In addition, we

consider two sentinel intervals I0 = [−∞,−∞] and I∞ = [∞,∞] for convenience.

It is interesting that the relationship between intervals used for the incremental

approach stems actually from the strategy of selecting piercing points by the greedy
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Figure 4.2: A set of intervals and corresponding graph T

method. We notice that if ri and rj (i < j) are two consecutive piercing points

chosen by the greedy algorithm then rj = mink{rk | lk > ri}. This property

motivates the following definition (also used previously by Langerman [Lan00]):

Definition 4.1 Let NEXT(Ii) = Ij if rj = mink{rk | lk > ri}.

It is possible to form a directed graph T with vertices I ∪ {I0, I∞} and edges

{(Ii, Ij) | NEXT(Ii) = Ij}. Noticeably, T is acyclic and all vertices except I∞ have

out-degree one (see figure 4.2). Therefore T is a rooted tree and the piercing number

corresponds to the length of the path from I0 to I∞. A very simple solution for

maintaining the piercing set of the intervals dynamically is to maintain T in a data

structure for dynamic trees [ST83] capable of answering path-length queries. The

path-length query in such a data structure may take Ω(log n) time in the worst case

for a single edge update. However, for an n-vertex tree, the insertion of a single

interval can cause as many as Ω(n) edge changes in T . Therefore we maintain a

modified tree T ′ instead.

We need to define two subroutines before we can describe T ′:

(a) Given an interval Ii, compute NEXT(Ii):
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We need to determine k that minimizes rk such that lk > ri. We can perform

this search in logarithmic time using priority search trees [McC85], where

intervals are treated as 2-dimensional points. In a priority search tree, one

of the endpoints of the intervals (or the corresponding coordinate) is used for

ordering while the other endpoint (or coordinate) defines priority. For our

purpose, we store the intervals Ik in priority search trees ordered by lk, with

priorities defined by rk. The root of any subtree in this structure corresponds

to the interval with the median lk value among all intervals rooted in that

subtree. The rest of the intervals are then divided according to their lk values

so that intervals in one subtree have lk values larger than the other subtree.

At each node, the minimum rk value over all intervals in the subtree rooted

at that node is maintained as well. This data structure can be maintained in

logarithmic time per update and the query for minimum priority value can

be answered within the same time bound [McC85].

(b) Given an interval Ij, identify all Ii’s such that NEXT(Ii) = Ij:

This is actually the “opposite” query. In order to identify the intervals we

observe that

NEXT(Ii) = Ij ⇐⇒ lj > ri and ∀k, lk > ri ⇒ rj ≤ rk

⇐⇒ lj > ri and ∀k, rj > rk ⇒ lk ≤ ri

⇐⇒ lj > ri ≥ max
k
{lk | rk < rj}.

When all intervals are sorted by right endpoints, all such Ii’s appear in con-

secutive order. Therefore we can determine the first and last of these intervals

in logarithmic time by means of another priority search tree. Unlike the tree

in subroutine (a), the intervals Ik in this tree are ordered by rk with priori-

ties defined by lk, and at each node, the maximum of the priority values is
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maintained instead of the minimum one.

We define a block to be a maximal set of intervals with the same NEXT value.

We observe that blocks are disjoint. A more important observation, as shown in

subroutine (b), is that elements within a block are consecutive. We can now describe

the modified graph T ′. Intervals are represented by vertices of the graph. We add

an edge of weight zero between every pair of consecutive vertices in the same block.

We place an edge of weight one from Ii to NEXT(Ii) only when Ii is represented

by the last vertex of the block. Even with this modification, T ′ remains a tree and

sum of edge weights along a path in T ′ is the same as the distance between the end

vertices in T . Therefore the piercing number corresponds to the total weight of the

path from I0 to I∞ in T ′. To be exact, the piercing number is one less than the

weight of the path.

The original dynamic tree structure proposed by Sleator and Tarjan can main-

tain T ′ under edge insertions and deletions (by link and cut operations) in logarith-

mic time [ST83]. The structure also supports certain queries like maximizing edge

costs along a path within the same time bound. However, for our particular type

of queries, i.e., summing edge weights along a path, we can use Alstrup et al.’s top-

tree structure [AHdLT03]. Inserting a new interval I can trigger various changes

in T ′. There can be at most one insertion of a weight-1 edge leaving the vertex for

I (computable by (a)) and at most one insertion of a weight-1 edge entering the

vertex for I (computable by (b)). In addition, there can be at most one deletion of

a zero-weight edge caused by splitting of a block, as well as insertions of zero-weight

edges and deletions of weight-1 edges caused by merging of blocks. For each interval

insertion, the number of splits is bounded by a constant but the number of merges

may be large. However, since the total number of merges is bounded by n plus the

number of splits, the amortized number of edge changes remains O(1). Further-
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more, the location of the merges and splits can be determined in O(log n) time by

having an extra balanced search tree for holding the blocks’ boundaries. Thus the

overall amortized time for maintaining T ′ is O(log n). Therefore we conclude:

Theorem 4.2 In an insertion-only scenario, the piercing number of a set of n

intervals can be maintained in O(log n) amortized time per insertion.

Corollary 4.2.1 In an insertion-only scenario, a factor 2 approximation of the

piercing number of a set of n unit-height rectangles can be maintained in O(log n)

amortized time per insertion.

Proof: As in lemma 3.3, we consider intervals formed by rectangles on horizontal

lines at integer coordinates only. For each such horizontal line, separate data struc-

tures are maintained. If a rectangle intersects a horizontal line already intersected

by another rectangle, the new interval on that line is added to the associated data

structures. Otherwise new data structures are created. Updates in associated data

structures or setting up a new one takes O(log n) amortized time, since a rectangle

can intersect at most two such horizontal lines. In order to efficiently locate the

appropriate horizontal lines and data structures or determine the necessity of cre-

ating new ones, a balanced binary tree structure on the y-coordinates can be used.

On arrival of a new rectangle, query and maintenance of such a structure can be

done in O(log n) time. 2
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Conclusion

Approximation algorithms trade-off the quality of the solution in favor of less com-

putation time. Our approximation schemes for the cases with restrictions on depth

of a point and on the width of the rectangles have a better running time compared

to that in the general unit-height case. The schemes in the former cases make

use of dynamic programming but the dynamic programming tables require a lot

of memory. Moreover, the space requirement in these schemes grows when smaller

approximation ratios are sought. On the other hand, the approach used for the

general unit-height case is straightforward and does not require a lot of space. The

difference in the running times raises a non-trivial question: is it possible to design

a PTAS for axis-parallel unit-height rectangles that takes nO(1/ε) time? The crucial

part of the answer to this question lies in the design of a polynomial-time exact

algorithm for the special case where rectangles are known to be pierceable by a

constant number of lines (see lemma 3.4).

Since the complexity of the piercing problem does not allow fully polynomial-

time approximation schemes, our schemes appear to be more of theoretical interest
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from an implementation point of view. The design of constant factor approximation

algorithms for piercing arbitrarily sized rectangles is a challenging open problem

and interesting from both the theoretical and practical perspective.

The dynamic piercing problem is interesting as well. We have shown how to

maintain the piercing set for intervals in O(log n) amortized time in an insertion-

only scenario. The result leads to another non-trivial question: can we design a

fully dynamic interval piercing algorithm that takes O(logO(1) n) time per insertion

or deletion? As the interval piercing problem is equivalent to the maximum inde-

pendent set problem for interval graphs, a dynamic solution is likely to have more

practical applications.
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