
Algorithms for Geometric Covering
and Piercing Problems

by

Robert Fraser

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2012

c© Robert Fraser 2012

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

This thesis involves the study of a range of geometric covering and piercing problems, where
the unifying thread is approximation using disks. While some of the problems addressed in this
work are solved exactly with polynomial time algorithms, many problems are shown to be at least
NP-hard. For the latter, approximation algorithms are the best that we can do in polynomial
time assuming that P 6= NP.

One of the best known problems involving unit disks is the Discrete Unit Disk Cover (DUDC)
problem, in which the input consists of a set of points P and a set of unit disks in the plane D,
and the objective is to compute a subset of the disks of minimum cardinality which covers all
of the points. Another perspective on the problem is to consider the centre points (denoted Q)
of the disks D as an approximating set of points for P. An optimal solution to DUDC provides
a minimal cardinality subset Q? ⊆ Q so that each point in P is within unit distance of a point
in Q?. In order to approximate the general DUDC problem, we also examine several restricted
variants.

In the Line-Separable Discrete Unit Disk Cover (LSDUDC) problem, P and Q are separated
by a line in the plane. We write that `− is the half-plane defined by ` containing P, and `+

is the half-plane containing Q. LSDUDC may be solved exactly in O (mn+ n log n) time using
a greedy algorithm. We augment this result by describing a 2-approximate solution for the
Assisted LSDUDC problem, where the union of all disks centred in `+ covers all points in P, but
we consider using disks centred in `− as well to try to improve the solution. Next, we describe
the Within-Strip Discrete Unit Disk Cover (WSDUDC) problem, where P and Q are confined
to a strip of the plane of height h. We show that this problem is NP-complete, and we provide
a range of approximation algorithms for the problem with trade-offs between the approximation
factor and running time.

We outline approximation algorithms for the general DUDC problem which make use of the
algorithms for LSDUDC and WSDUDC. These results provide the fastest known approximation
algorithms for DUDC. As with the WSDUDC results, we present a set of algorithms in which
better approximation factors may be had at the expense of greater running time, ranging from a
15-approximate algorithm which runs in O

(
m6n+ n log n

)
time to a 18-approximate algorithm

which runs in O (mn+m logm+ n log n) time.

The next problems that we study are Hausdorff Core problems. These problems accept an
input polygon P , and we seek a convex polygon Q which is fully contained in P and minimizes
the Hausdorff distance between P and Q. Interestingly, we show that this problem may be
reduced to that of computing the minimum radius of disk, call it kOpt, so that a convex polygon
Q contained in P intersects all disks of radius kOpt centred on the vertices of P . We begin
by describing a polynomial time algorithm for the simple case where P has only a single reflex
vertex. On general polygons, we provide a parameterized algorithm which performs a parametric
search on the possible values of kOpt. The solution to the decision version of the problem, i.e.
determining whether there exists a Hausdorff Core for P given kOpt, requires some novel insights.
We also describe an FPTAS for the decision version of the Hausdorff Core problem.

Finally, we study Generalized Minimum Spanning Tree (GMST) problems, where the input
consists of imprecise vertices, and the objective is to select a single point from each imprecise
vertex in order to optimize the weight of the MST over the points. In keeping with one of
the themes of the thesis, we begin by using disks as the imprecise vertices. We show that the
minimization and maximization versions of this problem are NP-hard, and we describe some

v

parameterized and approximation algorithms. Finally, we look at the case where the imprecise
vertices consist of just two vertices each, and we show that the minimization version of the
problem (which we call 2-GMST) remains NP-hard, even in the plane. We also provide an
algorithm to solve the 2-GMST problem exactly if the combinatorial structure of the optimal
solution is known.

We identify a number of open problems in this thesis that are worthy of further study. Among
them:

• Is the Assisted LSDUDC problem NP-complete?

• Can the WSDUDC results be used to obtain an improved PTAS for DUDC?

• Are there classes of polygons for which the determination of the Hausdorff Core is easy?

• Is there a PTAS for the maximum weight GMST problem on (unit) disks?

• Is there a combinatorial approximation algorithm for the 2-GMST problem (particularly
with an approximation factor under 4)?

vi

Acknowledgments

Many of the topics of research in this thesis were initiated within research discussions with mem-
bers of the Algorithms and Complexity group at the University of Waterloo and visitors to the
University who attended the meetings. As a result, I have had the good fortune to work with many
talented and brilliant researchers. I have published portions of this work with Francisco Claude,
Gautam Das, Reza Dorrigiv, Stephane Durocher, Arash Farzan, Meng He, Shahin Kamali, Ak-
itoshi Kawamura, Alejandro López-Ortiz, Ian Munro, Patrick Nicholson, Bradford Nickerson,
Alejandro Salinger, Diego Seco and Matthew Skala, and I greatly appreciate their contributions
to this thesis. In particular, I thank my lab-mates Ale, Pat and Tuna for many helpful impromptu
discussions.

My thesis committee provided a great number of insightful comments, suggestions and cor-
rections that substantially improved the quality of this work. Thank you Professors Thomas
Erlebach, Jochen Koenemann, Anna Lubiw and Ian Munro for your careful reading and hard
work. Many details of this thesis were included or improved upon based on comments provided
by anonymous reviewers.

My supervisor Professor Alejandro López-Ortiz has provided countless hours of guidance
throughout my Ph.D., both in academic and personal contexts. I greatly appreciate all of the
time and effort that Alex has invested in my education.

Valuable guidance and corrections for sections of Chapter 2 were provided by Joseph Cheriyan
and Raju Jampani. The initial work on the Discrete Unit Disk Cover problem came from discus-
sions with Sariel Har-Peled on a preliminary version of the problem. Paz Carmi was kind enough
to share his insights on the problem, and discuss details of his results on the problem from
[29]. Diego Arroyuelo and Barbara Macdonald participated in early discussions of the Hausdorff
Core problem, and Joseph Cheriyan, Nathan Krislock, and Marcel Silva participated in helpful
discussions on optimization problems.

Funding for portions of this research was provided by the Natural Sciences and Engineering
Research Council of Canada (NSERC), partially under the NSERC Strategic Grant on Optimal
Data Structures for Organization and Retrieval of Spatial Data.

I wish to thank my family for their support and encouragement through so many years of study.
My parents have unwaveringly supported my meandering path through different universities and
fields of study, and I cannot adequately express my gratitude. Thank you Mom, Dad, Wes, Bev,
Jim and Rollie. My children have tried their best to give me time to work when I needed it,
and both have contributed to this work in their own ways! Finally, I must thank my wonderful,
intelligent, and beautiful wife Kelly. She has provided more support than I could have ever asked
for. She has taken care of so many little things and big things, ensured that our children are
being well raised, and dealt with a husband that was often absent in mind if not body. She has
shared in my stress and joy, and given me support every day. I love you Kelly, and I look forward
to all of our adventures to come!

vii

Dedication

This thesis is dedicated to my wonderful children Calvin and Alice. You are my greatest treasures.

ix

Contents

List of Tables xv

List of Figures xvii

Definitions xxii

1 Introduction 1

1.1 Organization of the Thesis . 2

2 Discrete Unit Disk Cover Essentials 7

2.1 Related Work . 9

2.1.1 General Geometric Set Cover . 10

2.1.2 Duality for Discrete Unit Disk Cover . 12

2.1.3 PTAS for Discrete Unit Disk Cover . 12

2.1.4 ε-nets . 14

2.1.5 Minimum Dominating Set on Unit Disk Graphs 15

2.1.6 Minimum Geometric (Unit) Disk Cover . 16

2.1.7 Discrete k-Center . 18

2.1.8 Other Discrete Geometric Covering Problems 18

2.2 Specialized Settings . 18

2.2.1 Line-Separable Discrete Unit Disk Cover . 18

2.2.2 Assisted Line-Separable Discrete Unit Disk Cover 20

2.2.3 Strip-Separable Discrete Unit Disk Cover 21

2.3 38-Approximate DUDC Algorithm . 24

2.3.1 The BOX Algorithm . 25

xi

3 (Assisted) Line-Separable Discrete Unit Disk Cover 27

3.1 Greedy Algorithm for LSDUDC . 27

3.1.1 Correctness of Greedy . 29

3.2 Greedy-Graph . 32

3.2.1 Correctness of Greedy-Graph . 32

3.3 Assisted LSDUDC . 33

3.4 Conclusions and Future Work . 35

4 Within-Strip DUDC 37

4.1 6-Approximation Algorithm for h ≤ 1√
2

. 38

4.2 3d1/
√

1− h2e-Approximation Algorithm for h < 1 42

4.2.1 Covering PR . 43

4.2.2 Covering PR . 44

4.2.3 Combining Solutions for PR and PR . 45

4.3 4-Approximation Algorithm for h ≤ 2
√

2/3 . 46

4.4 3-Approximation Algorithm for h ≤ 4/5 . 47

4.5 NP-Completeness of WSDUDC . 48

4.5.1 Gadgets . 54

4.6 Conclusions and Future Work . 57

5 Approximation Algorithms for DUDC 59

5.1 22-Approximate DUDC Solution . 59

5.2 15-Approximate DUDC Solution . 60

5.2.1 Outside Strip Discrete Unit Disk Cover . 60

5.2.2 The Discrete Unit Disk Cover Algorithm . 63

5.3 Conclusions and Future Work . 64

6 Constrained Polygonal Vertex Cover and the Hausdorff Core 65

6.1 Paradigms for Approximating Polygons and Polygonal Chains 66

6.2 Related Work . 67

6.2.1 Feature-Based Approximation . 67

6.2.2 Mathematical Approximation . 67

6.2.3 Error Tolerance-Based Approximation . 68

6.2.4 Chain Coding Scheme . 70

6.2.5 Two-Strip Solution . 70

xii

6.2.6 Error Metrics . 70

6.2.7 Constrained Approximation of Polygonal Curves 72

6.2.8 Constrained Approximation of Polygons . 73

6.2.9 LP-type Problems . 75

6.2.10 Davenport-Schinzel Sequences . 76

6.2.11 The Constrained Euclidean 1-Centre . 77

6.3 The Hausdorff Core . 78

6.3.1 Definitions . 78

6.3.2 Hausdorff Core Properties . 79

7 Hausdorff Core of a Single Reflex Vertex Polygon 83

7.1 Balancing a Line . 84

7.2 Computing the Hausdorff Distance . 84

7.3 Finding the Optimal Solution . 87

7.3.1 Expressing the Distance to Each Point . 87

7.3.2 Minimizing the Maximum Distance . 88

7.4 Conclusions and Future Work . 89

7.5 Closed Form Hausdorff Core Solutions . 92

7.5.1 Both Points Inside the Polygon . 92

7.5.2 Both Points on the Polygon Boundary . 92

7.5.3 One Point on the Polygon Boundary . 95

8 Approximation Algorithms for Generalized Hausdorff Core 97

8.1 Algorithmic Challenges of the Hausdorff Core Problem 99

8.2 Discretization of the Problem . 100

8.3 The Minimization Problem . 103

8.4 Running Time and Space Requirements . 104

8.5 An FPTAS for the Hausdorff Core Decision Problem 104

8.6 Conclusions and Future Work . 105

9 MST with Neighborhoods 107

9.1 Related Work . 108

9.2 Algebraic Complexity . 110

9.2.1 Euclidean MST Problems are Sum-of-Square-Roots-Hard 110

9.3 MAX-MSTN . 111

xiii

9.3.1 1/2-Approximation Algorithm . 111

9.3.2
(

1− 2
k+4

)
-Approximation Algorithm . 111

9.3.3 NP-Hardness of max-MSTN . 112

9.4 MSTN . 126

9.4.1 3-Approximation Algorithm . 126

9.4.2 (1 + 2/k)-Approximation Algorithm . 128

9.4.3 NP-Hardness of MSTN . 129

9.5 Conclusions and Future Work . 135

10 2-Generalized MST 137

10.1 Related Work . 137

10.2 Minimum Spanning Trees on Intervals . 138

10.3 One-Dimensional 2-GMST and MAX-2-GMST . 139

10.3.1 2-GMST Solution . 139

10.3.2 max-2-GMST Solution . 139

10.4 NP-Hardness of 2-GMST . 140

10.4.1 Gadgets . 140

10.4.2 Weight of the MST . 144

10.5 Approximation Algorithms for 2-GMST . 147

10.6 Problems with Known Topology . 148

10.6.1 2-GMST Algorithm . 150

10.7 Conclusions and Future Work . 150

11 Conclusions 151

Bibliography 153

Index 165

xiv

List of Tables

2.1 MDS Algorithms . 16

2.2 MCDS Algorithms . 16

2.3 DUDC Settings . 24

4.1 WSDUDC Results . 38

9.1 Imprecise Convex Hull Algorithms . 109

xv

List of Figures

1.1 A MBES Survey . 2

2.1 A bathymetric application for DUDC . 8

2.2 Performance of DUDC algorithms . 11

2.3 Line-separable discrete unit disk piercing . 19

2.4 DUDC grid decomposition of [29] . 25

3.1 Line-Separable Discrete Unit Disk Cover example 28

3.2 Simplification is not enough . 29

3.3 Proof of correctness of Greedy . 31

4.1 Cases for the WSDUDC algorithm . 41

4.2 Gaps and intervals in WSDUDC . 43

4.3 Illustration of Lemma 4.4 . 45

4.4 The grid for the WSDUDC NP-hardness reduction 52

4.5 An upper bound on ddisk . 53

4.6 The gadgets for the WSDUDC NP-hardness reduction 54

4.7 Gadget to insert a disk into a wire . 55

4.8 Bounding the size of ddisk . 57

5.1 Set membership in OSDUDC . 61

6.1 MACS vs. Hausdorff distance . 66

6.2 The Douglas-Peucker technique . 69

xvii

6.3 Hausdorff distance vs. Fréchet distance . 71

6.4 Inclusion and enclosure problems . 74

6.5 Chassery and Coeurjolly algorithm counterexample 75

6.6 The upper envelope of functions . 77

6.7 Different 1-centres . 78

6.8 Illustration of Lemma 6.3 . 80

6.9 A surprising Hausdorff Core . 81

7.1 Finding the cut line for a single reflex vertex polygon 83

7.2 Decomposition of a polygon with a cut line . 84

7.3 The closest point is not on ` . 85

7.4 Example Hausdorff solution on a single reflex vertex polygon 90

7.5 Distance plot for Figure 7.4. 91

8.1 Finding a Hausdorff Core by shrinking disks . 99

8.2 Two disconnected solution intervals . 100

8.3 A single line solution . 101

8.4 Finding the minimum interval length . 102

8.5 Decomposition of disks for dynamic programming solution 103

9.1 1/2-Approximation Algorithm for max-MSTN . 111

9.2 Reduction from 3-SAT to planar 3-SAT . 113

9.3 The zigzag solution for a chain of disks . 114

9.4 The reflection effect . 115

9.5 Examples of bad path choices . 116

9.6 Canonical angles of the chain . 118

9.7 max-MSTN variable gadgets . 119

9.8 max-MSTN clause gadgets . 120

9.9 Paths through the max-MSTN clause gadget. 122

9.10 Case 1 of max-MSTN reduction . 125

9.11 Case 2 of max-MSTN reduction . 125

9.12 Minimum weight MSTN constructions . 127

9.13 MSTN variable gadget . 130

9.14 Shortest path to 2 disks . 131

9.15 Connecting the clause wire to the interior of the gadget 134

xviii

10.1 Points are not equivalent to intervals for imprecise MST problems 139

10.2 Example construction for 2-GMST reduction . 141

10.3 Gadgets for 2-GMST reduction . 143

10.4 Correctness of the crossing gadget . 146

10.5 A difficult problem for 2-GMST . 148

10.6 Another difficult problem for 2-GMST . 149

xix

Definitions

For clarity and consistency, we include a list of definitions and notation that we use throughout
the thesis. Terms relevant to one section only are defined therein.

• ab - a line segment with endpoints a and b.

• −→ab - a ray with starting point a and incident upon b.

• ←→ab - a line incident upon points a and b.

• C (p, r) - a disk of radius r centred at point p.

• CH (P) - the convex hull of P .

• D - a set of disks in the plane. DQ is the set of disks centred at the set of points Q.

• D - a disk, usually with unit radius unless specified otherwise. qi is the centre point of Di.

• ∂D - the boundary of the disk D.

• dist (p, q) - the Euclidean distance from point p to point q.

• P - a polygon in 2D, or possibly a polytope in higher dimensions.

• ∂P - the boundary of the polygon P . If necessary, this is used to distinguish the edges of
the polygon from the region of the plane enclosed by P .

• PV - the set of vertices of the polygon P .

• P,Q - sets of points.

xxi

1
Introduction

The problems that we discuss in this thesis are the kind that you could explain to a layperson
with nothing more than a pen, a napkin, and a pitcher of beer (this has been empirically verified).
However, many of the solutions to these problems require advanced techniques, and a number
of the solutions are approximation algorithms because of the complexities inherent in the exact
versions of these problems. Aspects of each problem that we discuss remain open, and we outline
directions for further research at the conclusion of each chapter. People are often drawn to
problems in computational geometry because of the natural formulations, particularly when set
in the plane. The aim of this thesis is to present some beautiful problems from computational
geometry, to outline solutions or approximation algorithms for them, and hopefully to inspire the
reader to engage in similar research.

While the research described in this thesis is related to geometric covering and piercing prob-
lems, these problems initially arose from bathymetric applications (i.e. mapping of the seafloor).
Bathymetric data attracts interest for a broad number of reasons, whether for navigational pur-
poses, educational applications, or just general curiosity. There are a number of publicly available
tools for visualizing the topography of the ocean floor: Google Maps [84] has integrated a coarse
description into their tool, NASA produced the HoloGlobe video [151], and Canada’s NRC pro-
vides the Canadian Marine Multibeam Bathymetric Data set in their Geoscience Data Repository
[127] for similar educational purposes. Much of the bathymetric data contained in general inter-
est packages such as these is inferred using surface elevations obtained by satellites [149]. None
of these packages would serve usefully for navigation (most include explicit statements to this
effect). Tools such as the LOTS Browser developed by CARIS [28] use data measured by more
precise means, and are produced specifically for maritime navigation.

We are witnessing a rapid increase in the number and quality of data collection instruments
being produced and used, and so the volume of data available for many scientific applications
is exploding. Over the last three decades, the challenge in bathymetry has shifted from making
do with sparse data to finding methods for handling massive amounts of it; this is primarily due
to advances in multibeam echosounder (MBES) technology [24],1 see Figure 1.1. The seafloor
terrain is defined by points, and we wish to consider recent data points as more accurate than

1The majority of data is collected using soundings, although there exist data points that were produced by
the lead line method. This technique involves dropping a lead weight tied to a rope over the side of a boat, and
measuring how much rope goes over the side. One of Canada’s most famous shipwrecks, the S.S. Fitzgerald, was
using charts based largely on lead line data from the early 1800’s when it sank in 1975 [155, p. 119].

1

Figure 1.1: An illustration of a ship conducting a multibeam echosounder (MBES) survey. Image
used with permission from NOAA [126].

older data. However, it is often desirable to maintain all old data as well, since there is some
natural variability in seafloor terrain. We consider the question of how to update the points in a
working set of the data when given a new survey, and we propose a model in which one wishes
to maintain a minimal set of old points, while ensuring that every point in the new data set is
within some unit distance of an old point. This is an instance of the Discrete Unit Disk Cover
problem, which we study in detail in Chapters 2-5.

Consider a navigator who wishes to find the fastest route to a destination, while possibly
visiting some waypoints en route. We assume the navigator has access to a complete set of the
bathymetric data available for the relevant regions through which a possible course will pass.
We wish to study approximations of the terrain which would facilitate a data structure that
supports the efficient computation of such a path under various constraints imposed on this
setting, such as space efficiency, query speed, and primarily the fact that it is unacceptable
(for insurance purposes) to run aground of a known shallow region contained in the database.
Collision detection algorithms may use a hierarchical data structure employing boxes or other
convex regions to approximate the obstacles in the terrain [26, 27]. To this end, we would like to
identify convex regions with minimal distance to the contour lines of the terrain. This problem
inspired the Hausdorff Core problem, which we study in Chapters 6-8.

Finally, we investigate problem models where some of the difficulties originate from noisy or
imprecise data. We provide a discussion of optimization problems for the Minimum Spanning
Tree problem on various models of imprecision in Chapters 9 and 10. Although these problems
were not inspired by any bathymetric application, they work in a model which is a natural
generalization of the geometric covering problems of the previous chapters.

1.1 Organization of the Thesis

Chapter 2: Discrete Unit Disk Cover Essentials. We begin with a detailed study of the
Discrete Unit Disk Cover (DUDC) problem, a well-studied geometric covering problem. Formally,

2

given a set D of m unit disks and a set P of n points in the plane, the DUDC problem is to select
a minimum cardinality subset D? ⊆ D to cover P. In this chapter, we examine the significant
body of past work on the DUDC problem, and also discuss several related problems and restricted
settings. We describe several paradigms that are used to achieve approximation algorithms for
problems in computational geometry, and we discuss how these may apply to the DUDC problem.
We restrict the DUDC problem in a number of ways, and we discuss related work on line-separated
and strip-restricted settings.

Chapter 3: (Assisted) Line-Separable Discrete Unit Disk Cover. In this chapter, we
study a restricted setting of DUDC in which there exists a line separating the centres of the disks
from the points to be covered. For this Line-Separable Discrete Unit Disk Cover (LSDUDC)
problem, we outline an O

(
m2n

)
time algorithm which finds an exact solution. We next present a

method to find a 2-approximate cover for the Assisted LSDUDC (A-LSDUDC) problem, in which
the disks may be on either side of the line defined for the LSDUDC problem. This is different
from the general DUDC problem, because for the A-LSDUDC problem there always exists at
least one candidate solution consisting only of disks whose centres are separated from the points
to be covered by a line. In the general DUDC problem, this is not necessarily the case. The
A-LSDUDC approximation algorithm runs in O (mn+m logm+ n log n) time. The results in
this chapter include:

• An exact O
(
m2n

)
time algorithm for LSDUDC. The previous best similar result was a

2-approximation algorithm, and a subsequent result has improved this to O (mn+ n log n)
time.

• A 2-approximation algorithm running in O (mn+m logm+ n log n) time for A-LSDUDC.
The best previous result is a 4-approximation algorithm.

Chapter 4: Within-Strip DUDC. We study another restricted DUDC setting in this chap-
ter, in which the points and disk centres are confined to a strip of the plane. We call this the
Within-Strip Discrete Unit Disk Cover (WSDUDC) problem. We describe a range of approxi-
mation algorithms for the problem, ranging from 3 to 6 factor approximations which apply for
strips of varying heights ranging up to 2

√
2/3 units, as well as a general scheme for any strip

with less than unit height. The fastest algorithm (the 6-approximation algorithm, which runs
in O (mn+m logm+ n log n) time) divides the strip into squares and uses the LSDUDC and
A-LSDUDC results of the previous chapter to find the cover. The 3-approximation algorithm
divides the strip into subproblems so that the disks used in one subproblem may overlap those
in at most two others, and each subproblem is solved optimally. Unfortunately, the best known
algorithm for one of these subproblems requires O

(
m6n+ n log n

)
time, and so this is the run-

ning time of the 3-approximate WSDUDC algorithm. We conclude the chapter with a proof
demonstrating that the WSDUDC problem is NP-complete on strips of any fixed height. There
are no known previous results on this problem, but we discuss results on similar problems.

The results in this chapter consist of the NP-completeness proof of WSDUDC, as well as a
set of approximation algorithms for the DUDC problem:

• A 6-approximate algorithm requiring O (mn+m logm+ n log n) time.

• A general 3d1/
√

1− h2e-approximate algorithm running in O
(
m4n+ n log n

)
time.

3

• A 4-approximate algorithm taking O
(
m4n+ n log n

)
time.

• A 3-approximate algorithm running in O
(
m6n+ n log n

)
time.

Chapter 5: Approximation Algorithms for DUDC. We describe approximation algo-
rithms for the DUDC problem in this chapter. We begin by showing how the LSDUDC results
of Chapter 3 may be applied to provide an algorithm with an approximation factor of 22, which
runs in O

(
m2n4

)
time. Next, we describe an algorithm which uses the WSDUDC algorithms of

Chapter 4 to obtain, among others, a 15-approximate algorithm for DUDC with a running time
of O

(
m6n+ n log n

)
, and an 18-factor algorithm which runs in O (mn+m logm+ n log n) time.

The best previous results were a 38-approximate algorithm which runs in O
(
m2n4

)
time, and a

PTAS whose fastest known running time is O
(
m65n

)
, realized when ε ≥ 2. Because the running

time of the PTAS is so large, interest remains to determine faster approximation algorithms for
the DUDC problem.

In this chapter, we describe the following DUDC approximation algorithms:

• A 22-approximate algorithm taking O
(
m2n4

)
time. This algorithm uses a grid-based de-

composition of the plane.

• A (12 + c)-approximation algorithm running in T time, where c and T are the approxi-
mation factor and running time respectively of the WSDUDC algorithm (see the previous
chapter) used as a subroutine in the DUDC algorithm. These algorithms use a strip-based
decomposition of the plane.

Chapter 6: Constrained Polygonal Vertex Cover and the Hausdorff Core. In this
chapter we study various techniques that are used to approximate polygons and polygonal curves.
There are a variety of techniques which have been developed to address a range of error metrics.
Our interest lies in a particular generalization of disk covering, in which we wish to determine
whether there exists a convex polygon Q so that points in a set P are within unit distance of Q.
While this formulation is not challenging, it becomes much more interesting if it is additionally
required that Q is contained in a simple polygon P with vertex set P. We refer to such a Q as
the Hausdorff Core of P , and we define an optimization version of the Hausdorff Core problem in
which the Hausdorff distance between P and Q is minimized. We develop a number of properties
of the Hausdorff Core problem that are useful for our algorithms, and then in Chapters 7 and 8
we study the problem on two classes of polygons.

Chapter 7: Hausdorff Core of a Single Reflex Vertex Polygon. In this chapter, P is
restricted to the set of simple polygons containing a single reflex vertex. We describe a Hausdorff
Core algorithm that computes the optimal solution in O

(
n3
)

time. The algorithm essentially
consists of determining the optimal rotation of a line incident upon the reflex vertex, where the
line defines the convex polygon Q by cutting P . There are no previous results on this problem.
The running time of our algorithm is based on the worst-case complexity of the upper envelope of
the set of functions defined by the distance from each vertex of P to Q for each possible position
of the line incident upon the reflex vertex. We describe a closed-form expression for the solution,
although it is rather large and complicated.

4

Chapter 8: Approximation Algorithms for Generalized Hausdorff Core. In this chap-
ter, we begin by outlining a parameterized algorithm for the decision version of the Hausdorff
Core problem on simple polygons using dynamic programming. We centre disks on each vertex of
P , and the disks are divided into a set of discrete segments. We search for a set of segments con-
sisting of one segment from each disk so that all segments possess mutual strong visibility within
P , and we demonstrate that such a set provides an approximate Hausdorff Core. By performing
a parametric search on the possible values of the Hausdorff distance (which corresponds to the
radii of the disks used in the decision algorithm), this extends to a parameterized algorithm for
the optimization version of the problem, running in O

(
log
(
ε−1
) (
n3 + n2ε−6

))
time. We demon-

strate that a similar algorithm may be used to derive an FPTAS for the decision version of the
Hausdorff Core problem as well. There is no previous work on this problem to our knowledge.

The algorithms described in this chapter are:

• A parameterized algorithm for the decision version of the problem, which finds a solution
with Hausdorff distance (k + drad · ε) in O

(
n3 + n2ε−6

)
time, where kOpt is the value of

the optimal solution and drad is the distance from a constrained 1-centre of P to the most
distant vertex in P .

• A parameterized algorithm for the optimization version of the problem, which finds a so-
lution with the same error bound as the decision version of the problem, but the running
time requires an additional O

(
log
(
ε−1
))

factor on the running time to perform a parametric
(binary) search on the possible values of the optimal solution.

• A (1 + ε)-approximate algorithm (FPTAS) for the decision version of the problem, taking
O
(
n3 + n2ε−6

)
time. This approach requires only minor modifications to the parameterized

decision algorithm, but is not amenable to a parametric search as done for the parameterized
algorithm for the optimization problem.

Chapter 9: MST with Neighborhoods. We generalize our setting further by looking at
computational geometry problems in which the solution is only required to have points within
a given distance of the input points. We call this model computational geometry with imprecise
data. In this chapter, we study the Euclidean Minimum Spanning Tree (MST) problem within
this model, where one point is chosen from each disk and the MST is computed over the selected
set of points. We consider the objectives of both minimizing the weight of the MST over the input,
known as the Minimum Spanning Tree with Neighborhoods (MSTN) problem, and we introduce
the maximum weight version of the problem, called the max-MSTN problem. We prove that
both the minimization and maximization versions of the problem are NP-hard even when the
disks are disjoint, and we provide hardness of approximation results for both by demonstrating
that there can be no FPTAS unless P=NP. There is some previous work on the MSTN problem,
including a PTAS when the disks are restricted to unit radius. There was a previously published
NP-hardness proof for MSTN, but it was found faulty by the original authors. Finally there was
a previously published 3-approximation algorithm for MSTN on unit disks, but it was also faulty
and we correct some of the bugs in this chapter.

We describe some approximation and parameterized algorithms for the MSTN and max-MSTN
problems:

• A 1/2-approximation algorithm for max-MSTN.

5

• A parameterized algorithm for max-MSTN problem, which finds a
(

1− 2
k+4

)
-approximate

result by simply computing the MST of the centres of the disks. The parameter k is the
separability parameter, and it is defined as the ratio of the smallest pairwise distance between
any disks to the largest radius of any disk in the input.

• An asymptotic 3-approximation algorithm for MSTN on unit disks.

• A parameterized algorithm for MSTN with an approximation factor of
(
1 + 2

k

)
, where k is

again the separability parameter.

Chapter 10: 2-Generalized MST. We extend the problems of the previous chapter by
allowing the areas of imprecision to be discrete sets of points rather than disks, which is known
as the Generalized Minimum Spanning Tree (GMST) problem. We study a restricted version of
GMST, where all sets of imprecise vertices have cardinality two, and the points in each set are
vertically aligned. We define the 2-GMST and max-2-GMST problems, where the objective
is to minimize or maximize the weight of the MST respectively under this constrained model of
imprecision. We describe simple algorithms for both problems in one dimension, we provide a
proof of NP-hardness for 2-GMST in two dimensions, and then we show that there is no FPTAS
for 2-GMST unless P=NP. The only known previous result is a 4-approximate algorithm for
2-GMST based on a more general technique.

The results in this chapter include:

• A linear time exact 2-GMST algorithm and a constant time exact algorithm for the
max-2-GMST problem in one dimension.

• A linear time recursive algorithm for solving 2-GMST if the topology (combinatorial struc-
ture) of the optimal solution is known.

6

2
Discrete Unit Disk Cover Essentials

Our interest in the Discrete Unit Disk Cover (DUDC) problem arose from data management
problems upon terrains, with bathymetric applications in particular1. Suppose that we have a
survey of a terrain with data represented as points in the xy-plane, and the height data is stored
as an attribute of each point. Call this point set Q. Given a new survey of the same area, we
obtain a new point set P. We wish to update our data set by treating the new data set P as
the standard, but we wish to maintain some of the old data for completeness. Our restrictions
are that each new point in P must have at least one old point from Q within unit distance, and
that a minimum number of points from Q are maintained (see Figure 2.1). This problem is an
instance of the Discrete Unit Disk Cover (DUDC) problem, which is known to be NP-complete.

Definition 2.1. The Discrete Unit Disk Cover (DUDC) Problem: Given a set P of n points and
a set D of m unit radius disks in the plane, where a disk Di ∈ D is centred at a point qi in a set
Q, the Discrete Unit Disk Cover problem is to find a set D? ⊆ D of minimum cardinality such
that D? covers P.

We say that a disk of radius r centred at q (written C (q, r)) covers a point p if the Euclidean
distance between p and q is no greater than r, i.e. dist (p, q) ≤ r.

Recent interest in specific geometric set cover problems is partly motivated by applications
in wireless networking or facility location problems in operations research, e.g. [153, 164]. In
particular, when wireless clients and servers are modelled as points in the plane and the range
of wireless transmission is assumed to be constant in all directions (say one unit), the resulting
region is a disk of unit radius centred on the point representing the wireless transmitting device.
Under this model, sender a successfully transmits a wireless message to receiver b if and only
if point b is covered by the unit disk centred at point a. This model applies more generally
to a variety of facility location problems for which the Euclidean distance between clients and
facilities cannot exceed a given radius, and clients and candidate facility locations are represented
by discrete sets of points. Examples include:

• selecting locations for wireless servers from a set of candidate locations to cover a set of
wireless clients,

1Elements of this chapter have appeared in [39], [40], and [73].

7

(a) (b)

(c) (d)

Figure 2.1: A bathymetric application for DUDC. (a) Suppose there are two surveys of the
seafloor, one of new points P (drawn as filled circles), and an older survey Q (drawn as ×
symbols). We would like to keep a minimal number of the old points, while ensuring that every
new point is within some fixed distance (call it unit distance) of an old point. (b) We draw disks
centred on the points of Q to show all points of P within unit distance of each point in Q. (c)
A DUDC solution provides a minimal number of disks which covers P. (d) Removing the extra
points and disks gives the solution.

• positioning a fleet of water bombers at airports such that every active forest fire is within
a given maximum distance of a water bomber,

• selecting a set of weather radar antennae to cover a set of cities, and

• selecting locations for anti-ballistic defenses from a set of candidate locations to cover strate-
gic sites2.

These problems can be modelled by the DUDC problem. DUDC is NP-complete3 [99, 72], and the
general set cover problem (i.e. the covering sets are unrestricted) is not approximable within a fac-
tor of c log n, for some constant c, assuming P 6= NP [137] (also, unless NP ⊆DTIME

(
nO(log logn)

)
,

2Johnson [99] cheekily remarked that this would be the type of application used in a grant proposal if the
funding were coming from military rather than civilian sources.

3To be precise, the Discrete Unit Disk Cover problem is NP-complete in dimensions d > 1, but is solvable in
linear time in d = 1 [93].

8

i.e., all problems in NP can be solved in nO(log logn) time) [67]). In this thesis, we are often inter-
ested in finding approximation algorithms for hard problems.

Definition 2.2. Approximation Algorithm: An algorithm ALGA is a f(n)-approximation algo-
rithm for a minimization problem A if given any instance of A with size n, which has an optimal
solution of size |Opt|, ALGA returns a solution of size at most f(n) · |Opt|. If A is a maxi-
mization problem, ALGA must return a solution of size at least f(n) · |Opt|. We may say that a
f(n)-approximation algorithm is an algorithm with approximation factor f(n).

A PTAS (Polynomial Time Approximation Scheme) is the strongest type of approximation algo-
rithm.

Definition 2.3. Polynomial Time Approximation Scheme (PTAS): A PTAS is a family of ap-
proximation algorithms for a minimization problem A, so that for any constant ε > 0, there
exists a 1 + ε-approximation algorithm for A, where the running time of the algorithm is bounded
asymptotically by a function which is polynomial in the size of A. Analogously, for a maximization
problem, a PTAS is a family of 1− ε-approximation algorithms with the same properties.

2.1 Related Work

There are many known approximation algorithms for DUDC, using a variety of techniques. Obvi-
ously the general approximation algorithms for set cover (e.g. [36]) directly provide an O (log n)
approximation algorithm. There is a series of constant factor approximation algorithms and a
PTAS, mostly published within the past few years. The PTAS of [121] is applicable only for
0 < ε ≤ 2 (see Section 2.1.3), and so the running time of the PTAS is prohibitively large for
any approximation factor. For this reason research has continued on the DUDC problem, specif-
ically oriented toward determining approximation algorithms with tractable running times. We
summarize the known results below, and a graphical representation of the set of Pareto optimal
approximation algorithms with respect to running time versus approximation factors is given in
Figure 2.2.

• O(1)-approximation, Brönnimann and Goodrich, 1995 [23]. This was the first constant-
factor approximation algorithm for DUDC. It is based on ε-nets, as discussed in Section
2.1.4.

• 108-approximation, Călinescu et al., 2004 [42]. This algorithm worked using a decomposi-
tion of the problem into that of using unit disks to cover points contained in an equilateral
triangle with unit length sides. A 6-approximate algorithm is given for covering each trian-
gle, and then it is shown that a unit disk covers points in no more than 18 triangles4 for a
total approximation factor of 108.

• 72-approximation, Ambühl et al., 2006 [8] / Narayanappa and Vojtěchovský, 2006 [125].
The first result divides the plane into squares of size 1/

√
2× 1/

√
2, and provides a factor 2

approximation for covering points in up to 36 such squares. This approach also applies to
weighted DUDC. The second result improves on that of [42] by tiling the plane with unit
size hexagons.

4We list the approximation factor for [42] as 108, although the original publication presented the factor as 102.
Narayanappa and Vojtěchovský [125] noticed a small bug in the analysis, specifically that a disk may cover points
in 18 rather than 17 triangles, and corrected the factor to that listed here.

9

• 38-approximation, Carmi et al., 2007 [29]. This algorithm decomposes the plane into squares
of size 3/2× 3/2, and uses a variety of techniques to cover points in the square using disks
centred both inside and outside the square. This is discussed in detail in Section 2.3.

• 22-approximation, Claude et al., 2010 [39, 40]. This result improves on [29] primarily with
an improved Line-Separable DUDC algorithm, as discussed in Chapter 3.

• (1+ε)-approximation, Mustafa and Ray, 2010 [121]. This is the best PTAS known for
DUDC, and is based on local search. We discuss the PTAS in Section 2.1.3.

• 18-approximation, Das et al., 2011 [46, 47]. By using a decomposition similar to that of
the 72-approximate algorithm of Ambühl et al. [8] and the ideas of Claude et al. [39]
for Line-Separable DUDC, a slightly improved approximation factor is obtained, and the
running time is significantly improved. This result is discussed in Chapters 4 and 5.

• 15-approximation, Fraser and López-Ortiz, 2012 [73]. This work examines the Within-Strip
DUDC problem (Chapter 4), and uses the results with the decomposition of Das et al. [47]
to obtain the lowest known approximation factor for a DUDC approximation algorithm
with a tractable running time, as discussed in Chapter 5.

Another PTAS for DUDC was presented by Liao and Hu [110]. The PTAS is based on the
assumption that the point set P is found on the integer grid, and so there is a constant maximum
cardinality of a subset of P that may be covered by any particular disk. Despite the simplifying
assumption, their running time does not improve upon that achieved by Mustafa and Ray. While
Brönnimann and Goodrich [23] described the first small ε-net for unit disks, Pyrga and Ray [135]
gave an analysis showing smaller nets for a generalized setting. The Discrete Unit Disk Cover
problem (this name was coined by Carmi et al. [29]) has been given some other names as well,
such as Geometric Set Cover on Unit Disks [64], Geometric Hitting Set on Unit Disks [122], and
the Unit Disk Covering problem [125]. We adhere to the label Discrete Unit Disk Cover because
it was the first name in the literature that clearly distinguishes the problem from the Minimum
Geometric Disk Cover problem, where the disk centres are unrestricted (see Section 2.1.6).

2.1.1 General Geometric Set Cover

In this section, we discuss a generalization of Discrete Unit Disk Cover. This section is included
as related work because techniques for Geometric Set Cover apply to DUDC, but we do not use
the results of this section in the thesis. DUDC is an instance of set cover over a range space
S = (X,R) where X is defined as a set of points in R2, and R corresponds to a set of fixed
disks of unit radius, whose union covers the entire point set X. The goal of Discrete Unit Disk
Cover is to determine a set of disks D ⊆ R of minimum cardinality so that all of the points in X
remain covered. There are two formulations of this type of problem that are commonly used: a
general Set Cover Problem (SCP) or the dual Hitting Set Problem (HSP). These problems may
be defined over any range space.

Definition 2.4. Range Space [23]: Let S = (X,R), where S is a range space over the points X
and the ranges (sets) R, where each range in R contains a subset of X: Ri ⊆ X,∀Ri ∈ R, i.e.
R ⊆ 2X .

10

100

10

1
2 4 6 8 10 12 14 16 18 20

c-Approximation Algorithms, Running in O(mxn) Time

c

x

Valid range for ε in PTAS

Our results

103

104

PTAS of Mustafa & Ray, 2010

Figure 2.2: We summarize the best known algorithms for the DUDC problem. The shaded region
indicates the range where ε is valid in the PTAS [121]. The points indicate our results. Note that
the vertical axis is a log scale.

The term ‘range space’ is essentially synonymous with ‘set system’, so that S = (X,R) may
correspond to a system where X is the set of all items andR is the family of subsets. Additionally,
a graph is a range space: a graph G = (V,E) maps to a range space when X = V and R = E. For
this work, we are considering geometric range spaces, where X corresponds to a set of points, and
R is a set of geometric objects (such as disks), each of which may contain or cover some subset of
the points in X. For our purposes, the term ‘range space’ may be considered synonymous with
‘set system’ or ‘hypergraph’.

Definition 2.5. Set Cover Problem [41, p.1033]: Given a range space S = (X,R), the set cover
problem is to find a subset C ⊆ R of minimum cardinality so that all elements of X are covered
by C, i.e. X = (∪R∈CR) ∪X.

Definition 2.6. Hitting Set Problem [23]: Given a range space S = (X,R), the hitting set
problem is to find a subset H ⊆ X of minimum cardinality so that all sets of R are pierced by
elements of H, i.e. H ∩R 6= ∅, ∀R ∈ R. A set R is pierced by an element p if p ∈ R.

Since the problems are dual, an optimal solution for the Set Cover problem is an optimal
solution for the Hitting Set problem in the dual setting and vice versa. In this thesis, we use the
problems interchangeably, as some problems are easier to discuss in one setting or the other.

The set cover problem and hitting set problems are NP-hard [99], so the research community
has directed its energy to the determination of approximation algorithms for these problems. The

11

best approximation factor that one can hope for in the general setting is Θ (log n) [36], using a
simple greedy technique (e.g. Algorithm 2.1). Basically, given a set cover problem over a range
space S = (X,R), we choose the set R ∈ R with maximum cardinality. After removing R and
X ∩ R from the problem, i.e. R ← R \ R, X ← X \ (X ∩R), we proceed to the next iteration.
For general set cover problems, this is the optimal approximation technique [67]. For a thorough
treatment of this approach, see Vazirani [157, p.109] or Cormen et al. [41, p.1033].

Algorithm 2.1 GREEDY-SET-COVER(X,R) [36]

1: Input: A set of items X and a range space R
2: Output: A range space C which covers X
3: // Note that wR is the weight of R (in DUDC wR = 1 for each disk)
4: C ← ∅
5: while ∃R ∈ R, R 6= ∅ do
6: Find Rmax ∈ R, where |Rmax| = max

R∈R
|R|/wR

7: C ← C ∪Rmax

8: ∀R ∈ R, R← R \Rmax

9: end while
10: return C

2.1.2 Duality for Discrete Unit Disk Cover

For Discrete Unit Disk Cover, it is often convenient to work in the dual hitting set version of the
problem. We call this the Discrete Unit Disk Piercing (DUDP) problem, and it is particularly
useful because an optimal solution for DUDC is equivalent to an optimal solution for DUDP.
Recall that the input for the DUDC problem is a set of points P and a set of unit disks D with
centre points Q. The dual DUDP formulation is a set of unit disks DP with centre points P, and
the set of points Q. An optimal solution to the DUDP problem is a minimum cardinality set of
points Q? ⊆ Q where each disk in DP contains at least one point in Q?.

Lemma 2.1. Given an instance of DUDC with input points P, input disks D (where Q is the
set of centre points of D), and an optimal solution D?, the dual DUDP problem on the instance
is solved optimally by Q?, the set of centre points of D?.

Proof. The lemma depends on the fact that both the primal DUDC problem and the dual DUDP
problem use unit disks. Any pair of points (p ∈ P, q ∈ Q) where dist(p, q) ≤ 1 have the property
that the disk centred at q in the primal covers p, and the disk centred at p in the dual is pierced
by q. Therefore, the set of points covered by a disk D in the primal is exactly the set of centre
points of the disks pierced by q (the centre point of D) in the dual.

2.1.3 PTAS for Discrete Unit Disk Cover

Mustafa and Ray [121, 123] presented a (1 + ε)-approximation algorithm (PTAS) for the Hitting
Set problem on geometric sets which is based on the idea of local search. In much of the literature,
discussions on this topic are generalized to include pseudo-disks or objects that satisfy certain
locality conditions, but for clarity of exposition we restrict ourselves to unit radius disks as the

12

range objects. Having said that, all technical details from this section are generalizable to pseudo-
disks (as they were originally presented in this context) [121]. A set of pseudo-disks is a family
of objects such that for any set of three points in the plane, at most one member of the family
is incident upon the three points. Generally, pseudo-disks are considered to include sets of disks,
or the set of all homothets (scalings and/or translations) of a fixed oval [118].

Since were are interested in DUDC, we convert the parameter notation to be consistent with
those used in this thesis. Therefore, for our purposes, the number of points in the hitting set
formulation is m, because this is the number of disks in the DUDC setting. Similarly, n is the
number of disks in the hitting set problem.

Local Search

Local search is essentially the idea of making optimal choices in each iteration of an algorithm
using only the information available at the time, which can lead to overall suboptimal solutions.
In the context of the PTAS of Mustafa and Ray [121], the local search is a bounded exhaustive
search so that the total work performed may be bounded by a polynomial. The search looks
for sets of points in the current solution that may be replaced by any subset while maintaining
a hitting set. In this setting, they use a technique called k-level search, where each set of k
points in the hitting set solution is compared with each subset of X with size k− 1 to see if they
may be substituted and remain a hitting set. Generally, the smallest point set initially known
to be a hitting set is the entire point set X, so that is the starting state. For each iteration
of the algorithm, the size of the hitting set is reduced by one by checking

(
m
k

)(
m
k−1
)

possible
local improvements. Therefore, when the local search finishes, we know that no k points can be
replaced by any k−1 points to produce a hitting set. Clearly, if we allow k = m, then we will find
the optimal solution, but may require superpolynomial time. The PTAS is obtained by choosing
k = O

(
ε−2
)
:

Theorem 2.1. [121] The Discrete Unit Disk Cover problem defined over S = (X,R) may be
solved using a (c/ε)2-level search to obtain a hitting set H ⊆ X of size less than or equal to
(1 + ε) · |H?|, where H? is the optimal hitting set solution.

Limitations of Local Search

The PTAS runs in O
(
m2(c/ε)2+1n

)
time, where c ≤ 4γ [121]. Their γ value can be bounded

from above by 2
√

2 [76, 105]. They perform a k-level search, where k = (c/ε)2 ≥ 4γ2, so
ε ≤ 2. The fastest operation of this algorithm is obtained by setting ε = 2 for a 3-approximation

algorithm, and this will run in O
(
m2·(8

√
2/2)

2
+1n

)
= O

(
m65n

)
time in the worst case. Clearly,

this algorithm will not be practical for large values of m (or even m = 2). However, it is possible
that a lower running time may be obtained through better bounding of the constant factors or
improvements to their algorithm, or that the running time on real world data never approaches
this worst case bound.

For future work, the original authors conjecture that it may be possible to do (c/ε)-level
local search, rather than (c/ε)2 [121]. The impact of such an improvement on the running time

would be significant; the worst case could be bounded by O
(
m8
√
2+1n

)
for a 3-approximation

algorithm.

13

2.1.4 ε-nets for Geometric Set Cover Problems

ε-nets have useful applications in computational geometry; their use has facilitated the construc-
tion of approximation algorithms including one of the constant factor approximation algorithms
for Discrete Unit Disk Cover.

Suppose we are given a range space S = (X,R), where X is a set of points and R is a family
of subsets of X. Given S and a parameter ε, where 0 ≤ ε ≤ 1, an ε-net is a set N ⊆ X such that
for each set R ∈ R where |R| > ε|X|, we have that R ∩ N 6= ∅ [23, 118]. Intuitively, ε-nets are
hitting sets which are defined over all ranges in the range space with some minimum size. We
present a definition of ε-nets using the setting of range spaces (although it is easily generalized):

Definition 2.7. ε-net [89]: Given a range space S = (X,R) and a constant ε ∈ [0, 1], a set
N ⊆ X is an ε-net if every set R ∈ Rε contains a point from N (i.e., R ∩ N 6= ∅,∀R ∈ Rε),
where Rε = {R ∈ R | |R|/|X| > ε}.

In simple terms, the ε-net N must intersect each range in R of cardinality greater than a
threshold equal to ε. If we set ε = 0, then finding an ε-net N of minimum cardinality is precisely
the hitting set problem. Haussler and Welzl [89] discuss the problem in terms of points in Rd
space and the set of ranges consisting of the set of half-spaces. If all of the points in X are
extreme (X defines a simplex in Rd), then for ε = 0, the smallest ε-net (0-net) is X itself [89].
However, things are much more interesting for ε > 0, where they claim that given any finite
point set X ∈ Rd, the set of half-spaces H+

d , and a constant ε > 0, there exists an ε-net N for
S =

(
X,H+

d

)
such that |N | ≤ O (d/ε log d/ε) [89].

Set Cover with ε-nets

Much of work in the area has focused on identifying bounds on the size of ε-nets given a par-
ticular application, since the existence of small ε-nets provides smaller approximation factors.
For the family of circular disks, it is known that for any finite point set P there exists an
ε-net of size O (1/ε) [118] (this may be generalized to pseudo-disks in R2 [135]). For gen-
eral problems with finite VC-dimension (see [88, Chapter 5] for a nice introduction to VC-
dimension), the O (d/ε log d/ε) bound of [89] was improved to O (d/ε log 1/ε) [21], and later
refined to (1 + o (1)) (d/ε log 1/ε) [104], where it stands now. Matoušek et al. [118] conjectured
that geometric range spaces may typically admit ε-nets of size O (d/ε) (later O (1/ε) by Aronov
et al. [10]), which may be contrasted with the lower bound of Ω (d/ε log 1/ε) proven for general
problems of finite VC-dimension [104]. Given an ε-net of size O (1/ε φ (1/ε)) for some function
φ, the techniques of Brönnimann and Goodrich [23] provide a hitting set (or set cover) with
approximation factor O (φ (Opt)) [10]. Therefore, establishing ε-nets of size O (1/ε log log 1/ε)
gives an approximation factor of O (log logOpt), and ε-nets of size O (1/ε) for a problem provide
a constant factor approximation algorithm.

Given a range space with constant VC-dimension, such as a set of disks, a set cover with
approximation factor O (log |Opt|) may be found in polynomial time, where |Opt| is the size
of the optimal minimum set cover [23] (not to be confused with the O (log |X|) approximation
factor of Algorithm 2.1). Since the approximation bound on general set cover is Θ (log |X|)[67],
this parameterized version of set cover allows for better approximations for set cover problems
on range spaces with bounded VC-dimension. For a nice derivation of small ε-nets for a range
space, see the example of axis parallel rectangles in R2, as derived by Aronov et al. [10].

14

Limitations of ε-nets

While ε-nets yield constant factor approximation algorithms for problems with ε-nets of size
O (1/ε), the constant in the approximation factor is dependent on the (potentially large) constants
hidden in the size of the ε-net. Therefore, it is conjectured that a direct application of ε-nets
cannot be used to create a PTAS for geometric hitting set problems [123].

2.1.5 Minimum Dominating Set on Unit Disk Graphs

In the Minimum Dominating Set on Unit Disk Graphs problem, the input consists of a graph
G = (P, E), where P consists of a set of points in the plane, and the edge (pi, pj) for pi, pj ∈ P
exists in E if and only if dist (pi, pj) ≤ 1. In other words, given a unit disk Di centred at pi, the
point pj is covered by Di, and vice-versa (i.e. pi ∈ Dj). The unit disk graph cover problem asks
for the minimum dominating set P? over G, so that ∀pi ∈ P, if pi 6∈ P?, then ∃e = (pi, pj) ∈ E
such that pj ∈ P?. Alternatively, the problem may be formulated as DUDC where P = Q:

Definition 2.8. Unit Disk Graph Cover Problem: Given a set P of n points and the set D of n
unit radius disks in the plane, where each disk Di ∈ D is centred at point pi ∈ P, the Unit Disk
Graph Cover problem is to find a set D? ⊆ D of minimum cardinality such that D? covers P.

There is an alternate (and equivalent) formulation on the unit disk graph, where there is an
edge between points pi and pj if and only if unit disks centred at pi and pj have a non-empty
area of intersection:

Definition 2.9. Minimum Dominating Set on Unit Disk Graphs: Given a set P of n points in
the plane, we define the graph G2 = (P, E2), where (pi, pj) ∈ E2 if and only if dist (pi, pj) ≤ 2.
The Minimum Dominating Set on Unit Disk Graphs (MDS) problem is to find a set P? ⊆ P of
minimum cardinality such that P? covers E2.

In their seminal work on unit disk graphs, Clark et al. [37] called the Definition 2.8 version
of the problem the containment model, and the latter definition corresponds to the intersection
model of unit disk graphs. They noted that a graph under the containment model can be converted
to the intersection model by halving the radius of the disks, while doubling the radius performs
the conversion in the other direction (a more formal discussion may be found in [63]). Therefore,
we may consider the models interchangeable. Interestingly, the proof of NP-completeness of the
Minimum Dominating Set on Unit Disk Graphs problem [117] predates the formal unit disk graph
definition by nearly a decade!

One of the applications of the problem is for ad-hoc wireless networks. Many papers also
consider the minimum weight connected dominating set, where the solution found for Definition
2.9 is the graph G′2 = (P ′, E2), where G′2 is connected. Lichtenstein [111] proved that the
geometric minimum weight connected dominating set is also NP-complete.

There is a significant set of results on the unweighted Minimum Dominating Set (MDS) and
Minimum Connected Dominating Set (MCDS) problems on unit disk graphs, as shown in Tables
2.1 and 2.2. The first result in the area, by Marathe et al. [116], was very simple: first compute
any maximal independent set on the graph, and then show that this forms a dominating set
within some factor of the optimal. To connect the graph, they simply showed that no more than
one vertex needs to be added for each vertex in the independent set. This provides a very simple

15

and fast O (n) time approximation algorithm. The algorithms of [79], [158] and [162] use similar
ideas although they are more rigorous in the sense that they operate in a distributed setting.
For our purposes, they are principally superior due to better bounding of the factors between
the solutions and the size of a maximal independent set, and so they also run in O (n) time.
The recent result of De et al. [49] provides the smallest constant factor approximation algorithm
outside of a PTAS, but the running time of their approach is relatively high.

Table 2.1: Approximation Factors of MDS Algorithms

Approximation Factor Running Time Reference

5 O (n) Marathe et al., 1995 [116]

(1 + ε) - Hunt III et al., 1998 [95]

(1 + ε) - Nieberg and Hurink, 2006 [128]

4, 3 O
(
n9
)
, O
(
n18
)

De et al., 2011 [49]

44/9 = 4.8̇ O (n log n) Da Fonseca et al., 2012 [43]

Table 2.2: Approximation Factors of MCDS Algorithms

Approximation Factor Reference

10 Marathe et al., 1995 [116]

8 Wan et al., 2002 [158]

(1 + ε) Cheng et al., 2003 [34]

7.8 Wu et al., 2006 [162]

6.91 · |Opt|+ 16.58 Funke et al., 2006 [79]

There exists a PTAS for the basic version of the problem, i.e. for the setting in Definition
2.8 [95], as well as for the variation where the solution is required to consist of a connected
graph (MCDS) [34]. Each PTAS is based on the shifting strategy described in Section 2.1.6.
Furthermore, there exists a PTAS for the problem if a planar embedding of the graph is not
provided [128].

2.1.6 Minimum Geometric (Unit) Disk Cover

In the Minimum Geometric Disk Cover (GDC) problem, the input consists of a set of points in
the plane, and the problem is to find a set of disks of radius r of minimum cardinality whose
union covers the points. Naturally, the problem may be scaled so that r = 1, to be similar to the
DUDC definition.

Definition 2.10. The Minimum Geometric (Unit) Disk Cover (GDC) Problem: Given a set P
of n points in the plane, the Minimum Geometric Disk Cover problem is to find a set of unit disks
D? of minimum cardinality such that D? covers P.

Unlike the Discrete Unit Disk Cover problem (Definition 2.1), the disk centres are not con-
strained to be selected from an input set, but rather may be centred at arbitrary points of the

16

plane. This problem is NP-hard [72, 152] and has a PTAS solution [83, 93]. There are many
possible generalizations of the GDC problem; see Clarkson and Varadarajan [38] for a discussion
of geometric set cover problems. The PTAS for the GDC problem is particularly noteworthy,
because it introduced the shifting strategy for geometric approximation algorithms. It is worth
studying the technique to determine whether a similar scheme would apply to the problems
addressed in this thesis (no such approach is known).

Geometric PTAS Using the Shifting Strategy

The PTAS for the minimum GDC problem is based on the idea that the problem may be solved
exactly in polynomial time when the problem is confined to a square of constant size. Our
discussion follows the presentation of [93]5. We consider the context of covering with disks, but
the PTAS applies to a more general class of geometric objects, including squares, rectangles, and
α-fat objects.

To begin with, a bounding box I is found so that P ⊂ I. I is divided into vertical strips
of width 2 so that, if strips are chosen well, every disk will intersect exactly one boundary line
between any two strips. Next, the strips are grouped so that each set of l consecutive strips form
a broader strip of width 2l, where l ∈ N is called the shifting parameter . There are l possible
ways to form these broader strips, and these shift partitions are labelled with S1, S2, . . . , Sl.

Suppose that an algorithm A can compute the cover D′ in one of these broad strips in poly-
nomial time with an approximation factor rA, i.e. D′ ≤ rA · |Dopt|, where Dopt is the optimal
solution. Let Di be the set of disks obtained by taking the union of applying A to each strip in
the shift partition Si, and let DA = mini∈{1,...,l} |Di|. The approximation factor of this minimal
solution, call it rDA

, is given by the Shifting Lemma [93, Lemma 2.1]:

rDA
≤ rA (1 + 1/l) .

The algorithm A is simply a recursive application of this technique: divide each strip of width
2l into squares sized 2l × 2l, and with the same shifting technique we can find an approximate
cover for a strip using algorithm B to cover the squares, so that A has an approximation factor
rA ≤ rB (1 + 1/l), where rB is the approximation factor of B. The optimal cover for a square

may be solved (so rB = 1) with brute force in O

(
n
2(l
√
2)

2

s

)
time, where ns is the number of

points in the square. Therefore, rA ≤ (1 + 1/l), and rDA
≤ (1 + 1/l)2. The total running time

of the approximation algorithm in the plane is O
(

4l2 (2n)4l
2+1
)

. Note that this scheme may be

applied recursively in higher dimensions as well.

The primary criterion for applying this approximation scheme is that the boundary of the
subproblems are independent for each of the shift partitions. Specifically, there may exist disks
in a given shift partition that intersect the boundary between two adjacent broad strips. These
disks are called the boundary disks for this shift partition. The set of boundary disks in one shift
partition is independent from those in all other shift partitions because the narrow strips have a
width of at least two units6. For this reason, the approximation factor is at most (1 + 1/1)2 = 4,
and the shifting parameter l cannot be greater than n, so the approximation factor must be at

5See Baker [15] for similar results on graphs.
6Strips of width less than 2 may not have this property, and so we would not be able to apply the Shifting

Lemma. This is the case for our work in Chapter 4.

17

least (1 + 1/n)2. Gonzalez [83] improved the running time of the PTAS by presenting a faster
deterministic algorithm for computing the optimal cover of the points in a strip of general width,
i.e. algorithm A discussed previously. This also produces an approximation bound of (1 + 1/l)d−1

for the d dimensional version of the problem, rather than the (1 + 1/l)d bound of [93].

2.1.7 Discrete k-Center

Another problem with a similar feel to DUDC is the Discrete Euclidean k-Centre problem: given
a set Q of m points in the plane, a set P of n points in the plane, and an integer k, find a set of
k disks centred on points in Q whose union covers P such that the radius of the largest disk is
minimized. Observe that the set P has a Discrete Unit Disk Cover solution consisting of k disks
centred on points in Q if and only if P has a Discrete k-Centre centred on points in Q with radius
at most one. This problem is NP-hard if k is an input variable [2]. When k is fixed, Hwang et

al. [96] give an mO(
√
k)-time algorithm, and Agarwal and Procopiuc [1] give an mO(k1−1/d)-time

algorithm for points in Rd.

2.1.8 Other Discrete Geometric Covering Problems

A natural extension of the DUDC problem is to consider other shapes such as squares or α-
fat objects. The PTAS of Mustafa and Ray [121] applies to these settings (see Section 2.1.3).
Somewhat surprisingly, since this approach does not seem to work for DUDC, a PTAS for the
weighted version of the Discrete Unit Square Cover problem [64] was found based on the shifting
strategy discussed in Section 2.1.6.

2.2 Specialized Settings

The approximation algorithms that have been used for the DUDC problem often employ restricted
versions of the general problem as subcases, and the restricted versions are quite interesting in
their own regard. We introduce several of these settings here, and examine two in detail in
subsequent chapters.

2.2.1 Line-Separable Discrete Unit Disk Cover

Perhaps the most basic restricted DUDC setting is the Line-Separable Discrete Unit Disk Cover
(LSDUDC) problem, where P and Q may be separated by a line `.

Definition 2.11. The Line-Separable Discrete Unit Disk Cover (LSDUDC) Problem: Given a
set P of n points, a set D of unit radius disks in the plane, where each disk Di ∈ D is centred
at a point qi ∈ Q, |Q| = |D| = m, and a line ` defining half-planes `+ and `− such that P ⊂ `−

and Q ⊂ `+, the Line-Separable Discrete Unit Disk Cover problem is to find a set D? ⊆ D of
minimum cardinality such that D? covers P.

We may arbitrarily set ` to be horizontal, and furthermore, we may have the set Q lie in the
region above the line ` (call this the half-plane `+). The LSDUDC problem is an important sub-
problem that is applied multiple times in several of the general DUDC approximation algorithms.

18

A similar problem to LSDUDC is studied in [42, 45], but their setting has the centres of the disks
within a specified unit disk and the points to be covered are outside that disk.

The first appearance of some form of LSDUDC was presented by Călinescu et al. [42, Al-
gorithm 2]. In their setting, the points to be covered (P) all lie in one quadrant of the plane,
and are outside of a unit disk A which is centred upon the origin, and the points Q (the centre
points of D) are all contained in A. They determine the upper envelope7 of D in the quadrant,
and then greedily use the disks to cover the points in Q to obtain a 2-approximate solution which
runs in O ((n+m) log (n+m)) time. Carmi et al. [29] use the same approach to obtain a 2-
approximation for the version of LSDUDC described in Definition 2.11. The first exact algorithm
known to solve LSDUDC was designed for the Strip-Separated Discrete Unit Disk Cover problem
(discussed in Section 2.2.3), a more general problem than LSDUDC.

In [39], an LSDUDC algorithm was shown which improves upon the algorithm presented in
Chapter 3. We provide the algorithm and a sketch of its operation here, because it is currently
the best known LSDUDC algorithm. The problem is addressed in the dual setting: rather than
seeking a subset of disks D? ⊆ D which covers all of the points in P, we are seeking a minimum
cardinality subset of points Q? ⊆ Q such that each disk in DP (the set of unit disks centred at
the points in P) is pierced by at least one point in Q?, as shown in Figure 2.3.

D2

D1

D3

D4

`
`+

`−

q1 q2 q3
q4

p1

p2

p3

p4

Figure 2.3: An example of the dual disk piercing setting of LSDUDC. In the dual (shown), we
place disks centred on the rectangular points, and seek the minimum number of round points so
that each disk is pierced by at least one point. In the primal disk covering setting, we would
seek the minimum number of disks centred at the round points to cover all of the rectangular
points. The solutions to both problems are the same: {q2, q4} is an optimal solution for the
piercing problem, and disks centred at these points form an optimal LSDUDC solution in the
primal setting.

Theorem 2.2. [39] The LSDUDC problem may be solved exactly in O (mn+ n log n) time.

Algorithm 2.2 covers all the points in P using a minimum number of unit radius disks centred
at points in Q. Note that covering all the points in P by the minimum number of unit disks
centred at points in Q implies each disk DPi (centred at pi ∈ P) contains at least one point in Q.
Let DPi be the disk of unit radius centred at the point pi ∈ P, and let li and ri be the leftmost

7The upper envelope is also known as the skyline. See Figure 6.6 for an explanation.

19

and rightmost intersection points of DPi with the horizontal line `, respectively. Without loss of
generality, rename the points in P and disks in DP based on the left intersection points from left
to right order, i.e. ∀pi, pj ∈ P, li is left of lj if and only if i < j. Let `+ be the region above the
line ` and `− be the region below the line `. Let Ci ⊆ Q be the set of points covered by the disk
DPi centred at the point pi ∈ P.

Algorithm 2.2 LSDUDC
(
Q,DP , `

)

1: Input: A set Q of points in `+, and a set DP of unit disks centred in `−

2: Output: A set Q? of points piercing all disks in DP
3: Q? ← ∅
4: Sort DP left to right by the points li
5: C ← DP1 ∩Q
6: for i := 2 to n do
7: Ci ← DPi ∩Q
8: C ′ ← Ci ∩ C
9: if C ′ = ∅ then

10: s← right-most point in C
11: Q? ← Q? ∪ {s}
12: C ← Ci
13: else
14: C ← C ′

15: end if
16: end for
17: return Q?

For the proof of correctness, please refer to [39]. In Chapter 3, we study the LSDUDC problem
in greater detail, and we present a different exact algorithm for the problem.

2.2.2 Assisted Line-Separable Discrete Unit Disk Cover

If we generalize the LSDUDC problem by allowing disk centres to be on both sides of the line, we
have an instance of the Assisted Line-Separable Discrete Unit Disk Cover (A-LSDUDC) problem.

Definition 2.12. The Assisted Line-Separable Discrete Unit Disk Cover (A-LSDUDC) Problem:
Given a set P of n points, a set D of unit radius disks in the plane, where each disk Di ∈ D is
centred at a point qi ∈ Q, |Q| = |D| = m, and a line ` defining half-planes `+ and `− such that
P ⊂ `−, and every point p ∈ P is covered by some Di where qi ∈ `+ (although points in Q may
be found in `− as well), the Assisted Line-Separable Discrete Unit Disk Cover problem is to find
a set D? ⊆ D of minimum cardinality such that D? covers P.

In other words, we are given a set of disks D = DL ∪ DU . The disks in DU have centres
in the half-plane `+ above a line `, and disks in the set DL (= D \ DU) have centres below ` in
the half-plane `−. We are also given a set of points P in `− which is entirely covered by DU ,
so that P = P ∩ (∪DU). The goal of the A-LSDUDC problem is to obtain a set D? ⊆ D of
minimum cardinality such that every point in P is covered by a disk in D?. Existing approaches
to A-LSDUDC first solve the LSDUDC problem on the instance using DU , and then use the disks
of DL to improve the cover.

20

Carmi et al. [29] use the fact that their 2-approximation to the LSDUDC problem consists of
disks forming the lower boundary of DU , which is defined as the semi-chain.

Definition 2.13. Semi-chain [29]: The semi-chain S is the ordered (from left to right) set of all
lower circular arcs below the line ` of the disks in DU . The set of indices associated with S forms
a consecutive set of indices i, i + 1, . . . , j for i ≤ j. An interval from i to j is an interval cell
and it is denoted by icell(i, j). Let B denote the region `− ∩ (∪mi=1Di), where (Di ∈ DU), which
corresponds to the region below ` contained by all of the circular arcs in S.

Definition 2.14. Assisted Cover [29]: Consider a unit disk D̂L ∈ DL which intersects B. Given
an interval cell icell(i, j), if the set {Di, Dj , D̂L} covers all the points covered by the disks in
the interval cell, then this new set is called an assisting set for the interval [i, j]. In the special
case where j = i + 1, {Di, Dj} forms the assisting set of the interval [i, j]. The assisting set
{Di, Dj , D̂L} is said to contain a left assisting pair, which is simply the set {Di, D̂L}. In special
cases where an assisting set is composed of only one or two disks, the leftmost individual disk is
considered a left assisting pair for these purposes. Finally, an assisted cover is simply the family
of these left assisting pairs which together form a cover of the points in P.

We provide details for the 2-approximate Minimum Assisted Cover (MAC) procedure of Carmi
et al. [29] in Algorithm 2.3. The technique is based on the idea of covering intervals, where the
disks cover intervals of the points when the points are sorted properly. The algorithm takes as
input the set of points P and a separating line `, along with DL and D′U , where D′U is an LSDUDC
solution on P. The disks in D′U are sorted by their left-most intersection point with `, and then
the points are sorted so that any point in the set covered by DU

i is before those covered by DU
i+1,

where DU
i , D

U
i+1 ∈ D′U . Note that this sorted order is not necessarily unique. The algorithm

walks along the ordered set of points as long as some disk can cover all points seen since the last
disk was added to the solution. Once a last such point is found, any disk covering all points in
this interval is added to the solution set. This procedure is repeated until all points are covered.

The algorithm runs in O (mn+m logm) time. Sorting the disks takes O (m logm) time, and
the first nested loops (to sort the points) take O (mn) time. In the second set of nested loops, we
iterate through the set of points and check for the set of disks covering the points, which again
takes O (mn) time.

The correctness of the algorithm follows from the order imposed upon the points. If there are
no assisting disks, this algorithm returns the set of disks D′U . If there exists an assisting disk, it
is found by greedily covering the set of points in the interval cell.

2.2.3 Strip-Separable Discrete Unit Disk Cover

The Strip-Separable Discrete Unit Disk Cover (SSDUDC) problem restricts P to a strip defined
by parallel lines `1 and `2, and Q must be located entirely outside of the strip.

Definition 2.15. Strip-Separable Discrete Unit Disk Cover (SSDUDC) Problem: Suppose we
are given a set P of n points, a set D of unit radius disks in the plane, where each disk D ∈ D
is centred at a point in a set Q of m points, and parallel lines `1 and `2 such that `1 ⊂ `+2 and
`2 ⊂ `−1 . Furthermore, `1 and `2 define a strip s = `−1 ∩ `+2 such that P ⊂ s and Q ∩ s = ∅. The
Strip-Separable Discrete Unit Disk Cover problem is to find a set D? ⊆ D of minimum cardinality
such that D? covers P.

21

Algorithm 2.3 MAC(P,D′U ,DL, `)
1: Input: A set of points P below `, a set of disks D′U centred above ` where P ∩ (∪D′U) = P,

and a set of disks DL centred below `.
2: Output: A set of disks D? ⊂ D′U ∪ DL covering P.
3: Sort D′U by left-most intersection with `
4: P ′ ← P, k ← 0
5: // The first loops build Psort: points are sorted in P so that points covered by DU

i are before
those covered by DU

i+1, where DU
i , D

U
i+1 ∈ D′U

6: for i := 1 to |D′U | do
7: for j := 1 to |P ′| do
8: p← pj ∈ P ′
9: if p ∈ DU

i and p 6∈ DU
i+1 then

10: psortk ← p, k ← k + 1
11: P ′ ← P ′ \ {p}
12: end if
13: end for
14: end for
15: D? ← ∅, i← 0, P ← Psort

16: while i < |P| do
17: D′ ← D′U ∪ DL // For each point, get all disks to consider again
18: while |D′| > 0 and i < |P| do
19: while pi ∈ D? and i < |P| do
20: i← i+ 1 // If the current point is already covered, skip it
21: end while
22: for j := 1 to |D′| do
23: if pi 6∈ D′j then
24: D′ ← D′ \ {D′j} // Remove all disks not covering the current point
25: end if
26: end for
27: Ds ← D′1 ∈ D′ // Take an arbitrary disk (every disk in D′ covers all points seen since

last disk was added to D?)
28: i← i+ 1
29: end while
30: D? ← D? ∪ {Ds}
31: end while
32: return D?

22

The SSDUDC problem was introduced by Ambühl et al. [8, Lemma 1], and they propose a
dynamic programming algorithm for a weighted version of the problem. We present a description
of their technique with a time bound of O

(
m4n+ n log n

)
in Algorithm 2.4. Note that this is a

generalized version of the LSDUDC problem, and so an SSDUDC algorithm may also be applied
to that setting. However, the best known running time for SSDUDC exceeds that of LSDUDC by
a significant margin. In Algorithm 2.4, we make use of the function neq (j, j′), which evaluates
to 1 if j 6= j′, and 0 otherwise. Assume that the lines `1 and `2 are horizontal. As described in
Definition 2.15, all points in P are contained in the strip defined by the lines, and all disks in D
are centred outside of the strip. We denote the weight of disk Di by wDi , and the weights of the
lines are w`1 = w`2 = 0

Algorithm 2.4 SSDUDC(P,D, `1, `2)
1: Input: A set of points P lying between `1 and `2, a set of disks D whose centres are separable

from P by `1 or `2.
2: Output: D? ⊆ D, a minimum cardinality set of disks covering P.
3: Sort P left-to-right
4: Divide D into DU and DL (disks centred above `1 and below `2 respectively)
5: DU ← DU ∪ {`1}, DL ← DL ∪ {`2}
6: for i := 1 to n do
7: for j := 1 to |DU | do
8: for k := 1 to |DL| do
9: T [i, j, k]←∞ // Base case (i.e. if pi 6∈ DU

j ∪DL
k)

10: if pi ∈ DU
j ∪DL

k then
11: if i = 1 then
12: T [1, j, k]← wDU

j
+ wDL

k
// Initialize the DP table

13: else
14: for j′ := 1 to |DU | do
15: for k′ := 1 to |DL| do
16: T [i, j, k]← min{T [i, j, k], T [i− 1, j′, k′] + neq (j, j′) ·wDU

j
+ neq (k, k′) ·wDL

k
}

17: end for
18: end for
19: end if
20: end if
21: end for
22: end for
23: end for
24: // Backtrack from minimum weight cover on pn to find D?
25: return D?

Theorem 2.3. SSDUDC may be solved exactly in O
(
m4n+ n log n

)
time on weighted disks.

This algorithm consists of five nested for loops and the initial sorting operation; the latter
contributes O (n log n) to the final running time. The outer loop may iterate O (n) times, while
the inner four loops may iterate O (m) times each. All other work performed in the loops may
be done in constant time, so the total running time of this implementation is O

(
m4n+ n log n

)
.

The dual version of the SSDUDC problem has also been studied. In the Double-Sided Disk
Cover (DSDC) problem, disks centred in a strip are used to cover points outside of the strip; this

23

also has an exact dynamic programming solution [163].

There are enough variants of the DUDC problem used in this thesis that a reference table
(Table 2.3) describing the settings is warranted.

Table 2.3: A summary of the settings for DUDC used in this thesis.

Discrete Unit Disk Cover
(DUDC), Definition 2.1,

page 7.

Line Separable Discrete Unit
Disk Cover (LSDUDC),
Definition 2.11, page 18.

Assisted Line Separable
Discrete Unit Disk Cover
(A-LSDUDC), Definition

2.12, page 20.

Strip-Separable Discrete
Unit Disk Cover (SSDUDC),

Definition 2.15, page 21.

Within Strip Discrete Unit
Disk Cover (WSDUDC),
Definition 4.1, page 37.

box Problem, Section 2.3.1.

2.3 38-Approximate DUDC Algorithm

Carmi et al. [29] developed a 38-approximate DUDC algorithm (Algorithm 2.5) which was the
inspiration for our work. The algorithm begins by imposing a 3/2 × 3/2 grid upon the plane
(Figure 2.4). Upon every gridline, the A-LSDUDC approximation algorithm is run on each side,
and then each square of the grid is covered using a 6-approximate algorithm for covering points
in a 3/2 × 3/2 square with points centred in the same square. This latter algorithm, which we
call box, is rather involved as it requires a check for nine different cases which enumerate various
configurations of points and disk centres in the square (we provide more details in Section 2.3.1).
The A-LSDUDC algorithm used was a 4-approximation. This distinguishes their algorithm from
the 22-approximate algorithm discussed in Section 5.1, which uses the 2-approximate algorithm
for A-LSDUDC discussed in Section 3.3. For the approximation factor of their algorithm, they
observed that any disk may be used by a single invocation of the box algorithm, and twice by

24

A-LSDUDC for each of the four lines bounding the 3/2× 3/2 square containing the disk (once in
the primary sense and once in the assisting sense for each line). Since the first application is for
a 6-approximation and each of the latter is for a 4-approximation, the total approximation factor
of their algorithm is at most 6 + 8× 4 = 38.

3/2

3/2

Figure 2.4: The 38-approximate algorithm of Carmi et al. [29] divides the plane into a grid
with distance 3/2 between grid lines. Each disk may be used by the 6-approximate box algo-
rithm (Section 2.3.1) to cover the square containing the disk centre, and it may be used in eight
applications of the A-LSDUDC algorithm (indicated by the arrows).

2.3.1 The BOX Algorithm

The box subroutine of the Carmi et al. [29] technique finds a 6-approximation for the DUDC of
all disk centres and points contained in each of the 3/2×3/2 squares of the grid. Their technique
is based on the application of a subset of nine properties depending on where the disk centres are
located (the analysis has not been published in entirety, as [29] included only two of the cases).
First, they determine whether a solution exists using one or two centres by brute force, which is
easily done in O

(
m2n

)
time. Failing this, they divide the square into 9 squares of size 1/2× 1/2,

and the setting is classified according to the nine cases based on the positions of the points to
be covered and disks centres within these squares. The determination of which properties may
be applied can be done in O (m) time, and there are only two expensive steps that may be used
in any of the procedures, each of which may only be used a constant number of times. First is
the assisted LSDUDC technique, whose running time is O (mn+m logm+ n log n). The second
technique that may be required is to determine the optimal disk cover of a set of points using
centres contained in one of the 1/2 × 1/2 squares, which can be solved in O

(
m2n4

)
time using

the technique presented in [108]. The centre of each disk can only be contained in one square,
and so this operation is never performed twice for any given disk. Therefore, the complete DUDC
algorithm achieves worst-case performance when all of the disk centres in the plane are confined
to a single 1/2 × 1/2 square, so that the O

(
m2n4

)
operation is performed over the entire data

set.

25

Algorithm 2.5 DUDC-38(P,D)

1: Input: A set of points P and a set of unit disks D.
2: Output: D? ⊆ D, a set of disks covering P with a 38-factor approximation.
3: Apply 3/2× 3/2 axis-aligned grid to the problem area
4: D? ← ∅
5: for Each vertical line `i in the grid do
6: {PL,PR} ⊆ P (Divide points into sets left and right of line `i)
7: {DL,DR} ⊆ D (Divide disks into sets centred left and right of line `i)
8: D? ← D?∪A-LSDUDC(PL,DR, `i) (Algorithm 3.3, page 34)
9: D? ← D?∪A-LSDUDC(PR,DL, `i)

10: end for
11: for Each horizontal line `i in the grid do
12: {PL,PU} ⊆ P (Divide points into sets below and above line `i)
13: {DL,DU} ⊆ D (Divide disks into sets centred below and above line `i)
14: D? ← D?∪A-LSDUDC(PL,DU , `i)
15: D? ← D?∪A-LSDUDC(PU ,DL, `i)
16: end for
17: for Each 3/2× 3/2 box Bi in the grid do
18: PI ⊆ P (Find points located inside box Bi)
19: DI ⊆ D (Find disks centred inside box Bi)
20: D? ← D?∪box(PI ,DI)
21: end for
22: return D?

26

3
(Assisted) Line-Separable Discrete Unit Disk Cover

In this chapter, we describe a polynomial-time algorithm for the Line-Separable Discrete Unit
Disk Cover (LSDUDC) problem1. We extend this algorithm by demonstrating that the mini-
mum assisted cover (MAC) algorithm (Algorithm 2.3) for LSDUDC may be applied to provide
a 2-approximate solution to the Assisted Line-Separated Discrete Unit Disk Cover (A-LSDUDC)
problem. To begin, we present a greedy LSDUDC algorithm for which the correctness is straight-
forward to verify. We refine the approach with a graph-based algorithm with an O

(
m2n

)
worst-

case running time, and we use the greedy algorithm to establish the correctness of this approach.
Recall that subsequent work [39] has shown an O (mn+ n log n) time algorithm for LSDUDC,
and so we use that algorithm for our A-LSDUDC results.

3.1 Greedy Algorithm for LSDUDC

In the LSDUDC problem (see Definition 2.11 on page 18), we have two sets of points in the
plane P = {p1, . . . , pn} and Q = {q1, . . . , qm} separated by a line `. Let Di denote the unit disk
centred at qi, for i ∈ {1, . . . ,m}, and let D denote the set of these disks. We use qi and Di

interchangeably, e.g., our solution can be considered both as a set of points (a subset of Q) and
as a set of disks. Further, when we discuss the intersection of a line with a disk, we are referring
to the intersection of the line with ∂Di, the boundary of the disk.

We want to find a subset Q? ⊆ Q of minimum cardinality such that all points of P are covered
by the set of unit disks D? centred at the points of Q?. An instance of the problem is shown in
Figure 3.1. Without loss of generality we assume that ` is a horizontal line and points of Q are
above `.

Theorem 3.1. Given sets P of n points and Q of m points in the plane, where P and Q can
be separated by a line `, and each q ∈ Q is the centre point of a unit disk D ∈ D, the LSDUDC
problem can be solved exactly in O

(
m2n

)
time.

We present an iterative algorithm for the LSDUDC problem in Algorithm 3.1. During the
execution of the algorithm, it may be determined that a disk D ∈ D should be added to the
solution or that it is not relevant for the remainder of the computation of the solution set. When

1Elements of this chapter have appeared in [39] and [40].

27

D1

D2

D3
D4 D5

q1
q2 q3 q4

q5

p1

p2

p3

p4
p5

p6

p7 p8
p9

`

Figure 3.1: An instance of the Line-Separable Discrete Unit Disk Cover (LSDUDC) problem.
The set D? = {D2, D3, D5} (the bold disks) forms an optimal solution.

this occurs, we remove disk D from the problem. Similarly, we remove a point p ∈ P if this point
is not relevant for the remainder of the computation (i.e., point p is covered by a disk in the
partial solution already constructed). Our algorithm relies on the following three observations:

1. If a disk Di covers no points from P, we remove it.

2. If a disk Di is dominated by a disk Dj , then we can remove Di from the problem instance.
Disk Dj dominates Di if it covers all points of P covered by Di, i.e. (Di ∩ P) ⊆ (Dj ∩ P).
If two disks cover the same subset of points from P, we designate the dominating disk as
that whose left intersection with ` is rightmost.

3. If a point p1 ∈ P is only covered by a disk Di, then Di must be part of the solution. We
remove Di together with all points of P covered by Di from the problem sets.

These three observations give us three Simplification rules, formalized in Procedure 3.2.
The idea is to apply these rules to as many disks as possible in order to simplify the problem.
For example, consider the problem instance shown in Figure 3.1. Initially all disks cover points
and no disk dominates any other, so neither the first or second rules are applicable. Disk D3 is
the only disk that covers p4 and, similarly, disk D5 is the only disk that covers p9. Thus we add
D3 and D5 to the (initially empty) solution and remove them from the problem set, together
with the points that are covered by the disks, namely {p2, p3, p4, p5, p6, p7, p8, p9}. Now disk D4

covers no point and can be removed. There is only one remaining point (p1) and it is covered
by the two remaining disks (D1 and D2). According to our convention, D1 is dominated by D2

and is removed. Now D2 is the only disk covering p1. We add D2 to the solution and remove D2

and p1. No disks or points remain and we are done. Thus the Simplification rules suffice for
this instance and give an optimal solution {D2, D3, D5}. This example also illustrates that an
optimal solution is not necessarily unique, as {D1, D3, D5} is also an optimal solution. In general,
however, these Simplification rules do not suffice to obtain an optimal solution. As shown in
Figure 3.2, if given only disks D1, D2 and D3 and points p1, p2 and p3, then no point p ∈ P is
covered by only one disk and no disk dominates any other.

We augment the Simplification rules with a greedy step to solve the LSDUDC problem.
We order the disks so that li, the left intersection of Di with `, is to the left of li+1. We say that
Di precedes Di+1 in the ordering (the disks in Figures 3.1 and 3.2 follow this convention). We
present the algorithm, Greedy, in Algorithm 3.1. It works by first applying the Simplification
rules as many times as possible, and then it finds the first remaining disk in the left-to-right order,

28

`

D3

D2

D1

q3

q2
q1

p2

p1 p3

Figure 3.2: An example to demonstrate that the set of Simplification rules do not suffice to
obtain an optimal solution. No point p ∈ P is covered by only one disk and no disk dominates
any other.

say Dj . We add Dj to our solution and remove Dj from D and all points covered by Dj from P.
We exhaustively apply the Simplification rules followed by the greedy step, repeating these in
turn until all disks have been removed. Since we remove at least one disk at each greedy step,
the algorithm terminates after at most m iterations. See Algorithm 3.1 for the corresponding
pseudocode.

Algorithm 3.1 Greedy (P,D, `)
1: Input: A set of points P and a set of disks D, where P and the centres of D are separable

by `.
2: Output: D? ⊆ D, a minimum cardinality set of disks covering P.
3: D ←sortLeftToRight(D) // Sort in increasing order of left intersection with `
4: D? ← ∅
5: while D 6= ∅ do
6: Simplification (P,D,D?) // may modify P, D, and D? (Procedure 3.2)
7: D` ← leftmost disk in D
8: D? ← D? ∪ {D`}
9: D ← D \D`

10: P ′ ← {p ∈ P | p is contained in D`}
11: P ← P \ P ′
12: end while
13: return D?

3.1.1 Correctness of Greedy

We now establish the correctness of Algorithm 3.1 by proving that Greedy gives a minimum
LSDUDC solution. Assume for the sake of contradiction that there is an algorithm Opt that
finds a cover with fewer disks than Greedy. Let D1 be the first disk in the ordering that is
selected by Greedy but not by Opt. Let C1 be the set of points in P that are covered by D1

(we consider only the remaining points and disks, i.e., those that have not been removed by the
algorithm). First assume that C1 is covered by a single disk D0 in the solution of Opt. Since

29

Procedure 3.2 Simplification (P,D,D?)
1: m←true // Iterate as long as modifications are possible
2: while m do
3: m←false

4: for i := 1 to |D| do
5: if Di ∩ P = ∅ then
6: D ← D \ {Di}
7: m←true

8: end if
9: for j := 1 to |D| do

10: if i 6= j and Di ∩ P ⊆ Dj ∩ P then
11: D ← D \ {Di}
12: m←true

13: end if
14: end for
15: end for
16: for i := 1 to |P| do
17: Dpi = {D ∈ D|pi ∈ D}
18: if |Dpi | = 1 then
19: D′ ← D ∈ Dpi
20: D? ← D? ∪ {D′}
21: D ← D \ {D′}
22: P ← P \ (P ∩D′)
23: m←true

24: end if
25: end for
26: end while

30

D1 is not removed in the Simplification step, it is not dominated by any other disk. Thus the
only possibility is that D0 and D1 cover exactly the same set of (remaining) points (i.e., set C1)
and D0 precedes D1 in the ordering. In this case, we replace D0 with D1 in Opt, pushing the
first difference between the solution of Greedy and Opt to the right. Otherwise, C1 is covered
by at least two disks in the solution of Opt. Let D2 and D3 be two disks in the solution of Opt
such that each of them cover a strict subset of C1. Without loss of generality assume that D2

precedes D3 in the ordering. We prove that D1 ∪D3 covers all points of P covered by D2 ∪D3.

`

D3

D2

D1

q3

q2
q1

l1 r1l2 r2l3 r3

x

p2

p1 p3 R `−

Figure 3.3: Illustration of the proof of correctness of Greedy. If D1 is the first disk selected by
Greedy and not by Opt, then Opt must have D2 and D3 in its solution.

Let li and ri denote the respective left and right intersection points of the boundary of the
unit disk Di with the line `, for i ∈ {1, 2, 3}. If D2 precedes D1 in the ordering, D1 dominates
D2 (otherwise, Greedy would select D2 and not D1 at this step). In this case we replace D2

with D1 in Opt, pushing the difference between the two algorithms to the right. Hence we are
left with the case in which D1 precedes D2 and D2 precedes D3 in the ordering. Thus, the points
are ordered l1, l2, l3, r1, r2, r3 along line ` (see Figure 3.3). Note that we cannot have a pair of
disks nested above `, i.e. li and ri cannot appear between lj and rj for any i and j, otherwise the
nested disk is dominated by the other. Furthermore, we know that (D1 ∩D3) \D2 6= ∅, and we
define R = (D2 \D1) ∩ `−. It suffices to prove that R is completely contained in D3.

Proposition 3.1. Region R is contained in disk D3.

Proof. Since points r1 and r2 both lie between l3 and r3 on line `, both points r1 and r2 are in disk
D3. Let x denote the rightmost point of the intersection of ∂D1 and ∂D2 (the boundaries of disks
D1 and D2). Observe that x lies on the boundary of region (D1 ∩D3)\D2. Consequently, x ∈ D3.
Since the boundary of R consists of arcs of unit disks joining the points x, r1, and r2, it follows
that R is contained in the 1-hull of {x, r1, r2}, where the 1-hull of {x, r1, r2} is the intersection of
all unit disks that contain {x, r1, r2}, denoted 1-H ({x, r1, r2}). Since {x, r1, r2} ⊆ D3, it follows
that R ⊆ 1-H ({x, r1, r2}) ⊆ D3.

Therefore, by replacing D2 with D1 in the Opt solution, we will have a feasible solution with
the same number of disks. This pushes the first difference between the solution of Greedy and
Opt to the right. By iterating this argument we prove that the solution returned by Greedy uses
the same number of disks as Opt and therefore Greedy is an optimal algorithm. We describe
an implementation of the algorithm on graphs in the following section.

31

3.2 Greedy-Graph

We construct a graph G = (V,E), where each vertex vi ∈ V corresponds to disk Di for i ∈
{1, . . . ,m} (recall that Di is the ith disk sorted according to its left intersection with `). We
also associate a counter cvi to each vertex vi that stores the number of points in P contained in
disk Di that have not yet been covered by the algorithm. Similarly, we associate with each edge
e = (vi1 , vi2) a counter ce that represents the number of points contained in Di1 ∩Di2 . This graph
can be constructed in O

(
m2n

)
time by checking which points are contained in the intersection of

each pair of disks, adding the corresponding edges, and updating the vertex and edge counters.
The algorithm Greedy-Graph starts by traversing the vertices in order v1, v2, . . . , vm. At each
vertex vi, there are three possible cases:

• Rule 1 : The counter cvi is 0; in this case Di does not contain any points or is dominated
by a set of disks that has already been added to the solution. This disk will not be in the
solution set, so we can dismiss this vertex and continue with the next. This is analogous to
the first Simplification rule.

• Rule 2 : There is an edge e = (vi, vk) , k > i, such that ce = cvi ; in this case we know that
Di is dominated by disk Dk. Again, we dismiss this vertex and continue. This corresponds
to an application of the second Simplification rule.

• Rule 3 : Every edge e = (vi, vk) , k > i, satisfies ce < cvi , meaning that disk Di is not
dominated by any disk to its right. In this case we add Di to the solution set and we
eliminate all remaining points contained by this disk from the graph. We continue with the
next vertex in the graph. This is an application of the third rule of Simplification and
the greedy step.

In order to identify the appropriate case above we traverse the adjacency list of each vertex we
visit. This requires O (m) time in the worst case. When a disk is added to the solution in the
third case, all points covered by the disk must be eliminated. Consider the elimination of a point
p in disk Di. Let N (vi) = {vk | c(vi,vk) > 0}. For all vk ∈ N (vi), we decrease cvk and c(vi,vk)
by one. In addition, for each pair of elements {vk1 , vk2} ⊆ N (vi), we check whether the point is
covered by both disks. If so, we decrease c(vk1 ,vk2) by one. This can take at most O

(
m2
)

time per

point, thus the time required for eliminating all points is bounded by O
(
m2n

)
time. Since the

time required to construct the graph is O
(
m2n

)
, the Greedy-Graph algorithm takes O

(
m2n

)

time.

3.2.1 Correctness of Greedy-Graph

We now demonstrate that the Greedy-Graph algorithm is optimal by showing that the set
of disks returned by this algorithm has the same cardinality as that returned by the Greedy
algorithm presented in Algorithm 3.1.

Lemma 3.1. If D′ is the disk cover returned by Greedy-Graph, and D? is the disk cover
returned by Greedy, then |D′| = |D?|.

Proof. Assume for the sake of contradiction that |D′| 6= |D?|. Recall that Greedy is optimal,
therefore |D?| and |D′| can only differ if |D′| > |D?|. Let D1 be the first disk in the left-to-right

32

order that is present in the solution of Greedy-Graph, and not in the solution of Greedy.
At some point during its execution, Greedy must have decided to discard disk Di. The only
mechanisms in Greedy for discarding disks are the first and second Simplification rules. Recall
that the first rule removes a disk if it contains no points, and the second rule discards a disk if
it is dominated by some other disk. We now show that for any of the following possible events,
Greedy-Graph will discard the same disk D1.

• Empty - Suppose D1 contains no points. In this case, Greedy-Graph will find that
cv1 = 0. Therefore, D1 will be discarded by Rule 1, in contradiction to our assumption.

• Dominance (right) - Now suppose D1 is dominated by some disk to the right, Dr. In
this case, we will encounter D1 first during our walk, and we will have that cv1 = c(v1,vr).
Therefore, Greedy-Graph will remove D1 by Rule 2, in contradiction to our assumption.

• Dominance (left) - Suppose D1 is dominated by some disk to the left, Dl. In this case,
we will have encountered Dl first during our walk. There are two possible cases in this
scenario:

(i) If cv` > c(v`,vk) for all Dk, Dl is added to D′ by Rule 3 of Greedy-Graph. All points
covered by Dl are removed, leaving no points covered by D1. This is now an instance
of the Empty case.

(ii) Otherwise, cv` = c(v`,vk) for some Dk. This means that Dl is dominated by Dk.
Greedy-Graph would discard Dl by Rule 3. By transitivity, Dk also dominates D1.
If Dk is to the right of D1, then this is now an instance of Dominance (right), and
thus we reach a contradiction. If Dk is to the left of D1, then this is again an instance
of Dominance (left), so we apply this same argument recursively. The recursion stops
either when we reach an instance of Dominance (right) or case (i) of Dominance (left).

We have shown that the solution of Greedy-Graph has the same cardinality as the solution
of Greedy, and since Greedy is optimal, so is Greedy-Graph.

3.3 Assisted LSDUDC

We now show that an exact algorithm for the LSDUDC problem may be used to achieve a 2-
approximation algorithm for the Assisted Line Separated Discrete Unit Disk Cover (A-LSDUDC)
problem (Definition 2.12, page 20). The approximation algorithm is based on an adaptation of
the 4-approximation algorithm of Carmi et al. [29].

Theorem 3.2. The A-LSDUDC problem has a factor 2 approximation algorithm which runs in
O (mn+m logm+ n log n) time.

Our solution does not necessarily use disks that contribute to the semi-chain S (Definition
2.13, page 21). Instead, we first solve the LSDUDC problem optimally using Algorithm 2.2 on
the set of disks DU to obtain a disk set D?U . Let D?U = {D?

1, D
?
2, . . . , D

?
|D?

U |
} be the ordered set

of unit disks from left to right based on the left intersection point of the disks in D?U with `. We

33

Algorithm 3.3 A-LSDUDC(P,D, `)
1: Input: A set of points P contained in one half-plane defined by `, and a set of unit disks D.
2: Output: D′ ⊆ D, a set of disks covering P with a 2-factor approximation.
3: Assign disks of D to DU and DL, where DL and P are in the same half-plane of `
4: D′′ ←LSDUDC(P,DU , `)
5: D′ ←MAC(P,D′′,DL, `)
6: return D′

use the greedy MAC algorithm (Algorithm 2.3) over the sets D?U and DL to obtain an improved
solution D′ for covering points in P.

Now we wish to compare the cardinality of the solution found by A-LSDUDC, call it D′, with
that of the global minimum disk cover D?. Consider the upper and lower components of the
solutions D′ and D?, i.e., D′U = D′ ∩ DU , D′L = D′ ∩ DL, D?U = D? ∩ DU , and D?L = D? ∩ L.
Let U? be the optimal LSDUDC solution, i.e. U? = LSDUDC(P,DU , `). Note that |D?| ≤ |D′|
since D? is the global minimum. Similarly, since D′ is the minimum assisted cover based on U?,
it follows that |D′| = |D′U |+ |D′L| ≤ |ac (U?,D?L) |+ |D?L|, where ac (U?,D?L) is the smallest subset
of U? that forms an assisted cover with D?L.

Now we will show that 2|D?U | ≥ |ac (U?,D?L) |. Given a disk D in D?U , there are two cases:
either D lies above the lower boundary of ac (U?,D?L), i.e., D is contained in the union of all the
disks in ac (U?,D?L), or D contains one or more arc segments of the lower boundary of ac (U?,D?L).
In the first case, Carmi et al. [29] show that at most two disks in ac (U?,D?L) suffice to cover D
and, hence, for every such disk in the global optimum solution D? there are at most two disks
in ac (U?,D?L). In the second case, let V denote the subset of disks that have lower boundary
segments that are contained in D. The set of arc segments of the disks in V consists of, from
left to right, a partially-covered arc segment of the lower boundary, followed by zero or more
fully-covered arc segments, and then a partially-covered arc segment. Let W denote the disks
whose arcs are partially covered together with D. W dominates V and hence there is at most one
arc of the lower boundary fully contained in D; otherwise replacing V with W results in a cover
of smaller cardinality, deriving a contradiction, since V ⊂ U?, and U? is the optimal LSDUDC
solution. Recall that all disks in V and DU are centred above `, and all points in P are below `.
Furthermore, observe that the partially-covered arc disks must contain points not contained in
the fully-covered disk; otherwise they can also be eliminated while reducing the cardinality of the
cover. As those disks contain other points, each of the disks is partially covered by at least one
other disk in D?. We arbitrarily associate each disk covered more than once with its leftmost disk
in D?. Thus, of the (at most) three disks in V, at most two are associated with D. In sum, in
either case each disk in D?U has at most two associated disks in ac (U?,D?L) from which it follows
that 2|D?U | ≥ |ac (U?,D?L) |. Hence,

2|D?| = 2 (|D?U |+ |D?L|)
≥ 2|D?U |+ |D?L|
≥ |ac (U?,D?L) |+ |D?L|
≥ |D′U |+ |D′L|
≥ |D′|,

which gives the approximation factor of two as desired.

34

The running time of the A-LSDUDC algorithm is determined by the running times of the
LSDUDC and MAC algorithms that are used. The LSDUDC algorithm described in Section 2.2.1
runs in O (mn+ n log n) time, and the MAC algorithm (Algorithm 2.3) runs in O (mn+m logm)
time as well. Therefore, the overall running time is O (mn+m logm+ n log n) time.

3.4 Conclusions and Future Work

The algorithms presented in this chapter provide an exact LSDUDC algorithm and a 2-approximate
algorithm for A-LSDUDC, which run in O

(
m2n

)
time and O (mn+m logm+ n log n) time re-

spectively.

The A-LSDUDC problem is still open, in the sense that there is no polynomial time algorithm
and no NP-completeness proof. It would be interesting to see a hardness proof for A-LSDUDC,
but an exact polynomial time algorithm would be exciting. The latter result would immediately
improve the DUDC algorithms presented in Chapter 5 of this thesis.

35

4
Within-Strip Discrete Unit Disk Cover

In this chapter, we consider a restricted version of DUDC in which both the points and disk
centres are confined to a strip of the plane1. We are motivated by the problem of updating an
area of seafloor terrain following a survey by a ship. A survey is typically performed by towing
an echosounder behind a ship, which results in a swath of data points along the path of the ship.
If the ship performs this task while in transit, the surveyed area forms a strip along the seafloor.
We wish to update the seafloor data set by treating the new data set P as the standard, while
maintaining representative points from the old data set Q for completeness. Our goal is to find
a minimum cardinality set Q? ⊆ Q so that each point in P is within a unit distance of a point in
Q?. This is an instance of the Within-Strip Discrete Unit Disk Cover (WSDUDC) problem.

To begin, we use a fixed partitioning scheme which divides the strip into squares to provide
a 6-approximate algorithm for solving the Within-Strip Discrete Unit Disk Cover problem on
strips of height h ≤ 1/

√
2 (≈ 0.71), which runs in O (mn+m logm+ n log n) time. Next, we

refine this idea with a general 3d1/
√

1− h2e-approximate algorithm for strips of height h < 1,
which runs in O

(
m4n+ n log n

)
time. Given a strip of height at most 2

√
2/3 (≈ 0.94), a 4-

approximate solution is given which improves upon the general algorithm by checking for simple
redundancy while still running in O

(
m4n+ n log n

)
time. For a strip of height at most 4/5 = 0.8,

an O
(
m6n+ n log n

)
time 3-approximate solution is provided which uses dynamic programming

to solve all sub-problems optimally (note that using the general 3d1/
√

1− h2e-approximate al-
gorithm on strips of height 2

√
2/3 or 4/5 would produce a 6-approximation). These results are

summarized in Table 4.1. To conclude, we show that WSDUDC is NP-complete for a strip of
height h > 0, and so no exact polynomial time algorithm is possible for the problem unless P=NP.

In the WSDUDC problem, the input consists of a set of m unit disks D with centre points Q,
and a set of n points P, all of which lie in the Euclidean plane. We define the strip s of height h
as the region of the plane between two parallel lines `1 and `2, where Q∩ s = Q and P ∩ s = P.
We assume that we are provided with the lines `1 and `2; alternatively, a minimum width strip
may be computed (e.g. [154]). For our discussion, we assume that the strip is horizontal. We
wish to determine the minimum cardinality set of disks D? ⊆ D such that P ∩ (∪D?) = P.

Definition 4.1. The Within-Strip Discrete Unit Disk Cover (WSDUDC) Problem: Given a set
P of n points, a set D of unit radius disks in the plane, where each disk D ∈ D is centred at a
point in a set Q of m points, and parallel lines `1 and `2 such that `1 ⊂ `+2 and `2 ⊂ `−1 , which

1Elements of this chapter have appeared in [46], [47] and [73].

37

Table 4.1: Approximation Factors and Running Times of WSDUDC Algorithms

Approximation Factor Running Time Height of Strip Section

6 O (mn+m logm+ n log n) ≤ 1/
√

2 4.1

3d1/
√

1− h2e O
(
m4n+ n log n

)
≤ 1 4.2

4 O
(
m4n+ n log n

)
≤ 2
√

2/3 4.3

3 O
(
m6n+ n log n

)
≤ 4/5 4.4

define a strip s = `−1 ∩ `+2 of height h such that P ⊂ s and Q ⊂ s, the Within-Strip Discrete Unit
Disk Cover problem is to find a set D? ⊆ D of minimum cardinality such that D? covers P.

This is a seemingly simpler context than the general Discrete Unit Disk Cover problem
(DUDC), which is only distinguished from WSDUDC by the fact that DUDC has no strip confin-
ing the positions of the points and disks. This chapter addresses an interesting question regarding
the hardness of the general DUDC problem: while it is known that the problem of covering points
in a strip with disks centred outside the strip is polynomial time solvable [8] (see SSDUDC in
Section 2.2.3 for details), it remained to be seen whether WSDUDC is NP-hard for a strip of fixed
height.

An implication of a polynomial time algorithm for WSDUDC for strips of any fixed height
would be a simple PTAS for DUDC, using the shifting techniques of Hochbaum and Maass [93],
as described in Section 2.1.6. The PTAS for DUDC [121], as discussed in Section 2.1.3, uses
fundamentally different techniques.

The notion of decomposing a problem into strip-based subproblems is natural, since an exact
algorithm or PTAS for the subproblem can potentially be used to derive a general PTAS using the
shifting strategy. For example, the PTAS for the Minimum Geometric Unit Disk Cover problem
(Section 2.1.6) operates by dividing the problem into strips [93]. The maximum independent
set of a unit disk graph may be found in polynomial time if the setting is confined to a strip of
fixed height [119]. Geometric set cover on unit squares (precisely WSDUDC, except the disks
are replaced with axis-aligned unit squares) may be solved optimally in nO(k) time when confined
to strips of height k [64]. Considering these results, the hardness of WSDUDC is somewhat
surprising.

In Section 2.2.3, we discussed the Strip-Separated Discrete Unit Disk Cover (SSDUDC) prob-
lem. In that setting, the input consists of a set of points P located in a strip in the plane, like
WSDUDC, but the set of unit disk centres Q lies strictly outside of the strip rather than in
the strip. We described an O

(
m4n+ n log n

)
dynamic programming algorithm for SSDUDC in

Algorithm 2.4, which we use in several of the WSDUDC algorithms in this chapter.

4.1 A 6-Approximation Algorithm for h ≤ 1√
2

For this algorithm, the points P and disk centres Q are confined to a horizontal strip s, where
the height h of s is at most 1√

2
. Without loss of generality, assume that the length of s is k√

2
for

some positive integer k.

38

We partition the strip s into k disjoint squares of size 1√
2
× 1√

2
by introducing vertical line

segments L0, L1, . . . , Lk at intervals of 1√
2
. L0 and Lk form the left and right vertical boundaries

of the strip. We denote the set of squares as Σ = {σ1, . . . , σk} in left to right order. Let Dσi (⊆ D)
be the set of disks centred in the square σi, and Pσi (⊆ P) be the set of points in the square σi.
A gap is the union of a maximal sequence of consecutive squares σi, . . . , σj such that no disk is
centred inside any square of the gap, i.e. ∀i′ ∈ {i, . . . , j},Dσi′ = ∅. Let G1, . . . , G` be the gaps
in left to right order in the strip, where Gi is bounded by the vertical line segments Lb and Le
(0 ≤ b < e ≤ k). We now describe the WSDUDC algorithm.

To begin, we cover all points within all gaps G1, . . . , G`. To cover points in the gap Gi, we
first apply the A-LSDUDC algorithm (Algorithm 3.3) based on the line Lb to cover the points in
Gi that are covered by disks centred left of Lb (although the resulting cover may consist of disks
centred on either side of Lb, since we use A-LSDUDC). Next, the best known LSDUDC algorithm
(Algorithm 2.2) is used on the line Le to cover any remaining points in Gi. Note that since the
latter points are only covered by disks centred right of Le, the LSDUDC algorithm computes a
globally optimal cover of these points. All points in Gi are covered by the above two algorithms.

In the second step of the algorithm, we scan each square in Σ in order from left to right. For
any individual square σi, if there are points in Pσi not covered by any disk from the solution set
found in the first step, then any disk from Dσi may be used to cover all points in Pσi . One such
disk is chosen arbitrarily and added to the solution set. The 6-approximate WSDUDC algorithm
for P is described in Algorithm 4.1.

Lemma 4.1. Algorithm 4.1 never calls A-LSDUDC with respect to two consecutive lines Li−1
and Li for i ∈ {1, 2, . . . k}. Furthermore, the algorithm never calls LSDUDC with respect to two
consecutive lines Li−1 and Li for i ∈ {1, 2, . . . k}.

Proof. The A-LSDUDC algorithm is only ever applied with respect to a line which is the left
boundary of a gap (line 24 of Algorithm 4.1). Say without loss of generality one such line is
Li−1. By definition, this means that Dσi−1 6= ∅ and Dσi = ∅, which together imply that neither
Li−2 nor Li can form the left boundary of a gap. Therefore, A-LSDUDC is never applied to two
consecutive lines.

Analogously, the LSDUDC algorithm is only ever applied to a line which forms the right
boundary of a gap (line 18 of Algorithm 4.1), say without loss of generality one such line is Li−1.
It follows that in this case Dσi−1 = ∅ and Dσi 6= ∅, which together imply that neither Li−2 nor Li
can form the right boundary of a gap. Therefore, Algorithm 4.1 never applies LSDUDC to two
consecutive lines.

Theorem 4.1. Algorithm 4.1 produces a 6-factor approximation for the WSDUDC problem in
O (mn+m logm+ n log n) time.

Proof. To prove that Algorithm 4.1 gives a 6-factor approximation, we consider four cases which
describe all of the various ways that disks from Dσi may be used. The first three cases are
illustrated in Figure 4.1, and the fourth is trivial.

Case 1: Used by A-LSDUDC on line Lj, where j < i. Since the distance between the
lines Li−1 and Li−3 is less than 2, a disk D ∈ Dσi may cover points that are covered by disks with
centres left of the lines Li−1, Li−2 and Li−3. This suggests that the disk D may be used as an
assisting disk in solutions to the A-LSDUDC algorithm with respect to the lines Li−1, Li−2 and

39

Algorithm 4.1 WSDUDC-6(P,D, s)
1: Input: A set P of points in a horizontal strip s of dimensions 1√

2
× k√

2
, and a set D of unit

disks centred in s.
2: Output: A set D?2 ⊆ D, which covers P with a factor 6 approximation.
3: Dσ−1 ← ∅, Dσ0 ← ∅, Pσ−1 ← ∅, Pσ0 ← ∅, Pσk+1 ← ∅, Pσk+2 ← ∅, D?2 ← ∅
4: for i := 1 to k do
5: Compute the sets Dσi and Pσi
6: end for
7: i← 1
8: while i ≤ k do
9: // Begin by covering the gaps

10: while i ≤ k and Dσi = ∅ do
11: i← i+ 1 // Find the end of the gap
12: end while
13: if Dσi−2 = ∅ then
14: Pleft ←

(
Pσi−2 ∪ Pσi−1

)
∩
(
Dσi ∪ Dσi+1

)

15: else
16: Pleft ← Pσi−1 ∩

(
Dσi ∪ Dσi+1

)

17: end if
18: D′ ←LSDUDC

(
Pleft,Dσi ∪ Dσi+1, Li−1

)
(Algorithm 2.2)

19: D?2 ← D?2 ∪ D′, i← i+ 1
20: while i ≤ k and Dσi 6= ∅ do
21: i← i+ 1 // Find the start of the next gap
22: end while
23: Pright ←

(
Pσi ∪ Pσi+1

)
∩
(
Dσi−2 ∪ Dσi−1

)

24: D′ ←A-LSDUDC(Pright,D, Li−1) (Algorithm 3.3)
25: D?2 ← D?2 ∪ D′, i← i+ 1
26: end while
27: for j := 1 to k do
28: // Now cover the remainder
29: if Pσj \ Pσj ∩ D?2 6= ∅ then
30: D?2 ← D?2 ∪ {D}, where D ∈ Dσj
31: end if
32: end for
33: return D?2

40

Li−3 Li−2 Li−1 Li Li+1

σi−2 σi−1 σi σi+1

Li−4

σi−3

q1

q2 q3

q4

D1

D2

D3 D4 D3 D4

(a) Cases 1 and 2. The disk D4 is in Dσi , and it may be used by A-LSDUDC on Li, or on
Li−3 as an assisting disk. σi−2 and σi+1 are gaps in this strip.

Li−3 Li−2 Li−1 Li Li+1

σi−2 σi−1 σi σi+1

q1

q2

q3

q4
D1

D3

D2

D4

(b) Case 3. All disks shown are considered by the LSDUDC algorithm on Li−1. σi−2 and
σi−1 form a gap in this strip.

Figure 4.1: Cases for the 6-approximate WSDUDC algorithm.

Li−3, but in fact, A-LSDUDC can only be used on one of these lines. Since Dσi 6= ∅ (D ∈ Dσi),
Algorithm 4.1 would not call A-LSDUDC with respect to the line Li−1. Lemma 4.1 states that
Algorithm 4.1 never calls the A-LSDUDC algorithm with respect to two consecutive lines, and
so D may appear in the solution of A-LSDUDC with respect to either Li−2 or Li−3.

Case 2: Used by A-LSDUDC on line Lj, where j ≥ i. Since the distance between the
lines Li and Li+1 is less than 1, a disk D ∈ Dσi may cover points in σi+1 and σi+2. Therefore, the
disk D may appear in a solution to the A-LSDUDC algorithm with respect to the lines Li and
Li+1. Again, Lemma 4.1 established that Algorithm 4.1 never calls the A-LSDUDC algorithm
with respect to two consecutive lines. Therefore, D may appear in the solution of A-LSDUDC
with respect to either Li or Li+1.

Case 3: Used by LSDUDC. Since the distance between the lines Li−1 and Li−2 is less
than 1, a disk D ∈ Dσi may cover points in σi−1 and σi−2. Therefore, the disk D may appear
in a solution to the LSDUDC algorithm with respect to the lines Li−1 and Li−2. However, by
Lemma 4.1, Algorithm 4.1 never calls the LSDUDC algorithm with respect to two consecutive
lines. Therefore, D may appear in the solution of LSDUDC with respect to either Li−1 or Li−2.

Case 4: Used to cover Pσi . A disk D ∈ Dσi may be selected in the solution if some points
in Pσi are not covered by any disk in the solutions of the A-LSDUDC and LSDUDC algorithms
(line 30 of Algorithm 4.1). Since the size of all squares σi (1 ≤ i ≤ k) is 1√

2
× 1√

2
, one disk centred

anywhere in σi is sufficient to cover all the points in Pσi .

There are two basic properties that are fundamental to our analysis. First, a disk can cover
points in at most four squares. Second, Case 4 is only ever used for a particular square if no disk

41

was used for Cases 1-3 (since any disk centred in σi covers all points in Pσi).

Suppose that there are four squares σi−2, . . . , σi+1, where all points Pσi−2 ∪ Pσi−1 ∪ Pσi ∪ Pσi+1

may be covered by a single disk from Dσi . We may choose poorly so that Case 4 is applied to
each square, and so a disk is chosen from each of Dσi−2,Dσi−1,Dσi , and Dσi+1. In this example, we
have used four disks to cover this set of points rather than one, so the approximation factor of
Algorithm 4.1 is at least 4.

By substituting some of these squares with gaps, we can force disks from Dσi to fall into
Cases 1-3 to increase the approximation factor. Specifically, suppose there exists a gap Gj which
consists of a single square lying to the left of σi, and a gap Gj+1 which begins to the right of
σi so that the left boundary lines of Gj and Gj+1 may be intersected by disks from Dσi . In this
setting, disks from Dσi could be used in Cases 1 and 3 to cover the points of Gj , and also by Case
2 to cover the points of Gj+1. These applications lead to at least a 5-approximation, since Cases
1 and 2 lead to 2-approximations and Case 3 is an optimal algorithm.

Disks from Dσi may also cover points in two other squares outside of these gaps, say σi′ and
σi′′ , i

′ < i < i′′. If these squares are adjacent to σi, then if applicable, their disks are used in the
same computations of A-LSDUDC and LSDUDC as the disks of Dσi , so this would have no effect
on the approximation factor. However, it is possible that σi′ and σi′′ fall into Case 4, and that
a set of disks of equal cardinality for the solutions to Cases 1-3 would also cover all the points
in σi′ and σi′′ . Therefore, the overall approximation factor is five times the size of optimal set of
disks, plus two. Note that since disks from Dσi are covering points from five squares in this setting
(specifically σi−2, . . . , σi+2), the optimal solution requires at least two disks to cover the same set
of points. Let |Opt| be the size of the optimal solution, then note that 5|Opt|+2 ≤ 6|Opt| when
|Opt| ≥ 2, so we have our bound. If all disks from Dσi cover points from at most four squares,
then the approximation factor of 6 is immediate. Thus, the approximation factor of the lemma
follows.

The time complexity of the algorithm follows from the fact that each disk in D can participate
a constant number of times in the A-LSDUDC and LSDUDC algorithms and the running time of
both the A-LSDUDC and LSDUDC algorithms may be bounded by O (mn+m logm+ n log n)
(see Section 2.2.1).

4.2 A General 3d1/
√
1− h2e-Approximation Algorithm for h < 1

In this section, we present an algorithm for approximating the optimal WSDUDC solution on
strips of a general height h < 1. The algorithms of Sections 4.3 and 4.4 extend these ideas with
refinements which achieve better approximation factors in narrower strips.

Theorem 4.2. Given a strip of height h < 1, we may find a 3d1/
√

1− h2e-approximation to the
WSDUDC problem in O

(
m4n+ n log n

)
time.

We define the set of rectangles R◦, where R◦i ∈ R◦ is the largest rectangle of height 2h
which may be covered by Di ∈ D, and the strip s has height h and is assumed to be horizontal.
Furthermore, we use a set of rectangles R of height h, defined as Ri = R◦i ∩ s,Ri ∈ R, R◦i ∈ R◦.
In other words, a rectangle in R is defined as the portion of a rectangle in R◦ which lies inside
the strip. In Figure 4.2, the shaded rectangles are those in R.

42

Observation 4.1. Suppose we are given a strip of height h < 1 and a unit disk D whose centre
lies in the strip. R◦ is defined as the rectangle of height 2h and width k = 2

√
1− h2 which is

circumscribed by D. If a point q is covered by R◦, then D also covers q. Furthermore, R◦ covers
the entire height of the strip.

We divide the set of points P into two sets P = PR ∪ PR, where PR is the set of points
covered by the set of rectangles R, and PR = P \ PR, i.e. those points covered by D but not
R. The approximation algorithm proceeds in two stages to compute the cover: first the points
in PR are covered, and then the remaining uncovered points in PR are covered. We refer to
the points in PR as occurring in the gaps of the strip, and the points in PR are in the intervals
(see Figure 4.2). In our discussion, we assume that h > 0, so that the width of the rectangles is
k = 2

√
1− h2 < 2. 2

gap interval

gap

gap gapinterval interval

Figure 4.2: Intervals are continuous segments of the strip covered by the rectangles in R, and
gaps are the segments of the strip outside of the intervals.

4.2.1 Covering PR

The set PR may be viewed as existing in the gaps lying between the rectangles in the set R. The
centres of all disks are separated from the points in PR by vertical lines (those of the gap bound-
aries). For each gap of the strip, the points are covered optimally with the O

(
m4n+ n log n

)

time algorithm for SSDUDC (Algorithm 2.4). While points in each gap are covered optimally,
we may lose optimality when we combine these solutions3. Recall that rectangles have width
k = 2

√
1− h2. There is a rectangle corresponding to each disk, and so no disk centre lies within

a distance of k/2 from any gap. By interleaving rectangles of width k with gaps of some width
ε, a disk may cover points in 2d1/k − 1/2e gaps as ε tends to 0. To see this, consider the right
side of a disk Di, where Ri defines an interval of width k/2 on this right side. Since Di has unit
radius, d(1− k/2) /ke additional rectangles (and gaps, one to the left of each rectangle) may be
at least partially covered by Di to the right. For example, given 2/5 < k ≤ 2/3, disks may cover
points in four gaps, and for 2/3 < k < 2, disks may cover points in two. Thus, the union of the
solutions for each gap has an approximation factor of 2d1/k − 1/2e for covering PR.

2If h = 0, all points and disk centres are collinear, and PR is empty. This setting is solved optimally by the
Greedy-Rectangles algorithm detailed in Section 4.2.2.

3Covering the points in the union of the gaps cannot be solved optimally in general. The hardness proof for
WSDUDC (Section 4.5) only has points in gaps.

43

4.2.2 Covering PR

To cover the points which remain after the previous step, we iteratively add the right-most
rectangle that covers the left-most remaining point to the solution, as detailed in Algorithm 4.2
(Greedy-Rectangles).

Algorithm 4.2 Greedy-Rectangles(R,PR)

1: Input: A set of points PR and a set of rectangles R.
2: Output: R′, a set of rectangles covering PR.
3: R′ ← ∅
4: Sort PR by x-coordinate, sort R by left boundary
5: while PR 6= ∅ do
6: p` ← left-most point in PR
7: Rr ← right-most rectangle in R covering p`
8: R′ = R′ ∪Rr
9: PR = PR \ (Rr ∩ PR)

10: end while
11: return R′

Lemma 4.2. A rectangle R′i selected by Greedy-Rectangles may overlap another rectangle
R′i−1 (the previous rectangle chosen) by k − ε, for any ε > 0.

Proof. The left rectangle R′i−1 covers a point p` which is to the left of the right rectangle R′i,
which in turn covers a point pr to the right of R′i−1. By pushing p` to the left edge of R′i−1 and
pr to the right edge of R′i, the rectangles may be overlapped so that R′i−1 lies ε to the left of R′i,
and both are chosen.

Lemma 4.3. Let R′ = {R′1, . . . , R′|R′|} be the set of rectangles found by Greedy-Rectangles,

indexed from left to right so that ∀i, j, i < j ↔ left
(
R′i, R

′
j

)
where left

(
R′i, R

′
j

)
indicates that R′i

is left of R′j. Then no two non-consecutive rectangles intersect, i.e. ∀i, j, j > i+1→ R′i∩R′j = ∅.

Proof. Suppose that this is not the case and R′i and R′j intersect although there exist rectangles
R′i+1, . . . , R

′
j−1 ∈ R′, where i + 1 ≤ j − 1. Rj is to the right of each of these intermediate

rectangles, and Rj covers all points to the right of Ri which these rectangles cover. Let P ′ be
the set of points covered by the rectangles R′i+1, . . . , R

′
j−1. P ′ is covered entirely by R′i ∪R′j , and

none of R′i+1, . . . , R
′
j−1 are the right-most rectangle covering a point to the right of R′i, so they

would not be chosen by Greedy-Rectangles.

Lemma 4.4. Greedy-Rectangles computes a cover of PR with an approximation factor of
3d1/k − 1/2e times the optimal solution.

Proof. Consider the maximum number of rectangles in the Greedy-Rectangles solution that
may be replaced by a single disk Di in the strip. One of the rectangles available to the algorithm
is Ri ⊂ R◦i , where R◦i is circumscribed by Di. By Lemma 4.2, there may be another rectangle ε to
the left or right of Ri which will be selected by the algorithm, and so the approximation factor is
at least 2. It may be possible to pack additional pairs of nearly overlapping rectangles as densely
as permitted by Lemma 4.3 so that the points covered by these rectangles are also covered by Di.

44

Since all disks have unit radius and R◦i is circumscribed, each side of Di can potentially cover all
points covered by at most 2d(1−k/2)/ke−1 additional rectangles (see Figure 4.3). This analysis
is similar to Section 4.2.1, but now all rectangles are paired except for the right-most one (in a
right-most pair, the region covered only by the right rectangle cannot be covered at all by Di

since we consider the pairs to have width k, i.e. ε = 0). Thus, the total approximation factor is
4d1/k − 1/2e.

D1 R◦
1

D2

D3

D4

D5

D6R◦
2

R◦
3

R◦
4

R◦
5

R◦
6

q1 q2
q3

q4

q5

q6

q7

q8

q9

Figure 4.3: An illustration of Lemma 4.4. We wish to know the number of rectangles in which a
disk, say D1, may possibly cover points. R◦1 may be paired with another rectangle as described in
Lemma 4.2, we illustrate this with R◦2. We now wish to determine how many distinct rectangles
may be covered to the right of this pair (the case for the left side is analogous). In this case, we
have h = 0.97, and so 2d(1−k/2)/ke−1 = 3. We see this with R◦3, R

◦
4, R

◦
5, as D1 covers all points

in these rectangles. It is possible that D1 covers points contained in a rectangle paired with the
right-most rectangle in this set (e.g., q8 ∈ D1 ∩R◦6), but such points are covered by R◦5 as well.

Greedy-Rectangles requires both the set of rectangles R and the set of points PR to be
sorted in left to right order. The sorted lists are each walked through a single time, so the total
running time is O (m logm+ n log n).

4.2.3 Combining Solutions for PR and PR

Recall that the approximation factor for covering the entire set of PR is 2d1/k−1/2e and 4d1/k−
1/2e for covering PR, where k is the width of the rectangles. We simply sum these factors to
get an overall approximation factor of 6d1/k− 1/2e < 3d1/

√
1− h2e for strips of arbitrary height

h < 1. The running time is O
(
m4n+ n log n

)
, dominated by the SSDUDC algorithm used to

cover PR. The WSDUDC algorithm is summarized in Algorithm 4.3.

45

Algorithm 4.3 WSDUDC-GEN(P,D, s)
1: Input: A set P of points in a horizontal strip s of height h < 1, and a set D of unit disks

centred in s.
2: Output: A set D? ⊆ D, which covers P with a factor 3d1/

√
1− h2e approximation.

3: D? ← ∅
4: R◦ ← set of rectangles of height 2h circumscribed by D
5: R ← R◦ ∩ s
6: Sort R left to right by left boundary of each rectangle
7: G ← set of gaps in R∩ s
8: for i := 1 to |G| do
9: Pi = Gi ∩ P // Find the set of points in the current gap

10: D′ ← SSDUDC(Pi,D, Gi) (Algorithm 2.4)
11: D? ← D? ∪ D′
12: P ← P \ (P ∩ D′)
13: end for
14: R′ ←Greedy-Rectangles(R,PR) (Algorithm 4.2)
15: D? ← D? ∪ D′ // D′ is the set of disks corresponding to R′
16: return D?

4.3 4-Approximation Algorithm for h ≤ 2
√
2/3

The general algorithm for covering PR presented in the previous section has an approximation
factor of 4 when k ≥ 2/3 (h ≤ 2

√
2/3). However, for each pair of consecutive rectangles R′i−1 and

R′i found by Greedy-Rectangles, we can determine whether one or two disks are required to
cover the points covered by the pair of rectangles. In other words, we determine whether there
exists a disk Dj such that

(
R′i−1 ∪R′i

)
∩P ⊆ Dj ∩P. To do so, we run through R′ in order, and

check whether the current pair may be replaced by any disk in D. This way, we are assured that
exactly two disks are required to cover the points contained in any consecutive pair of rectangles
in our solution for PR.

Theorem 4.3. If h ≤ 2
√

2/3, we can improve the approximation factor for WSDUDC to 4 in
O
(
m4n+ n log n

)
time.

Consider a disk Di ∈ D?, which may or may not be a member of our refined solution set.
Di may intersect at most four rectangles in R′. Every consecutive pair of rectangles in R′
now requires at least two disks, so at least two disks are required to cover any four consecutive
rectangles. Therefore, the overall approximation factor is two. This operation will scan m disks
for every possible disk to remove from the solution, so the operation takes O

(
m2n

)
time4. We

outline the improvements in Algorithm 4.4.

We now have a 2-approximate algorithm for PR when k ≥ 2/3, and we may solve each gap of
PR optimally. We show that we may combine these solutions to achieve an overall 4-approximate
algorithm for WSDUDC, when the strip is of height less than 2

√
2/3. For the purposes of

counting, we may assume that the disks forming the cover for each gap are equally distributed
amongst the neighbouring intervals for both the approximate solution and the optimal one. We

4It would not be difficult to improve on the running time of this operation, but this is not a bottleneck on the
overall running time.

46

Algorithm 4.4 WSDUDC-4(P,D, s)
1: Input: A set P of points in a horizontal strip s of height h ≤ 2

√
2/3, and a set D of unit

disks centred in s.
2: Output: A set D? ⊆ D, which covers P with a factor 4 approximation.
3: Lines 3-14 are identical to Algorithm 4.3
4: Rp ← R1 ∈ R′ // Assume the rectangles are stored left to right in R′
5: D′ ← ∅
6: for i := 2 to |R′| do
7: Rc ← Ri ∈ R′
8: for j := 1 to |D| do
9: if (Rp ∪Rc) ∩ P ⊆ Dj ∩ P then

10: Rp, Rc ← Dj // A bit abusive, but to simplify the algorithm description we allow Rp
and Rc to be a rectangle or a disk

11: j ← |D|+ 1
12: end if
13: end for
14: if Dp 6∈ D′ then
15: D′ ← D′ ∪ {Dp} // Dp is the disk corresponding to Rp
16: end if
17: Rp ← Rc
18: end for
19: return D? ∪ D′

are not interested in the worst-case approximation factor in any given interval; rather we are
interested in the approximation factor over the strip as a whole. For each gap, only disks found
in adjacent intervals may form part of the solution. Disk centres are located at least a distance
1/3 from the end of an interval, and so disk centres in non-adjacent intervals are more than unit
distance away from the gap. Therefore, for each interval of the strip, assume that n` disks are
used for covering the gap to the left, ns disks are used for covering the points in the interval,
and nr disks are used to cover the points in the gap to the right. The minimum number of disks
required is max{n`, ns/2, nr}, since both n` and nr are optimal and ns is a 2-approximation. We
conclude that n`+ns+nr ≤ 4·max{n`, ns/2, nr}, and thus it is a 4-approximation algorithm. The
worst-case running time is O

(
m4n+ n log n

)
, dominated by the running time of the SSDUDC

algorithm.

4.4 3-Approximation Algorithm for h ≤ 4/5

We now describe a 3-approximate algorithm for narrower strips, specifically when k ≥ 6/5 (h ≤
4/5). In this case5, the PR sub-problem may be solved optimally using dynamic programming.
We define a set of disks Ds as mutually spanning if each disk in Ds covers a non-empty set of
points which lies to the left of all other disks in Ds, as well as a non-empty set of points lying to
the right of all other disks in Ds. We show that no optimal solution to the cover of QR requires
a mutually spanning set of more than three disks.

5A similar dynamic programming algorithm applies to larger strips, but the running time increases rapidly
with h. The running time of the dynamic program is O

(
m2cn

)
, where c is the cardinality of the largest minimal

mutually spanning sets in an optimal solution. As h approaches unit distance, c tends to infinity.

47

Lemma 4.5. If h ≤ 4/5, an optimal solution to PR requires mutually spanning sets of cardinality
at most three.

Proof. Suppose that there exists a mutually spanning set of four disks in the optimal solution.
Recall that each point in the set PR is covered by some rectangle circumscribed by a disk. Using
Lemma 4.3, we show that a set of four rectangles exists which covers all of the points covered by
the four disks. At least one rectangle is required to cover the left-most point, this may be followed
by a pair of rectangles, whose combined width is greater than k, and then there may be a final
rectangle spanning an additional width k. The maximum width in a strip for a mutually spanning
set of disks of any cardinality is 3 − k/2; note that 2k > 3 − k/2 when k > 6/5. Any solution
which uses four mutually spanning disks to cover a set of points P ′ need only use (at most) four
rectangles to cover a set of points P ′′, where P ′ ⊆ P ′′. Therefore, four mutually spanning disks
are never needed in an optimal solution.

By Lemma 4.5, a dynamic program which adds disks to the solution in a left-to-right fashion
need only consider up to triples of disks to terminate sub-problems to ensure that the sub-problems
are independent and optimal. Such a dynamic program is described in Algorithm 4.5. In the
algorithm, D2 and D3 are the sets of mutually spanning doubles and triples of disks respectively,
and D is the set of all sets of disks under consideration. Given two sets Di,Dj ∈ D, if Di covers
points left of Dj , and Dj does not cover points left of Di, we write Di <c Dj to indicate this
relationship. Otherwise, we consider them incomparable under this operator. Hence, we may
establish a partially ordered set over all of the sets in D with respect to the <c operator. Note
that directed cycles are impossible in this set, since the transitive property holds for the <c
operator. We impose a topological sorting D = {D1, . . . ,D|D|} so that for any two sets Di,Dj in
this ordering, we have that i < j → Dj 6<c Di.

The correctness of Optimal-PR follows from the fact that all points left of a set Di are
covered in a valid solution to a subproblem terminating with Di, and all mutually spanning sets
up to size three are considered. Optimal-PR runs in O

(
m6n

)
time: there are O

(
m3
)

possible
combinations of disks that we consider in two nested for loops, and inside the nested loop we
check the disks against the point set P.

We have optimal algorithms for computing the cover of each gap of PR and each interval
of PR. Further, the disks covering a gap only come from the two adjacent intervals, and the
disks covering an interval only come from the interval itself. Since the disks in each interval can
contribute to only three problems, each of which is solved optimally, the worst-case is that three
times the optimal number of disks is used. The running time of the algorithm (Algorithm 4.6) is
dominated by Optimal-PR, so the overall running time is O

(
m6n+ n log n

)
.

Theorem 4.4. Given a strip of height h ≤ 4/5, a 3-approximate solution may be found to
WSDUDC in O

(
m6n+ n log n

)
time.

4.5 NP-Completeness of WSDUDC

We prove that WSDUDC is NP-complete by reducing from the minimum vertex cover (Vertex-
Cover) problem on planar graphs of maximum degree three, which is known to be NP-complete
(and APX-hard) [80, 5]. In the Vertex-Coverproblem, we are given a graph G = (V,E) (in

48

Algorithm 4.5 Optimal-PR (D,PR)

1: Input: A set PR of points in the intervals of a horizontal strip s of height h ≤ 4/5, and a
set D of unit disks centred in s.

2: Output: A set D? ⊆ D of minimum cardinality which covers PR.
3: D← D ∪D2 ∪ D3, m′ ← |D|
4: Topologically sort D on the <c operator
5: c[0] = 0, c[1 . . .m′] =∞
6: for i = 1 . . .m′ do
7: for j = 0 . . . i− 1 do
8: size ← c[j] + |Di|
9: if size < c[i] and no points lie between Di and Dj then

10: c[i]← size
11: end if
12: end for
13: end for
14: Backtrack on c to recover optimal cover D?
15: return D?

Algorithm 4.6 WSDUDC-3(P,D, s)
1: Input: A set P of points in a horizontal strip s of height h ≤ 4/5, and a set D of unit disks

centred in s.
2: Output: A set D? ⊆ D, which covers P with a factor 3 approximation.
3: Lines 3-13 are identical to Algorithm 4.3
4: D′ ←Optimal-PR (D,PR) (Algorithm 4.5)
5: return D? ∪ D′

particular, a planar graph with no vertex of degree greater than three), and we seek a minimum
cardinality subset V ? ⊆ V such that for all e(i,j) = (vi, vj) ∈ E, either vi ∈ V ? or vj ∈ V ?. In
other words, the vertex cover is a minimum cardinality hitting set of all of the edges in the graph.
An instance of the decision version of WSDUDC is {P,D, c} (c is an integer), and we ask whether
there exists a solution D? such that P ∩ (∪D?) = P and |D?| < c.

Theorem 4.5. WSDUDC is NP-complete on a strip of height h, for any h > 0.

WSDUDC is in NP, since a certificate may be provided as a set of disks that covers all of the
points in P, which is trivial to verify.

In the reduction, we create an instance of WSDUDC from a planar graph so that a solution
D? to the WSDUDC problem provides a solution V ? to the Vertex-Cover problem on the
graph. For our reduction, it is easier to consider the dual (disk piercing) setting of WSDUDC,
but of course once the construction is complete it may be converted back again from the dual so
that the problem is in the primal (disk covering) setting. The Within-Strip Discrete Unit Disk
Piercing (WSDUDP) problem takes as input a set of points Q, and a set of unit disks DP with
centre points P, where both P and Q are contained in a strip of height h. An optimal solution
consists of a minimal number of points Q? ⊆ Q such that each disk in DP contains at least one
point from Q?. Let WS (G) be the WSDUDP instance created from a graph G. Note that a
solution Q? for WSDUDP is exactly the set of centre points to D?, the optimal solution to the
WSDUDC problem in the primal setting (see also Lemma 2.1).

49

Assume that we have a planar embedding of the graph and a horizontal strip so that the
terms left, right, above and below are all well defined. Let `vvert be the vertical line through vertex
v. For the reduction, we make use of dummy vertices, which are simply extra vertices that we
may place on an edge of the graph G. A dummy edge is an edge which is incident upon at least
one dummy vertex. Informally, the steps of the reduction are (the details follow):

1. Obtain a straight line planar embedding of G (e.g. [75]) where each vertex has a distinct
x-coordinate.

2. For any vertex v with degree three where all incident edges are left or right of `vvert, ‘bend’
the lowest edge with a dummy vertex so that the edge becomes incident to v from the
opposite side of `vvert, call this new graph G′ = (V ′, E′). We will continue to build on this
graph through the reduction.

3. For each vertex v ∈ V ′, add a dummy vertex to V ′ at each point where `vvert∩e 6= ∅,∀e ∈ E′.

4. Scan the vertices to identify each vertex v of degree one or two where all edges are incident
on the same side of `vvert, suppose without loss of generality that the edges are incident
from the right. Place a vertical line `vert between v and the next vertex to the left in the
embedding, and add a dummy vertex at each point where `vert ∩ e 6= ∅, ∀e ∈ E′. This
ensures that consecutive vertical arrays of vertices differ in cardinality by at most one.

5. For any pair of vertices vi, vj ∈ V where there is an edge e = (vi, vj) ∈ E), ensure that an
even number of vertices have been added onto the edge e in G′ by adding an additional
dummy vertex if necessary.

6. Create the WSDUDP instance WS (G) from G′ so that every edge in E′ corresponds to a
disk in D and every vertex in V ′ corresponds to a point in Q. We then show that an optimal
solution to WSDUDP provides an optimal cover for G′, from which an optimal vertex cover
for G may be found, as required.

Lemma 4.6. Given an edge e(i,j) of the planar graph G = (V,E), one can arbitrarily add a
pair of adjacent dummy vertices Vd = {vi1 , vi2} along the edge e(i,j), producing two new edges in
the augmented graph G′ =

(
V ∪ Vd, E ∪ {e(i,i1), e(i1,i2), e(i2,j)} \ {e(i,j)}

)
. The graph G′ remains

planar, and the cardinality of the optimal solution to Vertex-Cover over G′ is |V ?|+ 1, where
V ? is the set of vertices in a minimum vertex cover of G. Given this property, for any optimal
solution V ?

G′ to Vertex-Cover on G′, we can find an optimal solution V ?
G to Vertex-Cover

on G in polynomial time.

Proof. By placing the dummy vertices directly on the edge e(i,j) in any embedding, planarity
is preserved. There are two possibilities for a minimum vertex cover V ? over an edge e(i,j) in
G = (V,E); either one or both of its vertices are in V ?. The addition of a pair of dummy vertices
{vi1 , vi2} on e(i,j) creates three edges in place of e(i,j): {e(i,i1), e(i1,i2), e(i2,j)}, with e(i,i1) and e(i1,i2)
sharing the dummy vertex vi1 , and e(i1,i2) and e(i2,j) sharing the other dummy vertex vi2 .

In the first case, e(i,j) is covered by one vertex from V ?, say vi. e(i,i1) is covered by V ?, but
e(i1,i2) and e(i2,j) are not. The only optimal cover is to add the shared dummy vertex vi2 to the
solution. Therefore, the size of the optimal solution increases by one. In the second case, e(i,j)
was covered by both vi and vj in V ?, and so e(i,i1) and e(i2,j) are covered. Therefore, arbitrarily
selecting one of the dummy nodes to cover e(i1,i2), say vi1 , increases the size of the optimal solution

50

by one. Although e(i,i1) is covered by two vertices, the topology of the graph and cover local to
vi remains unchanged.

Suppose there is only one pair of dummy nodes in G′. At least one of the dummy vertices from
the pair {vi1 , vi2} must be in the optimal solution V ?

G′ , since they are the endpoints of the edge
e(i1,i2). If only one is in the optimal solution, say vi1 , we can discard it and return V ?

G = V ?
G′ \{vi1}

as an optimal solution to Vertex-Cover on G.

If both vi1 and vi2 are in V ?
G′ , we must discard both and add either vi or vj to the solution for

V ?
G. If vi or vj is also in V ?

G′ , then the adjacent dummy vertex is extraneous and V ?
G′ is a suboptimal

cover. Supposing otherwise, without loss of generality, say vi, vi1 and vi2 are in V ?
G′ and V ?

G′ is an
optimal cover; this is a contradiction since V ?

G′\{vi1} provides a vertex cover of smaller cardinality.
Therefore neither vi nor vj is in V ?

G′ , and we may arbitrarily set V ?
G′ =

(
V ?
G′ \ {vi1}

)
∪ {vi}. This

provides another vertex cover for G′ which is of equal cardinality, and thus is optimal. Now we
are in the first case again.

If there are more pairs of dummy vertices, this argument may be applied iteratively to adjacent
pairs in G′ until each pair of dummy vertices has only one vertex in V ?

G′ . If there is exactly one
dummy vertex from each pair in the optimal vertex cover, these may be removed to provide an
optimal vertex cover V ?

G for G.

An example WSDUDP construction WS (G) is shown in Figure 4.4, to provide intuition for
the gadgets used in the reduction. Each edge of the graph G′ (actual or dummy) corresponds to
a disk in WS (G), and each vertex (actual or dummy) corresponds to a point in Q. A point in Q
pierces two disks in WS (G) if the degree of the corresponding vertex in G′ is two; points pierce
three disks if their corresponding vertices have degree three. This ensures that there is a one-
to-one mapping between the solution to the constructed WSDUDP instance, and the minimum
vertex cover of the modified graph that it represents.

In the reduction we use wires, which are formally defined below. In essence, a wire is a set
of disks which are arranged so that any disk intersects at most two others, and for any pair of
disks with a non-empty area of intersection, this area contains a point. Conversely, any point
in the wire pierces exactly two disks, so that given a wire with mw disks, the cardinality of the
minimum set of points piercing all disks is dmw/2e. We also use stacks, where a stack is a set of
disks whose centre points are collinear on a vertical line.

Lemma 4.7. w horizontal wires may be placed so that they are vertically adjacent in the WS-
DUDP setting, for any w > 0, so that the solution in one wire is independent from that of all
other wires.

Proof. By placing the disk centres of all wires directly above one another to create sets of stacks,
the solution for each wire is independent of all others. Suppose that there are w wires, and the
strip has height h. If the lenses formed by the area of intersection between consecutive disks on a
wire have height h` < h/w, then the lenses do not intersect any other disks. However, we require
extra room for gadgets, so we restrict each lens to half this height, h` = h/2w. The minimum

distance between disk centres on a wire is thus ddisk > 2
√

1− h2` .

A wire wi is a sequence of disks positioned so that consecutive centres are spaced ddisk units

apart, not necessarily collinearly, where 2
√

1− h2` < ddisk ≤
√

2 + 2
√

1− (3h`/4)2, so that there

51

trans-2

cis-3

trans-3

cis-2

(a) Given a graph G, we compute a planar embedding (see Section 4.5.1 for vertex classes).
trans-2

trans-3

cis-2trans-3

cis-2

(b) The cis-3 vertex has been replaced with a trans-3 vertex and a cis-2 vertex (i.e. the edge has been
‘bent’ by adding a new vertex on the edge).

(c) Dummy vertices are added at the intersection points of edges of the graph with vertical lines incident
upon all vertices.

(d) Dummy vertices have been added onto edges so that adjacent stacks only vary in cardinality by one,
and all edges of the input graph have even numbers of dummy vertices incident upon them.

}}

dvertdvert/2 ddisk

`1

`2

(e) We construct a series of stacks of disks, where disks in adjacent stacks have slight overlap. The disk
centres in each stack are aligned vertically and separated by a fixed distance dvert. The number of disks
in adjacent stacks may only vary by one. If two consecutive stacks have the same number of disks, the
centres are aligned horizontally and separated by ddisk. If two consecutive stacks have differing numbers
of disks, the centres are staggered vertically by dvert/2, so that each disk centre is ddisk from two disk
centres in the adjacent stack (thus, these stacks are distance

√
d2disk − d2vert apart). The points of Q are

indicated by squares; those points piercing three disks are drawn as empty squares. The centre points of
the disks P are displayed as filled circles.

Figure 4.4: A sample WSDUDP construction WS (G) for the NP-hardness reduction.

52

exists a small area of overlap between consecutive disks which contains a point in Q.6 Disk centres
on adjacent wires are placed dvert = 3h`/2 units apart vertically, and we define a stack as a set
of such vertically aligned disks. The centres of the disks in a stack are shifted within the strip
by dvert/2 relative to an adjacent stack when the number of disks in the two stacks differs, while
the distance between consecutive centres in each wire remains ddisk.

Lemma 4.8. There is a non-empty area of intersection between three disks in two consecutive
stacks when the centres of the stacks are shifted vertically by dvert/2 relative to each other, and

the distance ddisk ≤
√

2 + 2
√

1− (3h`/4)2.

Proof. Without loss of generality, assume that disks D1, D2 are in the left stack and D3 is in the
right stack, and their centrepoints are p1, p2, p3 respectively (see Figure 4.5). Let ⊥p1,p2 be the
perpendicular bisector between p1 and p2; p3 lies on ⊥p1,p2 . Let ∂Di denote the boundary of Di.
Then there is a unique point to the right of p1 and p2 at ⊥p1,p2 ∩∂D1 ∩ ∂D2, call this point pr.
If pr and p3 are at most unit distance apart, then D3 covers pr and there is a non-empty area of
intersection between D1, D2, and D3. Suppose dist (pr, p1) = dist (pr, p2) = dist (pr, p3) = 1, and

we assumed that dvert = 3h`/2, so dist (p1, p3) = dist (p2, p3) =

√
2 + 2

√
1− (3h`/4)2. Therefore,

the lemma holds when ddisk ≤
√

2 + 2
√

1− (3h`/4)2, as claimed.

1

1
3h/4

√
1− (3h/4)2

ddisk

D1

D2

D3

p1

p2

p3
pr

Figure 4.5: The construction demonstrates that there is a non-empty area of intersection between

three disks when configured as shown and ddisk ≤
√

2 + 2
√

1− (3h`/4)2.

6Note that 2
√

1− h2
` <

√
2 + 2

√
1− (3h`/4)2 for h` > 0.

53

4.5.1 Gadgets

In the graph, we may encounter vertices of degree one, two, or three. With each vertex in our
construction, wires may begin, end, split, merge, or continue unchanged. For vertices of degree
one, the incident edge will correspond to a terminal disk on a wire (recall the definition of a wire
from page 51). For vertices of degree two, if one edge leaves to the left and the other to the right
in the embedding, this is a trans-2 vertex7, and we handle it by continuing all wires. If both edges
go in the same direction (left or right), we call this a cis-2 vertex, and we have a gadget to merge
the pair of wires corresponding to the edges. Analogously, we have gadgets for both the trans-3
and cis-3 degree three vertices. Finally, we build a gadget to increase the number of vertices on
an edge. With each gadget, we apply the analogous modification to G′ by adding dummy vertices
to the respective edges. This ensures that an optimal solution to WS (G) corresponds exactly to
an optimal vertex cover for G′.

(a) The cis-2 gadget. Two wires terminate
such that a single point pierces the last disk
in each wire.

Du

Dl

Dc

(b) The trans-3 gadget. One wire divides to
become two (alternatively, two wires merge to
become one).

(c) The cis-3 gadget combines the cis-2 and
trans-3 gadgets so that three wires terminate.

Figure 4.6: The gadgets for the WSDUDC NP-hardness reduction.

cis-2 Gadget

In this case, a pair of wires will terminate, and since the two terminal disks correspond to a pair
of edges sharing a vertex, we place a vertex in the area covered by both disks and no others. An

7Borrowing from the Latin terms in isomerism, trans means “on the other side”, and cis means “on the same
side”. We label them relative to a vertical line through the vertex, so a cis vertex has all incident edges to one side
of the vertical line.

54

extra column of dummy nodes should be used to extend all other wires if the vertex is on an
interior face of the planar embedding of the graph, since two wires are terminated simultaneously,
and we may only shift wires by dvert/2 with each column (see Figure 4.6a).

trans-3 Gadget

Suppose we have an upper wire ending in disk Du and a lower wire ending in disk Dl, and they
merge into a single wire beginning with disk Dc. We place Dc at a point so that the distance
between the centres of both Dc to Du and Dc to Dl is ddisk, as described in Lemma 4.8. By
placing a vertex in Dc∩Du∩Dl, a single point pierces three disks, which corresponds to a vertex
which can cover three edges in the graph (see Figure 4.6b).

cis-3 Gadget

For this gadget, we combine the trans-3 and cis-2 gadgets to build a cis-3 configuration. In the
planar graph embedding, this corresponds to introducing a bend in the lowest edge incident to
the cis-3 vertex with a dummy vertex, so that it becomes a trans-3 vertex (see Figure 4.6c).

Card+ Gadget

If the total number of dummy vertices added to an edge of G is odd, we require a gadget which
increases the number of disks between a pair of points on a wire by one. An extra disk whose
centre is very close to the centre point of a disk on the wire (Figure 4.7) allows points to be placed
so that the wire remains independent from adjacent wires, while increasing the number of disks
on the wire by one.

D1 D2

D3

q1 q2 q3p1 p2

Figure 4.7: The Card+ gadget. We add a disk D2 into a wire by inserting the disk very close
to one of the others on the wire. Suppose that we originally had D1 and D3 on the wire, and
point p1 was in their intersection, i.e. p1 ∈ D1 ∩ D3. Now we add a disk D2 whose centre q2
is beside q1, and p1 is moved so that p1 ∈ D1 ∩ D2, p1 6∈ D3. A new point p2 is placed so that
p2 ∈ D2 ∩D3, p2 6∈ D1. Now the wire contains one more disk than previously, and the new disk
does not cover any points from adjacent wires.

Now an instance of the WSDUDP problem WS (G) may be constructed from any planar
graph G with no vertex of degree greater than three. A solution Q? to WS (G) is also a solution
V ?
G′ to the Vertex-Cover problem on G′ = (V ′, E′), where vi ∈ V ′ is mapped to qi ∈ Q and
qi ∈ Dj ↔ vi ∈ ej ∈ E′. By Lemma 4.6, we can find a minimum vertex cover V ?

G for G from V ?
G′

in polynomial time. Therefore, there is a hitting set of size c + (|D| − |V |) /2 for WS (G) if and
only if there exists a vertex cover of size c for G. The optimal hitting set for D uses all points

55

corresponding to the set of vertices in the vertex cover, plus exactly half of the extra points added
in the construction of WS (G) from G, by Lemma 4.6. The number of disks stacked vertically
in any column of WS (G) is in O (m), where m is the number of edges and n is the number of
vertices in the graph G. The number of such stacks is in O (n), so the total number of disks
and points in the WSDUDP construction is O (mn). In Lemma 4.9, we show that the number
of bits required to represent the coordinates of the disk centres and points may be bounded by a
polynomial in the size of the input.

Lemma 4.9. The coordinates of the disk centres and points may be expressed using a number of
bits that is polynomial on the size of the input.

Proof. We will demonstrate that all points are separated from other points by distances that are
polynomial on the size of the input in each dimension, and hence their logarithms are linearly
related. First we consider the y-coordinate, which is the axis orthogonal to the strip. In the
construction, we place all points and disk centres on horizontal grid lines that are spaced by
3h`/4 = 3h/8w, where h is the height of the strip, and w is the maximum number of edges of the
graph that may intersect a vertical line, so w ∈ O(m). Therefore, the vertical distance between
points may always be expressed using O (logw + log (1/h)) bits, which is polynomial in the size
of the input, and so the same number of bits suffices to represent the y-coordinates.

The x-coordinates of points are placed at a unit distance to the right or left of a disk centre
(since we consider the disks closed), and so we will show that the bounds hold for the disk

centres only. Recall that the disk centres are separated by a value ddisk, where 2
√

1− h2` <

ddisk ≤
√

2 + 2
√

1− (3h`/4)2. The upper bound on the difference in the x-coordinate is 1 +
√

1− (3h`/4)2, realized when adjacent disk centres are shifted vertically by 3h`/4 relative to
each other, as shown in Figure 4.5, such as in a trans-3 gadget. We will show that there exists
a coordinate between these bounds that can be expressed in polynomially many bits on the
size of the input by showing that the difference between the bounds may be lower bounded by a
polynomial in the size the input. Hence a rational number with polynomially many bits fits in the

desired region. Let δ = 1+
√

1− (3h`/4)2−2
√

1− h2` , the difference between the upper and lower

bounding functions on the horizontal distance between disk centres. We observe that a parabola
such as 0.05h2 serves as a lower bound on this difference function in the range h` ∈ [0 . . . 1]; a
section of the plot of these two functions is illustrated in Figure 4.8.

To formalize this bound, we first take the derivative of δ−0.05h2` to obtain δ′ = − 9h`
4
√

16−9h2`
+

2h`√
1−h2`

−h`/10. This function has a single real root at h` = 0, and so we conclude that 0.05h2` ≤ δ
for all values h` ∈ [0 . . . 1]. Since h` may be expressed as a polynomial of h and m, the distance
between disk centres in the x-coordinate may also be expressed as a polynomial of the input,
because there exists such a value for ddisk between the upper and lower bounds. Therefore, the
upper bound may be computed to a number of bits that is logarithmic in a polynomial of the
input, and so one may determine the x-coordinates of the centres of the disks by computing from
left to right with these bounds.

This completes the proof of Theorem 4.5.

56

7× 10−7

6× 10−7

5× 10−7

4× 10−7

3× 10−7

2× 10−7

1× 10−7

0
0

2× 10−4 4× 10−4 4× 10−4 8× 10−4 1× 10−3

h

units

Figure 4.8: A plot suggesting that 0.05h2` (red) serves as a lower bound for 1 +
√

1− (3h`/4)2 −
2
√

1− h2` (blue).

4.6 Conclusions and Future Work

We have outlined several approximation algorithms for the WSDUDC problem, along with a
proof of NP-completeness for the problem. We began with a O (mn+m logm+ n log n) time
6-approximate algorithm for strips of height 1/

√
2. The general 3d1/

√
1− h2e-approximate algo-

rithm and the 4-approximate algorithm for strips of height≤ 2
√

2/3 both run inO
(
m4n+ n log n

)

time. Finally, we presented a 3-approximate algorithm for strips of height ≤ 4/5 which runs in
O
(
m6n

)
time.

There are a few plausible directions for future work. It seems likely that an improved approx-
imation algorithm could be obtained using the shifting strategies discussed in Section 2.1.6. It
would also be interesting to see how well the problem could be approximated if the setting were
changed to one where the points are confined to the strip, but the disk centres are unconstrained.
While the dynamic programming solution for covering PR should work with small modifications,
it is unclear whether the points in PR can still be covered optimally (although we conjecture
that an optimal solution is possible). Finally, an improvement to the SSDUDC algorithm would
improve the running time of the general approximation algorithm and the 4-approximation al-
gorithm, since the running time of SSDUDC is the bottleneck on the running time for these
algorithms.

57

5
Improved Approximation Algorithms for Discrete Unit Disk Cover

We begin in Section 5.1 by noting that combining the A-LSDUDC algorithm (Algorithm 3.3) of
Chapter 3 with techniques from the algorithm of Carmi et al. [29] provides a 22-approximation
algorithm to the DUDC problem1. The remainder of the chapter outlines the best known scheme
for a tractable2 DUDC approximation algorithm, where the approximation factor and running
time are determined by the choice of WSDUDC algorithm that is used. These range from a
15-approximate algorithm which runs in O

(
m6n+ n log n

)
time to a 18-approximate algorithm

which runs in O (mn+m logm+ n log n) time.

5.1 22-Approximate Algorithm for Discrete Unit Disk Cover

As described in Section 2.3 (page 24), Carmi et al. [29] prove that in their framework, any disk
can be used in up to eight applications of the A-LSDUDC algorithm, for which they have a 4-
approximation. These operations, combined with a 6-approximation algorithm for box (Section
2.3.1) results in an 8× 4 + 6 = 38-approximation algorithm for the general DUDC problem. We
have shown improvements that provide a 2-approximation for the A-LSDUDC problem, as stated
in Theorem 3.2, and so we now have an approximation ratio of 8 × 2 + 6 = 22 for general the
DUDC problem using Algorithm 2.5.

There are essentially two main components to Algorithm 2.5. First, the grid of size 3/2× 3/2
is applied to the input data. On each grid line, the A-LSDUDC algorithm (Algorithm 3.3)
is run twice (once for each side), and the number of relevant grid lines is bounded by O (n).
A-LSDUDC runs in O (mn+m logm+ n log n) time, and so the running time of the DUDC
algorithm is dominated by the box approximation algorithm.

Theorem 5.1. Given sets P of m points and D of n disks in the plane, we can compute a
22-approximation of the DUDC problem in O

(
m2n4

)
time in the worst case.

1Elements of this chapter have appeared in [39], [40], [46], [47] and [73].
2Often “tractable” is synonymous with polynomial time. In this context, we use tractable rather loosely and

subjectively, but the intent is to state that the algorithm is implementable and it could be expected to terminate in
a reasonable amount of time on real world data. The tractability of our 15-approximate algorithm is questionable,
but the 18-approximate algorithm is certainly within this definition.

59

5.2 15-Approximate Algorithm for Discrete Unit Disk Cover

We now improve on the algorithm of the previous section with the use of a different planar
decomposition. Let R{P,Q} be an axis aligned rectangle such that all points in P and all centres
of the disks in D are inside R{P,Q}. In the DUDC algorithm, we first divide R{P,Q} into horizontal
strips bounded by the line segments `0, . . . , `t (indexed from top to bottom) so that dist (`i, `i+1) =
1√
2

for each i ∈ {0, . . . , t − 1}. Note that `0 and `t are the top and bottom boundaries of the

rectangle R{P,Q} respectively, and dist (a, b) is the minimum Euclidean distance between two line
segments a and b. We denote the horizontal strip bounded by the lines `i and `i+1 as [`i, `i+1].

The DUDC algorithm has two fundamental components. In the first step, we describe an
algorithm for covering all points in P which are line-separable from a disk in D by any line in the
set {`1, . . . , `t−1}. By carefully partitioning the set P, we obtain a 12-approximation algorithm
for this setting, which we call the Outside Strip Discrete Unit Disk Cover (OSDUDC) problem
(not to be confused with the Strip-Separated Discrete Unit Disk Cover (SSDUDC) problem of
Section 2.2.3, which is applied to a single strip only). In the second step, we apply one of the
WSDUDC algorithms from Chapter 4 to cover the points in P ∩ [`i, `i+1], which are covered only
by the disks centred inside the strip [`i, `i+1], for each i ∈ {0, 1, . . . , t− 1} (this is the case for all
points remaining after running the OSDUDC algorithm).

5.2.1 Outside Strip Discrete Unit Disk Cover

In this section, we present a 12-approximation algorithm for finding a cover for all points P◦ ⊆ P,
where for each p ∈ P◦, if s is the strip containing p then p may be covered by a disk centred
outside of s.3

Definition 5.1. OSDUDC Point Property: The set of points P◦ ⊆ P to be covered by the
OSDUDC problem are the points p ∈ P where p may be covered by a disk in D centred outside of
the strip containing p.

Let Di be the set of disks centred in the horizontal strip [`i−1, `i]. Let PLi (⊆ P) be the set
of points below the line `i and covered by the disks in Di but not by any disk centred above the
line `i−1 (such points belong to PLi−1, see Figure 5.1). Similarly, let PUi (⊆ P) be the set of points
above the line `i and covered by the disks in Di+1 but not by any disk centred above the line
`i−1 (these will be in either PLi−2 or PLi−1) or below the line `i+1 (if not covered from above, such
points belong to PUi+1). The sets PL1 ,PL2 , . . . ,PLt ,PUt ,PUt−1, . . . ,PU1 ⊆ P are determined greedily
as follows:

1. Set P ′ = P.

2. For each i ∈ {1, 2, . . . , t} compute PLi = P ′ ∩ Di and set P ′ = P ′ \ PLi .

3. For each i ∈ {t, t− 1, . . . , 1} compute PUi = P ′ ∩ Di+1 and set P ′ = P ′ \ PUi .

We illustrate the possible classifications of points in Figure 5.1. Suppose the point p is contained
in strip s. Basically, if the point is covered by a disk centred above s, then the highest such disk

60

`i−1

`i

`i+1

`i+2

p

p ∈ PL
i−1

D1

D2

D3

D4

(a) p ∈ D1, and D1 ∈ Di−1.

`i−1

`i

`i+1

`i+2

p

p ∈ PL
i

D1

D2

(b) p ∈ D1, and D1 ∈ Di.We check for this con-
dition if (a) does not apply.

`i−1

`i

`i+1

p

p ∈ PU
i+1

D1

D2

D3

`i+2

(c) p ∈ D3, and D3 ∈ Di+2. We check for this
case if neither of the conditions shown in (a) and
(b) apply. Notice that p ∈ D1, where the centre
of D1 and p are in the same strip. Such disks do
not affect the classification procedure here.

`i−1

`i

`i+1

p

p ∈ PU
i

D1

D2

`i+2

(d) p is covered by disks D1 and D2, both of
Di+1, and none of the conditions shown in (a),(b)
and (c) apply. If this last condition also does not
apply, then the disks can only be covered by disks
centred in the same strip as p. We address such
points later.

Figure 5.1: Some examples to illustrate how the points of P are classified for the OSDUDC
algorithm. The disk which determines membership is shown in bold.

61

determines membership. If this is not the case, then the lowest disk centred below s determines
which set p belongs to. Disks centred in s are irrelevant, as far as this classification is concerned.

Note that the sets of points are determined by the disks covering them, and not the strip
containing them. All sets PLi are covered by the disks in Di, i.e. those disks centred inside the
horizontal strip [`i−1, `i]. Similarly, all sets PUi are covered by the disks in Di+1, i.e. the disks
in D whose centres are inside the horizontal strip [`i, `i+1]. No points in PUi are covered by any
disk centred above the line `i−1.

Without loss of generality assume that t, the number of strips, is t = 4s, for s ∈ Z+. Consider
six sets of sets related to Pi for i ∈ {1, 2, . . . 6} defined below:

S1 = {Q1j

(
= PL1+4j

)
|j = 0, 1, . . . , s− 1}

S2 = {Q2j

(
= PL2+4j

)
|j = 0, 1, . . . , s− 1}

S3 = {Q3j

(
= PL3+4j

)
|j = 0, 1, . . . , s− 1}

S4 = {Q4j

(
= PL4+4j

)
|j = 0, 1, . . . , s− 1}

S5 = {Q5j

(
= PU1+2j

)
|j = 0, 1, . . . , 2s− 2}

S6 = {Q6j

(
= PU2+2j

)
|j = 0, 1, . . . , 2s− 2}.

The first four sets include every fourth point set of the type PLj , and the last two sets consist

of every other set of the type PUj . We characterize the elements in each of the sets Si for
i ∈ {1, 2, . . . , 6} using the following lemma:

Lemma 5.1. If p ∈ Quv and p′ ∈ Quw are two points such that for u ∈ {1, 2, 3, 4}, v ∈ {1, 2, . . . s−
1}, w ∈ {1, 2, . . . s − 1}, and v 6= w, then a single disk in D cannot cover both the points p and
p′. The same is true for u ∈ {5, 6}, v ∈ {1, 2, . . . , 2s− 2}, w ∈ {1, 2, . . . , 2s− 2} and v 6= w.

Proof. Case u = 1: From the definition of Q1v and Q1w, Q1v = PL1+4v and Q1w = PL1+4w. Now,
from the definition of PL1+4v and PL1+4w each element of PL1+4v and PL1+4w is covered by the disks
centred inside the horizontal strip [`4v, `1+4v] and [`4w, `1+4w], respectively. Since v 6= w and the
height of each horizontal strip is 1√

2
, so the distance between a point inside the strip [`4v, `1+4v]

and a point inside the strip [`4w, `1+4w] is greater than 2. In this case the lemma follows from
the fact that the disks are unit radius disks.

Cases u ∈ {2, 3, 4}: The argument is analogous to that of the first case.

Case u = 5: From the definition of Q5v and Q5w; Q5v = PU1+2v and Q5w = PU1+2w. Now,
from the definition of PU1+2v each element of PU1+2v is covered by the disks centred inside the
horizontal strip [`1+2v, `2+2v], but no points in PU1+2v are covered by a disk centred above the
line `2v. Similarly, from the definition of PU1+2w, each element of PU1+2w is covered by the disks
centred inside the horizontal strip [`1+2w, `2+2w], but no points in PU1+2w are covered by a disk
centred above the line `2w. Since v 6= w, there does not exist a disk which covers one point in
PU1+2v and a point in PU1+2w.

Case u = 6: The argument is analogous to that of the previous case.

The OSDUDC algorithm for covering the points in PL1 ,PL2 , . . . ,PLt , PUt , PUt−1, . . . ,PU1 is
described in Algorithm 5.1.

3Other points not having this property (i.e. those points only covered by a disk centred in s) may be covered
when we use the OSDUDC algorithm, but this has no effect on the final running time or approximation factor of
the DUDC algorithm.

62

Algorithm 5.1 OSDUDC(P,D)

1: Input: A point set P and a unit disk set D.
2: Output: A set D?1 ⊆ D covering P◦ with a 12-approximation (see Definition 5.1, page 60).
3: D?1 ← ∅
4: P ′ ← P.
5: for i := 1 to t do
6: PLi ← P ′ ∩ Di
7: P ′ ← P ′ \ PLi
8: end for
9: for i := t to 1 do

10: PUi ← P ′ ∩ Di+1

11: P ′ ← P ′ \ PUi
12: end for
13: for (i = 1, 2, . . . , t) do
14: D′ ←A-LSDUDC

(
PLi ,D, `i

)

15: D?1 ← D?1 ∪ D′
16: end for
17: for (i = t, t− 1, . . . , 1) do
18: D′ ←A-LSDUDC

(
PUi ,D, `i

)

19: D?1 ← D?1 ∪ D′
20: end for
21: return D?1

Lemma 5.2. Algorithm 5.1 computes a 12-factor approximation for the OSDUDC problem in
O (mn+m logm+ n log n) time.

Proof. The sets of points PL1 ,PL2 , . . . ,PLt ,PUt ,PUt−1, . . . ,PU1 can be partitioned into 6 sets of sets
such that a disk cannot cover a point from each of Quv ∈ Su and Quw ∈ Su, v 6= w, by Lemma
5.1. Thus, the approximation factor of the lemma follows from the fact that the A-LSDUDC
algorithm provides a 2-factor approximation (see Section 2.2.1), and it can participate in at most
6 sets. Since we can divide the plane into strips such that each strip contains at least one point
in P, t = O (n). The time complexity of the lemma follows from the fact that each disk in D can
participate at most 6 times in applications of the A-LSDUDC algorithm and the running time of
the A-LSDUDC algorithm is O (mn+m logm+ n log n).

5.2.2 The Discrete Unit Disk Cover Algorithm

We describe the algorithm for the DUDC problem in Algorithm 5.2, using Algorithm 5.1 and a
WSDUDC solution (Chapter 4) as subroutines.

Theorem 5.2. Algorithm 5.2 for DUDC is is a 12+c-approximation algorithm, taking T time in
the worst case. The pair (c, T) is determined by the choice of WSDUDC algorithm, and possibil-
ities include (3, O

(
m6n+ n log n

)
), (4, O

(
m4n+ n log n

)
), and (6, O (mn+m logm+ n log n)).

Proof. The approximation result follows from Lemma 5.2, which established a 12-approximation
for OSDUDC, which is added to the approximation factor of the selected WSDUDC algorithm.

63

Algorithm 5.2 DUDC(P,D)

1: Input: A set of points P and a set of unit disks D.
2: Output: A set D? ⊆ D which covers P.
3: Let si ← [`i, `i+1] for i = 0, 1, . . . , t− 1 be the set of horizontal strips of height 1√

2

4: D?1 ← OSDUDC (P,D) (Algorithm 5.1)
5: P ← P \ (D?1 ∩ P)
6: D?2 ← ∅
7: for i:=0 to t-1 do
8: Di ← the set of disks having centres in si
9: Pi ← P ∩ si

10: D?2 ← D?2 ∪WSDUDC (Pi,Di) (choose any WSDUDC algorithm)
11: end for
12: return D?1 ∪ D?2

For the overall time complexity of Algorithm 5.2, observe that in line number 4, the running
time of OSDUDC(P,D) is O (mn+m logm+ n log n) (Lemma 5.2). In line number 10, the
running time of each call to WSDUDC(Pi,Di) is determined by that of the particular WSDUDC
algorithm chosen. This ranges from O (|Di||Pi|+ |Di| log |Di|+ |Pi| log |Pi|) for the 6-approximate
algorithm, to O

(
|Di|6|Pi|+ |Pi| log |Pi|

)
for the 3-approximate algorithm. Therefore, the running

time of the for loop (lines 7-11), and so the DUDC algorithm overall, is dominated by WSDUDC.

5.3 Conclusions and Future Work

We have considered the Discrete Unit Disk Cover (DUDC) problem, where a set P of n points
and a set D of m unit disks in the 2-dimensional plane are given, and the objective is to find
a minimum cardinality subset D? ⊆ D such that unit disks in D? cover all the points in P.
We provide a set of approximation algorithms for the DUDC problem, where the approximation
factor and running time depend on the choice of WSDUDC algorithm. A summary of our results
is presented in Figure 2.2.

Because the results depend on A-LSDUDC and WSDUDC, any improvement to the approx-
imation algorithms for these problems directly provides improvements to these DUDC results.
Perhaps the best improvement would be obtained with an improved decomposition (as opposed to
the square- or strip-based ones explored in this thesis). An exact algorithm for A-LSDUDC would
reduce the approximation factor of Algorithm 5.2 to 9 when combined with the 3-approximate
WSDUDC algorithm (Algorithm 4.6). Finally, it would be interesting to see a PTAS result which
fills the gap between our algorithm and the existing PTAS for DUDC.

64

6
Constrained Polygonal Vertex Cover Problems and the Hausdorff

Core

In the next three chapters, we study the Hausdorff Core of a polygon1. Essentially, given a
simple polygon P , a Hausdorff Core of P is a convex polygon Q contained in P that minimizes
the Hausdorff distance between P and Q. Given two polygons P and Q, the measure may be
expressed formally as2:

H (P,Q) = max{sup
p∈P

inf
q∈Q

dist (p, q) , sup
q∈Q

inf
p∈P

dist (p, q)},

where dist (p, q) is the Euclidean distance from p to q. Additionally, we require that Q, which
is considered to be an approximation of P , is convex and fully contained in P . We call this
approximation a Hausdorff Core of a polygon.

This is equivalent to a Unit Disk Piercing problem as follows: suppose we place unit disks on
the vertices of a polygon P , so that disk Di ∈ D has centre point pi. We wish to pierce all disks
in D with a convex polygon Q. If there exists a point qi ∈ Q ∩Di for each Di ∈ D, then we say
that Q pierces D. If we additionally require that Q ⊆ P , then Q is a Hausdorff Core of P with
unit Hausdorff distance (we establish this relationship in Lemma 6.3).

This work is motivated by the problem of path planning in the context of navigation at sea. In
this application, a plotted course must be tested against bathymetric soundings to ensure that the
ship will not run aground. We suppose the soundings have been interpolated into contour lines
[1] and the plotted course is given as a polygonal line. Although contour lines can be arbitrarily
complicated, typical shipping routes run far from potential obstacles for the majority of their
trajectories, and only short segments require more careful route planning. As a result, most tests
for intersection between a path and a contour line should be easy: we could subdivide the map
into polygonal regions so that most intersection tests are against regions with properties that
permit fast tests, ideally reserving more expensive tests for the rare cases where the path comes
close to intersecting the terrain.

The search for easily-testable areas motivates the study of the simplification of a contour
line into a simpler object which is either entirely contained within the contour line or else fully
contains it. In this work we consider the case in which the simplified polygon must be convex
and contained.

1Elements of this chapter have appeared in [53] and [74].
2The Hausdorff distance is equivalent to Blaschke’s Nachbarschaftsmaß [86].

65

Maximum Area Convex

Hausdorff Distance

Subset (MACS)

Figure 6.1: The optimal solutions for approximating polygons may vary significantly for different
error metrics. In this example, we show the optimal solutions for the Hausdorff distance and the
maximum area convex subset (MACS), also known as the ‘potato’ [31]).

Definition 6.1. The Hausdorff Core Problem: Given a simple polygon P , the Hausdorff Core
problem on P is to determine a convex polygon Q, such that Q ⊆ P and H (P,Q) is minimized,
where H (P,Q) denotes the Hausdorff distance between P and Q. We call Q a Hausdorff Core of
P .

We restrict the discussion to simple polygons, where we define a polygon P as a closed region
of the plane, with the boundary of the polygon ∂P represented as a polygonal chain on n distinct
vertices P = {p0, . . . , pn−1} and n edges ei = (pi, pi′), where i′ = (i+ 1) mod n. Finally, a
polygon P is convex if for all points p and p′ in P , the line segment pp′ is contained in P .

The Hausdorff Core problem is intended to capture a sense of “closeness” between the input
and approximating polygons. While there are a number of measures that may be used (we discuss
a sampling of metrics in Section 6.2.6), the Hausdorff Core is perhaps most intuitive in that it
is optimized when the maximum distance between the polygons is minimized. See Figure 6.1 for
an illustration of approximating polygons when minimizing the Hausdorff distance between the
polygons as well as minimizing the difference in area between the polygons.

6.1 Paradigms for Approximating Polygons and Polygonal Chains

Suppose that we have a contour line represented as a piecewise linear curve or polygon with n
points (for our application, this corresponds to some contour of the ocean floor at a depth of x
metres). If we wish to represent this same polygon or polygonal chain with an approximation
which minimizes the error to the original curve using n/c points for some constant c, this is
known as a min-ε problem. Alternatively, a min-# problem is one in which we wish to bound
the error of approximation by some maximum value ε with respect to the original polygon, while
using a minimum number of vertices (we discuss these paradigms in more detail in Section 6.2.6).
Our application requires a monotonicity constraint: if a ship has a draft of x′ metres, where
x′ < x, then we must be sure that our approximation represents either a depth of d ≥ x or
d ≤ x. In other words, an approximating polygon cannot cross the original polygon representing
the contour. Our research is a variant of a min-ε type problem, where the constraint is that the

66

approximating polygon is convex and contained by the input, rather than imposing a restriction
on the number of vertices.

In general, an approximation will not make exclusive use of the vertices in P . For example,
if we are given a convex polygon which we wish to approximate on the outside, vertices must be
placed somewhere outside the polygon. Otherwise, you cannot approximate the polygon at all!
Some of the approximation schemes used for curves provide insight into other techniques as well
as into terrain approximation algorithms, so we begin by reviewing techniques which use subsets
of the vertices in the original curve.

6.2 Related Work

Approximation algorithms for curves were initially concerned with searching for discretizations
of curves defined by functions [17, 77, 150], but we are interested in approximating piecewise
linear (also known as digital) curves and polygons. The problem of approximating piecewise
linear curves with simpler piecewise linear curves without an additional monotonicity constraint
has been well studied [55, 97, 103, 131, 138], and most of the recent work in the field discusses
the optimality of the algorithms with respect to various error metrics. There are three basic
approaches to the problem [55]:

1. delete specific features of the terrain represented by the line;

2. approximate the line with a mathematical function;

3. eliminate points along the line until some error threshold is met.

A critical limitation of these approaches with regard to our application is that each approxi-
mation technique reviewed here creates an approximation where all points in the approximation
were found in the original curve, i.e. given an approximation P ′ of the curve P , ∀p ∈ P ′, p ∈ P .
Our application has the condition that the approximation must not cross the original curve, and
so we may need to use points in the approximation that were not in the original curve. To see an
example of an optimal approximating polygon for the Hausdorff Core problem which uses none
of the vertices of P , peek ahead to Figure 6.9 (page 81).

6.2.1 Feature-Based Approximation

The first approach is not often used because it requires the use of domain knowledge. Also, for
our application this idea is unsavoury. As an example, if a region of shoreline is characterized
by a series of fiords, you might delete all of the fiords but a few [55], and the remaining ones are
expected to convey the nature of the shoreline. This is not the sort of approximation that we are
interested in, because it is of a subjective nature.

6.2.2 Mathematical Approximation

The second idea is more appealing, and there are numerous functions that may be used to
approximate a line. Some techniques that might be used are mean or centroid functions to
produce a piecewise linear approximation. For example, using the mean, we begin by selecting a

67

constant number (say c) of points to approximate by replacing up to c points with their mean.
The points are then traversed in the order that they appear on the chain. While consecutive pairs
of points are relatively linear, the coordinates of the points are added together. If the number of
points summed together reaches c or if the sequence of summed points reaches some threshold of
non-linearity, then the mean position of the set of encountered points is computed. The algorithm
continues by beginning again with the next point in the sequence [102]. Douglas and Peucker
[55] concluded that the use of functions is more appropriate for smoothing applications than for
generalizing the curve. They found that the functions mentioned here tended to over-represent
the curve in smooth regions, and that extreme points may be removed. The removal of extreme
points may be undesirable if these points are critical to the true nature of the curve.

6.2.3 Error Tolerance-Based Approximation

The final approach to approximating a curve is to iteratively remove points until some predefined
error threshold is met. Douglas and Peucker3 [55] proposed a technique where the endpoints of
the curve are joined, and the vertex p with the highest error is found. Here, the error is the
distance from p to the closest point on the curve, and the maximum such value is exactly the
Hausdorff distance between the curves. If the error is acceptable, all points but the endpoints are
removed, and the algorithm finishes. Otherwise, the curve is split in two using p as a pivot, and
the algorithm continues recursively on the two sub-curves [55, “method two”]. The algorithm is
illustrated on an example curve in Figure 6.2. Several researchers [159, 90] have concluded that
their eponymous Douglas-Peucker simplification algorithm is best, both in terms of subjective
and objective measures. Note that it is non-optimal in terms of minimizing the number of points
required to obtain a given error bound however (we discuss more rigorous algorithms shortly).
An O (n log n) implementation of the algorithm was provided by Hershberger and Snoeyink [91].

These approaches dictate that all of the points in the approximation are also found in the
original curve. Formally, we can define the original curve to be composed of a set of n points
P = {p1, . . . , pn} ∈ R2. The approximate curve is defined by m points where 2 ≤ m ≤ n,
specifically P ′ = {p′1, . . . , p′m}, where for each point p′i ∈ P ′, we have p′i = pj for some i, j [131].
Sato [142] formalizes some useful conditions for this relation:

• Boundary condition - the endpoints of both curves are the same.

p1 = p′1, pn = p′m

• Monotonic condition - the relative ordering of the points is the same.

pj > pj−1, p′i > p′i−1

• Range - the range of possible values for an index i and j where pi = p′j is well defined.

j ≤ i ≤ j + n−m
3The same technique was presented a year earlier in 1972 by Ramer [136] and it was also described as the

iterative end-point fits algorithm by Duda and Hart [56, p. 338] in 1973, and they in turn credit G.E. Forsen with
the idea [56, p. 373]. However, Douglas and Peucker are generally credited with the technique.

68

Error threshold

p

p

p

p

p

p

Step 1 Step 2

Step 3 Step 4

Step 6Step 5

Figure 6.2: An example to illustrate the operation of the Douglas-Peucker technique for curve
approximation. The input curve (dashed) is first approximated by a line joining the endpoints.
At each step, the point with maximum distance to the approximate curve (indicated as p) is
identified over each interval of the approximation, and such points are added to the approximate
curve. The procedure iterates until all points are within the maximum acceptable error threshold
of the approximate curve.

69

6.2.4 Chain Coding Scheme

A different approach that might be used to approximate the curve is to have a preset number of
directions in which the approximating line may move, such as the four cardinal directions. Thus,
moving on a grid, you can define your approximation by providing the sequence of the directional
moves defining a path which approximates your curve. This technique is referred to as a chain
coding scheme [77, 78]. The problem with a chain coding scheme in our application is that we
are not guaranteed to get any reduction in the number of points required to represent our curve.

6.2.5 Two-Strip Solution

The Two-Strip solution is a form of error tolerance-based approximation, but there are enough
variants of this algorithm that it warrants further discussion. It was first presented as a method of
segmenting continuous curves by Reumann and Witkam [138], although there have been a number
of further works with similar concepts (e.g. [44, 92, 106, 107, 132, 139]). The basic technique
can be envisioned by having two strips parallel to the original curve at a distance of ε on each
side. If the new approximate curve is contained within the two strips, then the approximation is
considered an ε-approximation of the original curve (the distance is measured as the Hausdorff
distance). This is simplified by stating that each vertex pi of the original curve has a disk of
radius ε around it, C (pi, ε), and the new approximating path P ′ must intersect each of these
disks in order.

A hierarchical version of the two-strip solution was presented by Ballard [16], which he coined
Strip Trees. Essentially, he uses the Douglas-Peucker algorithm to find pivot vertices (refer to
Figure 6.2 for an illustration), and a hierarchical decomposition of the line segments is built by
progressing through the execution of the algorithm. By proceeding until all vertices are within
distance ε of the approximating curve, this algorithm will find a curve which solves the two-strip
problem, although there is no approximation guarantee in terms of minimizing the number of
vertices used in the approximating curve.

6.2.6 Error Metrics

There are several interesting error metrics that are commonly used that may be practical for
our application. Suppose that we wish to optimize the approximating curve. One optimization
scenario is that given an error metric and a threshold, one wishes to minimize the number of
segments in the approximating curve (the min-# problem). The inverse is to be given the num-
ber of desired line segments, and to minimize the error of the approximating curve (the min-ε
problem) [33]. There are straightforward techniques for solving each of these problems optimally
in O

(
n2 log n

)
for the L∞ metric, except the min-# problem with the line-based L∞ metric,

which requires O
(
n2 log2 n

)
time in the best-known technique [97].

min-# Metrics

Perez and Vidal [131] favour a sum of squares measure. Given a curve represented by sequence
of points pi, ..., pj which is approximated by the straight line pi, pj , they give us the L2 metric as
follows:

∆ (i, j) =

j−1∑

k=i+1

((ai,j + bi,jxk)− yk)2 ,

70

P ′

P

Figure 6.3: The dashed polygonal curve P ′ is an approximation of the solid polygonal curve P .
P ′ is a poor approximation visually and it has a large distance from P in terms of the Fréchet
metric (i.e. F (P, P ′)), but the Hausdorff distance between the curves, H (P, P ′), is small. This
figure is adapted from [7].

where ai,j = yi − bi,jxi and bi,j = (yj − yi) / (xj − xi).
Perez and Vidal [131] presented a dynamic programming algorithm which finds the globally

optimal solution with respect to almost any well defined error measure in O
(
mn3

)
time in general,

where n is the number of points in the original curve, and m is the number of points in the
approximating curve. For error measures that allow incremental computation (such as the square
of the Euclidean distance), the problem can be solved in O

(
mn2

)
time.

It is likely that the path with the minimum possible number of line segments for a given
approximation ε to a line does not use the original vertices. This problem is solved in a similar
fashion to the two-strip solution discussed previously, where we place a disk of radius ε centred at
each vertex of the line to be approximated, and then we seek the path with the minimum number
of line segments which intersects all of the disks in order. This can be considered a generalization
of the min-# problem discussed earlier. Guibas et al. [87] studied this problem for polygonal
chains, and their solution entails finding a minimum link path which intersects each disk. They
use an ordered stabbing technique [60] to find a path which satisfies the ε approximation of the
original curve under the Hausdorff metric, as well as an ε approximation according to the Fréchet
metric. This latter measure is colloquially known as the dog on a leash measure, since it can
be imagined that a man walks one path and the dog walks the other, while the dog is attached
to a leash of length ε. If both the man and dog can walk along their paths with varying but
non-negative speeds, then the distance between the paths is less than or equal to ε by the Fréchet
measure. Formally, given two polygonal chains P : [0, p] → V and P ′ : [0, p′] → V , the decision
version of the Fréchet distance is [7]:

Fε
(
P, P ′

)
:= {(i, j) ∈ [0, p]× [0, p′]| dist

(
P (i) , P ′ (j)

)
≤ ε},

where dist (p, q) is the Euclidean distance from p to q. We can also express the general measure
formally [59]:

F
(
P, P ′

)
= min

f :[0,1]→P,g:[0,1]→P ′
max
t

dist (f (t) , g (t)) ,

where f and g are continuous nondecreasing functions which define the curves P and P ′ over the
interval [0, 1].

The Fréchet metric is preferable in some contexts to the Hausdorff distance because it is
possible for the Hausdorff distance to be small although the approximation appears poor, as
shown in Figure 6.3. However, the Fréchet metric is not intended for closed curves, and a
modified version must be used for such applications [7]. The Hausdorff distance is standard for
expressing the distance between polygons as a measure of their similarity [6, 32, 71, 86, 114, 141].

71

Other metrics of possible interest:

• Geodesic width [59] - Similar to the Fréchet metric, but uses the shortest link path which
does not intersect P or P ′ as the distance measure rather than standard Euclidean distance:

W
(
P, P ′

)
= min

f :[0,1]→P,g:[0,1]→P ′
max
t

distE (f (t) , g (t)) ,

where distE (p, q) is the length of the shortest path from p to q which avoids P and P ′, and
f and g are again continuous nondecreasing functions.

• Link width [59] - Now we seek the path which does not intersect P or P ′ with the smallest
number of segments:

L
(
P, P ′

)
= min

f :[0,1]→P,g:[0,1]→P ′
max
t

distL (f (t) , g (t)) ,

where distL (p, q) is the minimum number of segments in a path from p to q which avoids
P and P ′. f and g are continuous functions, but are not required to be non-decreasing for
this measure.

• Eggleston measure [86] - Similar to the Hausdorff metric, but the sum of the two terms is
taken rather than the maximum:

dE
(
P, P ′

)
= sup

p∈P
inf
p′∈P ′

dist
(
p, p′

)
+ sup
p′∈P ′

inf
p∈P

dist
(
p, p′

)
.

• Area - Defined over polygons P and P ′, we may measure the area of the region P \ P ′.

6.2.7 Constrained Approximation of Polygonal Curves

We desire an approximation that lies entirely to one side of the original curve. Zhang and Tian
[167] provide the only study of this kind on polygonal curves that we are aware of, and their
application is closely related to our own. Their solution entails the selective removal of points
using the Douglas-Peucker approach, so that points are removed only if the new approximation
lies to the deep side of the contour line that is being approximated. While their technique
establishes precedent, the amount of data reduction achieved with their technique relative to the
original algorithm is unclear from their examples [167, Figures 3-5], and no formal analysis is
provided in their work.

There have been studies in the past that have placed constraints on the approximation so
that the approximating curve does not violate some other properties of the data. Estkowski and
Mitchell [65] studied this problem in the context of GIS data, where adjacent polygonal curves
representing features of the terrain are approximated. They wish to ensure that the relative
positions of the features remain consistent following approximation, and that the approximated
curves do not introduce intersections between adjacent curves. Such concerns did not arise with
the techniques discussed previously where curves are studied in isolation. This problem is shown
to be in the hardness class MIN PB-complete when the output must be composed of a subset
of the input points (i.e. no Steiner points are permitted) [65]. Therefore, an approximation
technique based on heuristics is proposed to solve the problem, and they provide experimental
evidence of the efficacy of their technique. Also of interest is a constrained Douglas-Peucker
technique in which it is ensured that there are no self-intersections [161], but this property is
implicit in the previous technique. For a more thorough review of constrained approximation
techniques, see [109, Section 5.6].

72

6.2.8 Constrained Approximation of Polygons

We now seek methods for approximating closed polygons. In the context of our bathymetric
navigation application, we wish to approximate a polygon P with a simpler polygon Q, where Q
either fully contains P or is fully contained by P . A well known solution to the first version of
the problem is the convex hull. Finding a polygon that is contained in P is more difficult. If we
were unconcerned with the monotonicity constraint, we may apply techniques identical to those
discussed for polygonal curves in the previous section, and an optimal solution can be found with
a constant amount of extra work [103].

We divide the problem of approximating polygons into two broad classes: inclusion problems
seek an approximation contained in the original polygon, while enclosure problems determine an
approximation that contains the original polygon. Formally, let P and Q be classes of polygons
and let µ be a function on polygons such that for polygons P and Q, Q ⊆ P ⇒ µ (Q) ≤ µ (P).
Chang and Yap [31] define the inclusion and enclosure problems as:

• Inc (P,Q, µ): Given a polygon P ∈ P, find a polygon Q ∈ Q included in P , maximizing
µ (Q).

• Enc (P,Q, µ): Given a polygon P ∈ P, find a polygon Q ∈ Q enclosing P , minimizing
µ (Q).

The best known enclosure problem is the convex hull, which we may state formally as
Enc (Psimple,Pcon, area), where Psimple is the family of simple polygons and Pcon is the family
of convex polygons. Given a convex polygon P as input, many problems are tractable in linear
time: Enc (Pcon,P3, area) [129], where P3 is the set of triangles, Enc (Pcon,P3,perimeter) [18],
and Enc (Pcon,Ppar, area) [143], where Ppar is the family of parallelograms. For general k-gons,
Enc (Pcon,Pk, area) can be solved in O (kn+ n log n) time [4].

Perhaps the best known inclusion problem is the potato-peeling problem of Chang and Yap
[31], defined as Inc (Psimple,Pcon, area). The ‘potato’ of the potato peeling problem is formally
known as the maximum area convex subset (MACS) [32], which is the largest area convex poly-
gon contained in P . There is an O

(
n7
)

time algorithm for this problem, where n is the num-
ber of vertices of P , and an O

(
n6
)

time algorithm when the measure is the perimeter, i.e.
Inc (Psimple,Pcon,perimeter) [31]. The problem of finding the triangle of maximal area included
in a convex polygon, Inc (Pcon,P3, area), can be solved in linear time [52]. The generalization of
this problem to any k-gon can be solved in time O (kn+ n log n) [3]. If the input polygon is not
restricted to be convex, Inc (Psimple,P3, area) can be found in time O

(
n4
)

[120].

The inclusion and enclosure problems can also be formulated as minimizing or maximizing a
measure d (P,Q), which we call a d-Core of P .

Definition 6.2. The d-Core Problem: Given a simple polygon P , the d-Core problem on P is
to determine a convex polygon Q, such that Q ⊆ P and d (P,Q) is minimized, where d (P,Q) is
a difference metric on P and Q. We call Q a d-Core of P .

Note that in the case when µ (Q) is the area, maximizing or minimizing µ (Q) for the in-
clusion and enclosure problems, respectively, is equivalent to minimizing the difference in areas
(d (P,Q) = |µ (P) − µ (Q) |). Both the inclusion and enclosure problems using the Hausdorff
distance as a measure were studied by Lopez and Reisner [114], who present polynomial-time

73

(a) Enc(Psimple,Pcon, area), a.k.a. con-
vex hull.

(b) Enc(Psimple,P3, area).

(c) Inc(Psimple,Pcon, area), a.k.a. potato
peeling problem/MACS.

(d) Inc(Psimple,P3, area).

(e) Inc(Psimple,Pcon,Hausdorff), a.k.a.
Hausdorff Core.

(f) Inc(Pcon,P3, area).

Figure 6.4: We illustrate some of the various inclusion and enclosure problems for approximating
polygons.

algorithms to approximate a convex polygon minimizing the Hausdorff distance to within an
arbitrary factor of the optimal (i.e. the min-ε version of the problem). Since the input polygon
is convex, the approximating solution is restricted to contain some maximum number of vertices.
In the same work, the authors also studied the min-# version of the problem, where the goal is to
minimize the number of vertices of the approximating polygon, given a maximum allowed error.
For this setting, they show that the inclusion and enclosure problems can be approximated to
within one vertex of the optimal in O (n log n) time and O (n) time, respectively.

The work in the following chapters addresses the inclusion problem where the objective is to
minimize the Hausdorff distance to a convex approximating polygon given a simple (not neces-
sarily convex) polygon as input, i.e. Inc (Psimple,Pcon,Hausdorff). Chassery and Coeurjolly [32]
addressed this problem first, and they presented an algorithm that returns a Hausdorff Core for
the case when the Euclidean 1-centre is contained in the input polygon P . The algorithm shrinks

74

(a) The input polygon P . (b) “Shrinking” the polygon. (c) Shrink until the convex hull
is contained in P .

(d) The solution returned by the
Chassery and Coeurjolly algo-
rithm [32].

(e) An optimal solution.

Figure 6.5: Chassery and Coeurjolly algorithm counterexample.

the input polygon P until its convex hull is contained in the original P . If the shrunken polygon
P ′ is not convex, then the convex hull of P ′ contains a vertex of P which lies on an edge e of P ′.
e is used as a cutting line upon P to obtain a new polygon P1 to be shrunk. The procedure is
repeated to obtain P ′i from Pi until P ′i is convex. If the Euclidean 1-centre of P is not contained
in P , it is possible to construct examples where this algorithm would not return a Hausdorff Core
of P , as shown in Figure 6.5.

6.2.9 LP-type Problems

Certain settings for optimization problems using the Hausdorff distance metric belong to the
class of problems known as LP-type problems. LP-type problems were formalized by Sharir and
Welzl [146] to provide a general framework for linear programming problems with n constraints
and d variables so that they may be solved in expected O

(
d22dn

)
time, which translates into a

linear time algorithm for many of the types of problems that we are interested in. To apply their
algorithm to a problem P , it simply must be demonstrated that two properties hold for P . In
this section, we follow the discussion as presented in [146].

A linear program with n constraints and d variables may be expressed geometrically as a set
H of n half-spaces in Rd space. The optimal solution to the linear program is a point s ∈ ∩h∈Hh
which minimizes the objective function. Given a function w (H) which computes the optimal
solution for H, we have that s = w (H). Now the two constraints are as follows:

F ⊆ G ⊆ H ⇒ w (F) ≤ w (G) (6.1)

F ⊆ G ⊆ H
w (F) = w (G)

h ∈ H

⇒

w (F + h) > w (F)
↔

w (G+ h) > w (G)
(6.2)

This technique is often used for problems that are similar to the Hausdorff Core problem, such
as for computing the Euclidean 1-centre of a set of points (which is equivalent to determining

75

the smallest enclosing ball of a set of points). However, the Hausdorff Core problem is not an
LP-type problem, due to the requirement that the solution Q be contained within P . If P is not
convex, then the search space in the polygon cannot be described by a set of linear constraints.
If P is convex, the constraints are satisfied, but the Hausdorff Core problem is also trivial (since
Q = P in this case).

6.2.10 Davenport-Schinzel Sequences

Davenport-Schinzel sequences are used for the analysis of the combinatorial complexity of the
upper or lower envelope of a set of functions, usually specifically univariate functions. They
are eponymously named for those most commonly credited with their development [48], where
the application was calculus. Davenport-Schinzel sequences were shown to have applications
for computational geometry problems by Atallah [12], where the dynamic convex hull problem
was studied in a setting where the positions of points are described by functions dependent on
time. The authoritative treatment of Davenport-Schinzel sequences (especially with respect to
computational geometry) is given by Sharir and Agarwal [145], and here we outline relevant
details from Chapter 1 of their book.

Definition 6.3. Davenport-Schinzel Sequence [145, Def. 1.1]: Let n, s be positive integers. A
sequence U = 〈u1, . . . , um〉 of integers is an (n, s) Davenport-Schinzel sequence if it satisfies the
following conditions:

1. 1 ≤ ui ≤ n for each i;

2. For each i < m we have ui 6= ui+1;

3. There do not exist s + 2 indices 1 ≤ i1 < i2 < · · · < is+2 ≤ m such that ui1 = ui3 = ui5 =
· · · = a, ui2 = ui4 = ui6 = · · · = b, and a 6= b.

Given the sequence U , they use s to denote the order of U , and U is composed of n symbols.
The bound that we are interested in, denoted as λs (n), is defined by the maximum value of m
(the cardinality of U), given that U is a (n, s) Davenport-Schinzel sequence. This value may be
used to describe the maximum combinatorial complexity of the upper or lower envelope of a set
of univariate functions, by first establishing a bound on the maximum number of intersection
points between any pair of functions.

Given a family of functions F = {f1, . . . , fn} which are defined over a common interval I,
the upper envelope of the functions (Figure 6.6) is described by the maximum value in the set of
functions when evaluated at each point in the interval I. We call a maximal connected interval of
a function on the upper envelope a portion of the upper envelope. U is defined by the sequence
of the indices of the functions which compose the portions of the upper envelope. Formally, for
any x ∈ I, the upper envelope EF (x) is expressed as

EF (x) = max
i∈{1,...,n}

fi (x) .

While there exist tight bounds for s = 1 and s = 2, we are interested in the upper bound
provided by the following lemma:

76

f1

f2

f3

f4

1 3 4 2 1 2 3 1

I

Figure 6.6: Given the set of functions {f1, f2, f3, f4} the upper envelope (drawn in bold) is the
maximum value among all functions at each x-coordinate. The sequence U = 〈1, 3, 4, 2, 1, 2, 3, 1〉
is given by the index of the function which is maximum for each such maximal interval over I.

Lemma 6.1. [145, Lemma 1.12]

λs (n) ≤ sn (n− 1)

2
+ 1.

Furthermore, the value of λs (n) has a lower bound. The actual lower bounds are more
complex, as they are based on the parity of s and n, and so we simply provide a lower bound for
the lower bounds:

Lemma 6.2. [140, Equations 3.8,3.9]

λs (n) ≥ sn (n− 1)

2
− 2n3 + 9n2 − 38n+ 6

12
.

6.2.11 The Constrained Euclidean 1-Centre

If the Hausdorff Core problem were defined so that Q, the Hausdorff Core solution, must be
a single point q, then the problem becomes equivalent to the constrained Euclidean 1-centre
problem. In the general unconstrained setting, the 1-centre of a polygon P (also known as the
Euclidean centre) is the point c that minimizes the maximum distance from c to any point in P .
This (unconstrained) setting is an LP-type problem, as discussed in Section 6.2.9. In this work,
we are interested in the 1-centre inside P , also known as the constrained Euclidean centre or
constrained Euclidean 1-centre, which is a point p1c contained in P that minimizes the maximum
distance from p1c to any point in P . Although the unconstrained 1-centre is unique, this is not
necessarily true for the constrained version, as shown in Figure 6.7. Throughout the rest of this
work, when we refer to a 1-centre, we specifically mean a constrained Euclidean 1-centre. We
write p1c to represent a constrained Euclidean 1-centre of P .

The constrained Euclidean centre problem was solved by Bose and Toussaint [22, Algorithm
1], and we provide a sketch of their technique here. The first fundamental observation is that
the maximum distance from any point q to a polygon P is realized at a vertex of P , and so the
problem is reduced to finding a point in P which minimizes the maximum distance to any vertex

77

of P . One possibility for the solution is the Euclidean 1-centre, and this is found by determining
the centre of the minimum enclosing circle on P . If the 1-centre is in P , then the problem is
solved. Otherwise, the farthest point Voronoi diagram of P (call it VD(P)) is computed, and the
set Vc of the vertices of VD(P) contained in P is found. Next, the set of points Ic is computed,
where each point in Ic is an intersection point between P and VD(P). Next, each edge ei ∈ P
is partitioned into maximal segments such that the farthest point in P from any such segment is
unique. For each segment, the point in the segment closest to the farthest point in P is computed,
and if this point is not an endpoint of the segment, it is added to a set Ec. Finally, the vertices
of P , call them Pc, are merged with these sets of points to produce the set C = Vc ∪ Ic ∪Ec ∪Pc,
and at least one point c ∈ C is a constrained Euclidean 1-centre, which may be found by brute
force. Using this method, a constrained Euclidean 1-centre of a polygon P with n vertices can
be computed in O (n log n+ k) time, where k is the number of intersections between P and the
furthest point Voronoi diagram of the vertices of P (for simple polygons k ∈ O

(
n2
)
) [22].

P

1-centre

constrained
1-centres

Figure 6.7: An example where the constrained Euclidean 1-centres (the solid points) are not
unique, and are distinct from the unconstrained Euclidean 1-centre (the hollow point).

6.3 The Hausdorff Core

We begin our analysis by formalizing the Hausdorff Core problem, and establishing some fun-
damental properties of the problem. In Chapter 7, we describe an algorithm for solving the
Hausdorff Core problem optimally on polygons with a single reflex vertex. In Chapter 8, we
provide a parameterized algorithm for the general problem on simple polygons.

6.3.1 Definitions

Recall the definition of Hausdorff distance:

H (P,Q) = max{sup
p∈P

inf
q∈Q

dist (p, q) , sup
q∈Q

inf
p∈P

dist (p, q)},

When P and Q are polygons in the plane and dist (p, q) denotes the Euclidean distance between
points p and q, H (P,Q) corresponds to the Hausdorff distance between sets P and Q. We define
the corresponding d-core (see Definition 6.2) as the Hausdorff Core of P . There is not necessarily

78

a unique Hausdorff Core solution; our objective is to determine any optimal solution. We consider
both the minimization and decision versions of the Hausdorff Core problem for a given simple
polygon P . Recall from Definition 6.1 that the minimization version of the Hausdorff Core
problem is to determine a Hausdorff Core of P , i.e. a polygon Q covered by P where H (P,Q) is
minimized. The decision version is formalized below.

Definition 6.4. Decision Version of the Hausdorff Core Problem: Given a simple polygon P and
a non-negative integer k, determine whether there exists a convex polygon Q contained in P such
that H (P,Q) ≤ k.

6.3.2 Hausdorff Core Properties

In this section we make observations regarding the properties of polygons, convex polygons, and
the Hausdorff distance in the context of the Hausdorff Core problem. These observations will be
useful in the following chapters when establishing our main results.

The first property is that given a polygon P and a convex polygon Q inside P , it suffices to
minimize the maximum distance from points on the convex hull of P to polygon Q to obtain a
Hausdorff Core Q (i.e., the distance from points q ∈ Q to P need not be considered).

Lemma 6.3. Given any simple polygon P and any convex polygon Q contained in P ,

max
p∈P

min
q∈Q

dist (p, q) ≥ max
q∈Q

min
p∈P

dist (q, p)

Therefore,
H (P,Q) = max

p∈P
min
q∈Q

dist (p, q) .

Furthermore, the Hausdorff distance between P and Q is defined by the distance from points on
the convex hull of P to Q:

H (P,Q) = H (CH (P)V , Q) .

Proof. Suppose H (P,Q) = kOpt, and take the convex hull of P to obtain CH (P). Now we
identify two consecutive vertices of CH (P), call them pi and pi′ (Figure 6.8). By the definition
of a convex hull, we know that all vertices of P lie in one of the two half-planes defined by the
line incident upon pi and pi′ , call this half-plane hP . For ease of discussion, we rotate everything
so that hP is equivalent to the y ≤ 0 half-plane of the Cartesian plane. Since P contains Q, hP

also contains Q.

Now consider two points qj and qj′ on the upper hull of Q, each inside a disk of radius kOpt

centred at pi and pi′ , respectively. Since Q is convex, the edges of Q must lie on or above the line
incident upon qj and qj′ , call it ←−→qjqj′ , and also remain below the boundary of P since P contains
Q. Therefore, for any point on Q in this range, there is a point in P at most distance kOpt

above it. The maximum distance that a point in Q may be from points in P is also kOpt in this
range. If ←−→qjqj′ is parallel to the x-axis, then it is possible that the maximum distances are equal:
maxp∈P minq∈Q dist (p, q) = maxq∈Q minp∈P dist (p, q), and this may be up to kOpt. If ←−→qjqj′ is not
horizontal, then the distance maxp∈P minq∈Q dist (p, q) is maximized at one of the vertices of P ,
and so on this interval H (P,Q) = maxp∈CH(P) minq∈Q dist (p, q).

The lemma follows, because this argument may be applied to any consecutive pair of vertices
of the convex hull of P , and points of Q may be chosen so that the entire polygon is considered.

79

pi pi′

qj
qj′

Figure 6.8: Illustration of Lemma 6.3.

H (P,Q) is determined by the vertices of P that lie on the convex hull of P , however all
vertices and edges of P must be considered to determine whether Q is contained in P . Therefore,
the decision version of the Hausdorff Core problem with parameter k may be redefined as follows:
we consider disks of radius k centred at vertices CH (P)V and ask whether there exists a convex
polygon Q such that it intersects all such disks. Let C (p, k) denote a disk of radius k centred at
p. We refine the nature of the Hausdorff Core problem based on the following corollary:

Corollary 6.1. Given a simple polygon P and a convex polygon Q contained in P ,

H (P,Q) ≤ k ⇔ ∀p ∈ CH (P)V , C (p, k) ∩Q 6= ∅.

Finally, we wish to determine a point contained in Q.

Lemma 6.4. Given a simple polygon P and a convex polygon Q contained in P , at least one
point in the set PV can be contained in Q if Q is a Hausdorff Core of P .

Proof. In the lemma, we write can be contained because it is possible for a solution to be optimal
and not contain a point from this set, but we show that any such solution may be expanded to
include a vertex of P . An example of such a scenario is shown in Figure 6.9.

Suppose there exists a polygon Q which has H (P,Q) = k where PV ∩Q = ∅. We can always
expand Q to create a new polygon Q′, where Q ⊂ Q′, and so H (P,Q′) ≤ H (P,Q). Note that
since we assumed Q is an optimal solution, in fact H (P,Q′) = H (P,Q). One such algorithm is
as follows:

1. Choose an arbitrary edge eQ = (vi, vj) of Q.

2. Choose one of the vertices arbitrarily, say without loss of generality that vi is chosen. Let
e′Q =

(
vi, vj′

)
be the other edge of Q incident upon vi (it is possible that eQ = e′Q). Expand

eQ by moving vi away from vj along the unique line defined by eQ until either:

(a) one of the edges of Q touches a vertex of P ;

(b) moving vi further would cause Q to lose convexity; or

(c) vi encounters an edge of P , call it eP .

3. If case 2(a) occurs, we are done. If case 2(b) occurs, we merge e′Q with the other edge
incident upon vj′ , and then return to step 2. If we arrive at case 2(c), we introduce a new

vertex v′ on Q at vi, and edges e1 = (v′, vi) and e2 =
(
v′, v′j

)
. Note that ep and e1 are

collinear and e1 initially has zero length. We move v′ along eP (in a direction which keeps
Q simple), again according to the rules in the previous step. When one of the conditions is
met, one of the vertices of P must be incident upon Q.

80

p1c

Figure 6.9: An optimal Hausdorff Core solution to this polygon is shown as the thick dashed line
in the figure. This line may be grown in a number of ways into a convex polygon which remains
contained inside the original polygon, while including a vertex of P on the boundary. The shaded
polygon is an example of one such possibility. This is also an example of a polygon in which the
Euclidean 1-centre p1c is contained in the polygon, although it is not contained in any optimal
Hausdorff Core solution.

In the following chapter, we present an algorithm for computing the Hausdorff Core of a
simple polygon with a single reflex vertex. We then present a parameterized algorithm for the
problem upon general simple polygons in Chapter 6.

81

7
An Exact Algorithm for the Hausdorff Core of a Single Reflex

Vertex Polygon

Our objective in this chapter is to find an optimal Hausdorff Core for a polygon which has a
single reflex vertex1. The Hausdorff Core of a convex polygon P is P itself, and a polygon with
a single reflex vertex is perhaps the simplest non-trivial case. We show that the solution consists
of cutting the polygon P with a line which intersects the reflex vertex, and that the difficulty of
the problem lies in finding where to place the cutting line, as shown in Figure 7.1.

Theorem 7.1. There exists an exact algorithm for the Hausdorff Core problem on polygons with
a single reflex vertex which runs in O

(
n3
)

time.

We begin by establishing that the reflex vertex pr is on ∂Q, i.e. the boundary of the optimal
solution, since the cutting line ` is incident upon pr.

Lemma 7.1. One edge of a Hausdorff Core Q will be a segment of a line ` which intersects the
reflex vertex pr.

1Elements of this chapter have appeared in [74].

PQ

Figure 7.1: To find the Hausdorff Core of a polygon with a single reflex vertex, we simply need
to determine where to place a cut line which intersects the reflex vertex.

83

Proof. Suppose that this is not the case. `, the cutting line on P (which defines an edge of Q),
intersects ∂P at two points p`1 and p`2 , so that ` = ←−−→p`1p`2 . Choosing point p`1 without loss of
generality, rotate ` about p`1 until it intersects pr; call the resulting polygon Q′. Q′ remains convex
because ` is a straight line defining the cut, and Q ⊆ Q′. Therefore, H (P,Q) ≥ H (P,Q′).

7.1 Balancing a Line

Given that pr is incident upon `, we can regard the resulting partition of P , which is defined by
`, as being composed of three convex regions called Qa, Qb, and Qc (see Figure 7.2). Note that
one of Qa or Qc may be empty. We define these regions in counter-clockwise order around pr so
that the line segment p`1pr defines an edge of Qa, p`1p`2 defines an edge of Qb, and prp`2 defines
an edge of Qc.

Qb

Qa

Qc

pr(pn)

`

p`1

p`2 p8
p1

p2

p3

p4

p6

p7

p5

Figure 7.2: The line ` defines a cut through polygon P , which defines three convex regions Qa, Qb,
and Qc. Note that the closest point to p2 in Qb is at p`2 .

Lemma 7.2. A polygon Q which is an optimal Hausdorff Core solution can always be defined by
the region Qb.

Proof. Suppose that this is not the case, and instead, without loss of generality suppose Q is
defined by Qa. Choosing ` so that prp1 lies on ` results in a configuration where Q′a is empty and
Qa ⊂ Q′b for all possible polygons Qa. Therefore, H (P,Qa) ≥ H (P,Q′b).

7.2 Computing the Hausdorff Distance

In our problem, we are interested in measuring the distance from the vertices of the polygon P
to the approximating polygon Q. We divide the vertices of P into two sets PQ and PQ, where
PQ are the vertices of P in P ∩Q, and PQ = P \ PQ.

84

Since the vertices of PQ do not need to be considered for the Hausdorff distance measure (as
they are contained within Q), the nature of the problem is reduced to finding the distance from
the vertices of PQ to the closest point in Qb. The nearest point in Qb to a vertex pi ∈ PQ lies
either on the boundary of P or on the line segment ` ∩ P (i.e., it is on ∂Qb).

If the nearest point in ∂Qb to a vertex pi ∈ PQ is on ∂P but not on `, we address this case
by pre-computing the critical point on P nearest to pi. We illustrate this setting in Figure 7.3,
and we describe the procedure for computing the point in Algorithm 7.1. Let P ′ be the region
CH (P) \ P . To find the closest point, we look for a point pmin on ∂P ′ which is nearest to pi,
such that P ′ covers pipmin, while ∂P ′ does not. Intuitively, it is a necessary condition that pmin

and pi must lie on opposite sides of ←−→prp1, and pmin ∈ P ′. If the algorithm returns a point other
than pr, we add the point to the set considered by the Hausdorff Core algorithm. If the nearest

pr p1

`

P ′(= CH(P) \ P)

P

Qb

Figure 7.3: An example configuration where the closest point to p1 in Qb is not on `. We can
precompute the closest point to p1 in this case. The radius of the dashed circle indicates the
distance to the critical point.

point to pi in Qb is on ` ∩ P , then there are two cases to consider: either the nearest point on
`∩P is somewhere on the interior of the line segment, or the nearest point lies at one of the two
points in ` ∩ ∂P (i.e. the endpoints of the line segment ` ∩ P).

If the first case is true, then the technique for measuring the distance is found using straight-
forward trigonometry. Suppose we are considering vertex pi, and the nearest point on ` is p`.
In this case the points {pr, pi, p`} define a right-angled triangle, and the distance between pi
and pr is fixed since they are vertices of P . Therefore, the distance from pi to ` is defined as
dist (pi, p`) = dist (pi, pr) sin θ, where θ = ∠ (pi, pr, p`).

In the second case, describing the nearest point is slightly more difficult, as it is either p`1 or
p`2 . For our purposes here we will assume without loss of generality that the nearest point is p`1 .
We express dist (pi, p`1) in terms of the intersection between the ray −−−→prp`1 and ∂P . We formalize
this case further in the next section.

85

Algorithm 7.1 FIND-MIN-P(p, pr, P)

1: Input: A polygon P with reflex vertex pr, a vertex p ∈ P .
2: Output: pmin, the nearest point to p in P ′ such that ppmin ⊂ P ′ and ppmin 6⊂ ∂P ′.
3: dmin ← dist (p, pr)
4: pmin ← pr
5: P ′ ← CH (P) \ P
6: for e = (p1, p2) ⊂ P ′ (i.e. for each edge in P ′) do
7: if pp1 ∩ P ′ 6= ∅ or pp2 ∩ P ′ 6= ∅ then
8: p′ ← nearest point on p1p2 to p
9: if p′ ∈ e \ {p1, p2} and dist (p, p′) < dmin then

10: dmin ← dist (p, p′)
11: pmin ← p′

12: else
13: if min{dist (p, p1) ,dist (p, p2)} < dmin then
14: dmin ← min{dist (p, p1) ,dist (p, p2)}
15: if dist (p, p1) < dist (p, p2) then
16: pmin ← p1
17: else
18: pmin ← p2
19: end if
20: end if
21: end if
22: end if
23: end for
24: return pmin

86

7.3 Finding the Optimal Solution

Our algorithm consists of sweeping ` through P by rotating it about pr to discover the an-
gle at which the distance between vertices of PQ and Qb is minimized. For convenience of
exposition, we rotate P about pr by the angle required to align prp1 horizontally; i.e. p1 =
(pr.x+ dist (pr, p1) , pr.y), where p.x is the x-coordinate of p. We perform the sweep in a counter-
clockwise fashion, such that θ1 = 0 is the initial state when ` is incident upon p1, and θn−1 < π
is the final state when ` is incident upon pn−1.

7.3.1 Expressing the Distance to Each Point

First, we use Algorithm 7.1 on each point of P to identify intervals of θ for which the nearest
point to the solution is on ∂P . These intervals, if they exist, will comprise an interval at either
the upper or lower end of the range of possible values for θ. We construct the arrays Θmin and
Θmax with Algorithm 7.2, which contain the minimum or maximum values of θ for each point,
outside of which the distance is the fixed distance stored in the array D.

Algorithm 7.2 Θ-ARRAYS(pr, P)

1: Input: A polygon P with reflex vertex pr.
2: Output: Arrays Θmin[i],Θmax[i] contain the minimum and maximum values of θ for pi,

outside of which H (pi, Q) = D[i].
3: θn−1 ← π − ∠ (pn−1, pr, p1)
4: for i := 1 to |PV | do
5: Θmin[i] = 0, Θmax[i] = θn−1
6: end for
7: for each pi ∈ P do
8: pmin = FIND-MIN-P(pi, pr, P) // Algorithm 7.1
9: θ = ∠ (p1, pr, pmin)

10: D[i] = dist (pi, pmin)
11: if pr 6= pmin and pi.y > 0 then
12: Θmax[i] = θ
13: end if
14: if pr 6= pmin and pi.y < 0 then
15: Θmin[i] = θ
16: end if
17: end for
18: return Θmin,Θmax, D

Outside of the intervals defined in the arrays Θmin and Θmax, we need to compute the distance
from each point pi to the nearest point on ` ∩ P . Therefore, for each point pi, we define a set of
intervals Ii using the circle Ci with diameter prpi (see Figure 7.4 for an example). Suppose that
the circle Ci intersects P at k points, {c1, . . . , ck}, distinct from any pi. We define the points
t1, ..., tn+k−1 to be

(
∪kd=1{cd}

)
∪
(
∪n−1e=1 {pe}

)
, such that t1 = p1 and each tj follows tj−1 by moving

counterclockwise along the perimeter of P . Then Ii = {[t1, t2) , [t2, t3) , ..., [tn+k−2, tn+k−1]}. Thus,
each vertex in P (except pr) and each intersection point between Ci and P appear as endpoints
of the intervals in Ii.

87

Each interval, [tj , tj+1), is either contained entirely within Ci, or entirely outside Ci. In the
former case we refer to the interval as an inner interval, and the latter case is an outer interval.
Let I+i be the set containing all inner intervals from Ii, and let I−i be set containing all outer
intervals from Ii.

Observation 7.1. Suppose for some value of θ, p`1 is contained within the interval [tj , tj+1).
Then if [tj , tj+1) ∈ I+i , the nearest point on ` to pi is p`1; otherwise, if [tj , tj+1) ∈ I−i , the nearest
point lies on the interior of the line segment prp`1. An identical claim can be made when the
nearest point is p`2.

We now define the function g (pi, θ) to be the distance between pi ∈ PQ and `, defined on
the interval Θmin[i] ≤ θ ≤ Θmax[i], when ` is rotated clockwise by an angle of θ from its starting
orientation θ1. Since PQ changes as ` rotates through a vertex, we keep track of all pi ∈ P , noting
that g (pi, θ) = 0 when pi 6∈ PQ, and g (pi, θ) = D[i] if θ < Θmin[i] or θ > Θmax[i]. As we discussed
earlier, g (pi, θ) for fixed pi is a piecewise continuous function. As we vary θ, the function used to
compute the distance changes depending on whether the nearest point from pi to ` is contained
in prp`1 or prp`2 . For our discussion, without loss of generality, we assume the nearest point pi is
always contained within the segment prp`1 . Next, suppose that p`1 lies within the interval (u, v).
If (u, v) is an outer interval, then we can compute the distance to ` ∩ P using a right triangle. If
(u, v) is an inner interval, then the minimum distance to ` ∩ P occurs at the endpoint p`1 . Thus
we have:

g (pi, θ) =

{
dist (pi, r) sin (|θi − θ|) if (u, v) ∈ I−i
dist (pi, p`1) otherwise

where
p`1 = (ux + z (vx − ux) , uy + z (vy − uy)) ,

and

z =
ry − uy + tan θ (ux − rx)

vy − uy − tan θ (vx − ux)
.

Since Ci can intersect P at most O (n) times, k ∈ O (n). Thus, for each vertex pi, g (pi, θ)
consists of O (n) portions, where a portion is a maximal interval over which a single function is
used in the piecewise continuous function. We note that g (pi, θ) is continuous throughout the
domain [0, θn−1], and that each portion of g (pi, θ) is unimodal for its domain. Thus, a minima
of one portion can be found in constant time.

7.3.2 Minimizing the Maximum Distance

We have discussed how to compute the distance between a vertex of P and the line `. However,
our objective is to minimize the maximum distance between PQ and Qb. To do this, we need to
compute:

min
0≤θ≤θn−1

G (θ) ,

where
G (θ) = max

1≤i≤n−1
g (pi, θ) .

88

We now describe how to merge two piecewise continuous functions g (pj , θ) and g (pj+1, θ), to
create a new piecewise continuous function:

g′ (θ) = max{g (pj , θ) , g (pj+1, θ)}.

To compute the intersection points between two overlapping pieces of g (pj , θ) and g (pj+1, θ), we
observe that there are three cases:

• both pieces represent inner intervals,

• both pieces represent outer intervals, and

• one piece is an inner interval and the other is an outer interval.

In all three cases the intersection points have analytic solutions. The closed form solutions are
quite large, and so they are described later in Section 7.5 for completeness. Furthermore, since
the domain of each function is [0, θn−1] and θn−1 < π, the number of intersection points between
any two portions is constant. This means that the number of intersection points between g (pj , θ)
and g (pj+1, θ) is O (n).

Continuing this process, we can construct G (θ) by performing n− 2 merge steps like the one
just described. Since we have at most n − 1 continuous functions such that each pair has O (n)
intersections, we can apply the upper bound from Lemma 6.1 (which states that by analyzing the
upper envelope as a Davenport-Schinzel sequence, the number of distinct portions on the upper
envelope of a set of functions is λs (n) ≤ sn(n−1)

2 + 1). We have shown that for our problem,
s ∈ O (n), and so the upper envelope of the functions, G (θ), consists of at most O

(
n3
)

portions.
Each of these portions can be examined in constant time to find the minimum value. Algorithm
7.2 runs in O

(
n2
)

time, and so the overall running time of the Hausdorff Core algorithm on a
polygon with a single reflex vertex is bounded by O

(
n3
)
.

We provide an example in Figure 7.4 to illustrate the operation of our algorithm on a simple
polygon with one reflex vertex, and a plot of the corresponding distance functions are shown in
Figure 7.5.

7.4 Conclusions and Future Work

We presented an exact algorithm for determining a Hausdorff Core of a polygon with one reflex
vertex in polynomial time. The algorithm measures the distance from the excluded vertices
of the original polygon P to the approximating polygon Q. The Hausdorff distance between
the polygons H (P,Q) for a given cut is described by the maximum such distance, and so the
problem may be formulated in terms of a set of piecewise functions whose maximum for a given
line corresponds to H (P,Q). By determining the minimum maximum value over all possible
cuts, we determine the optimal Hausdorff Core for P .

The algorithm is not immediately extendable to polygons containing more than one reflex
vertex, since the problem is complicated by the interaction between the cutting lines. It is also
interesting to compare our problem to the potato peeling problem [31]. In the potato peeling
problem, if P has only one reflex vertex then finding the optimal solution is trivial; only three
cases need to be considered. This seems to suggest that finding the exact Hausdorff Core is a
more difficult problem in general.

89

`1

`2

`3
`4`5

`6

`7

p1 = t1

t2
t3

t4

t5

p4

a

b

t7

p2 = t6

p3

6 `1`2 = 33◦

6 `1`3 = 70◦

6 `1`4 = 107◦

6 `1`5 = 131◦

6 `1`6 = 145◦

6 `1`7 = 162◦

Figure 7.4: A polygon P with reflex vertex pr is shown. The shaded area indicates the opti-
mal solution Q. Lines indicate boundaries between intervals, where solid lines indicate interval
boundaries defined by vertices of P , and dashed lines indicate boundaries defined by the tran-
sition between distance functions for a vertex. The latter transitions occur at the intersection
points of the boundary of polygon with the diametrical circles defined between pr and each vertex
pi ∈ P \ {pr}. Consider the vertex p1. To begin with, we set θ = 0 and the current solution Qb
contains p1. As θ is increased, the minimum distance from p1 to a point on ` follows p`1 along
p1p2 until point t3 (the nearest point on ` to p1 is outside P in this interval). At this point,
the minimum distance to ` from p1 follows a point around the circle incident upon {p1, t3, a}
through the interior of P until it meets the boundary at point a. At this point, the minimum
distance function changes again to follow the point p`2 along p3p4 to point p4, at which point our
sweep concludes. As one would expect, the distance from p1 to ` is maximized at θ = π/2 and
minimized at θ = 0, as can be seen in Figure 7.5.

90

10

8

6

4

2

0
0 0.5 1 1.5 2.0 2.5

p3

p1

p4

p2

θ

dist(pi, Q)

Figure 7.5: A plot for Figure 7.4, showing the curves corresponding to the distances from the
vertices of P to the solution polygon Q for all possible values of θ. The point of intersection
between the two functions converging on the right of the figure lie just outside of the range of
the graph, (θ = 2.8201, while viable solutions lie in the range θ = 0 . . . 2.8198). The minimal
value of the upper boundary of the graph is at θ = 2.8198, where the Hausdorff distance is
H (P,Q) =

√
17. This corresponds to the distance between points p1 and p4.

91

7.5 Closed Form Solutions to the Hausdorff Core Problem

In Section 7.3.2, we described the functions for computing the nearest distance to a point on a line
intersected with a polygon. Here, we provide the closed-form solutions to these functions. In the
worst case, the solutions may be represented as the roots of degree four polynomials, which may
be solved exactly when the coefficients are rational numbers (e.g. [66]). We provide these details
for completeness. In practice, it would be wiser to find the intersection points using Newton’s
method or a similar root-finding technique. We simplify the notation by writing di rather than
dist(pi, pr).

7.5.1 Both Points Inside the Polygon

This is the simplest case, as we are simply seeking the intersection points between the functions

f1 (θ) = d1 · sin (|θ1 − θ|) (7.1)

and
f2 (θ) = d2 · sin (|θ2 − θ|) . (7.2)

We find the intersection points between these functions by solving f1 (θ)− f2 (θ) = 0 with Maple.
Because of the use of the absolute value functions, the cardinality of the set of intersection points
depends on the values of θ1, θ2, d1, and d2. There are two possible intersection points at

θ = θ1 − arctan

(
d2 sin (θ1 − θ2)

−d1 + d2 cos (θ1 − θ2)

)

and

θ = θ1 − arctan

(
d2 sin (θ1 − θ2)

d1 + d2 cos (θ1 − θ2)

)
.

The existence of intersection points at each of the above positions may be checked a priori by
testing against a set of conditions, but it is simpler to check by substituting back into the original
difference function.

7.5.2 Both Points on the Polygon Boundary

In this case, we have two functions where the distance is measured to a point along an interval
of a line. Therefore, we are finding the distance from a point p (resp. q) to a point on the
line segment u, u′ (resp. v, v′), and so the intersection points are expressed as solutions to the
following equation (we use r to denote the reflex vertex, and rx is the x-coordinate of r):

(
px − ux − (u′x − ux)

ry − uy − (ux − rx) tan(θ)

u′y − uy − (u′x − ux) tan(θ)

)2

+

(
py − uy − (u′y − uy)

ry − uy − (ux − rx) tan(θ)

u′y − uy − (u′x − ux) tan(θ)

)2

−
(
qx − vx − (v′x − vx)

ry − vy − (vx − rx) tan(θ)

v′y − vy − (v′x − vx) tan(θ)

)2

−
(
qy − vy − (v′y − vy)

ry − vy − (vx − rx) tan(θ)

v′y − vy − (v′x − vx) tan(θ)

)2

= 0

92

Solving for the difference between the functions,

θ = arctan(RootOf (c1 · Z4 + c2 · Z3 + c3 · Z2 + c4 · Z + c5)),

where the constants (from the input) are listed below. To simplify the notation, we use the
following constants:

a1 = u′x − ux, a2 = ry − uy, a3 = ux − rx, a4 = u′y − uy,
b1 = v′x − vx, b2 = ry − vy, b3 = vx − rx, b4 = v′y − vy. (7.3)

The coefficients are:

c1 = 2 py a1 a4 a3 b1
2 + a4

2a3
2b1

2 − 2 py a1
2uy b1

2 − 2uy a1 a4 a3 b1
2 − 2 qy b1 b4 b3 a1

2

− 2 px a1
2ux b1

2 + py
2a1

2b1
2 + 2 qx b1

2vx a1
2 + 2 qy b1

2vy a1
2 + 2 vx b1

2b3 a1
2

− qy2b12a12 − 2ux a1
2a3 b1

2 − vy2b12a12 − qx2b12a12 − b42b32a12

− vx2b12a12 − 2 qx b1
2b3 a1

2 − b12b32a12 + 2 vy b1 b4 b3 a1
2 + 2 px a1

2a3 b1
2

+ px
2a1

2b1
2 + uy

2a1
2b1

2 + ux
2a1

2b1
2 + a1

2a3
2b1

2,

c2 = 2 vy
2b1

2a4 a1 + 2 b4
2b3

2a4 a1 − 2 px
2a1

2b4 b1 − 2ux
2a1

2b4 b1 − 2 a1
2a3

2b4 b1

− 2 px
2a4 a1 b1

2 + 2 px a1
2a2 b1

2 − 2ux
2a4 a1 b1

2 − 2ux a1
2a2 b1

2 + 2 a1
2a2 a3 b1

2

− 2 py
2a1

2b4 b1 − 2uy
2a1

2b4 b1 − 2 a4
2a3

2b4 b1 − 2 py
2a4 a1 b1

2 − 2 py a4
2a3 b1

2

+ 4 py a4 uy a1 b1
2 − 2 px a4 a1 a3 b1

2 + 2ux a4 a1 a3 b1
2 + 4 px a4 ux a1 b1

2 − 4 px a1
2a3 b4 b1

+ 4 px a1
2ux b4 b1 + 4ux a1

2a3 b4 b1 + 2 py a1 a4 a2 b1
2 − 2uy a1 a4 a2 b1

2 + 4 py a1
2uy b4 b1

− 4 qx b1
2vx a4 a1 + 4 qx b1

2b3 a4 a1 − 4 vx b1
2b3 a4 a1 − 4 qx b4 vx b1 a1

2 + 2 qx b4 b1 b3 a1
2

− 2 vx b4 b1 b3 a1
2 − 4 qy b1

2vy a4 a1 − 4 qy b4 vy b1 a1
2 − 2 qy b1 b4 b2 a1

2 + 2 vy b1 b4 b2 a1
2

+ 4 qy b1 b4 b3 a4 a1 − 4 vy b1 b4 b3 a4 a1 + 4uy a1 a4 a3 b4 b1 − 2uy
2a4 a1 b1

2 + 2uy a4
2a3 b1

2

+ 2 a4
2a2 a3 b1

2 + 2 qx
2b4 b1 a1

2 − 2 qx b1
2b2 a1

2 + 2 vx
2b4 b1 a1

2 + 2 vx b1
2b2 a1

2

− 2 b1
2b2 b3 a1

2 + 2 qx
2b1

2a4 a1 + 2 vx
2b1

2a4 a1 + 2 b1
2b3

2a4 a1 + 2 qy
2b4 b1 a1

2

+ 2 qy b4
2b3 a1

2 + 2 vy
2b4 b1 a1

2 − 2 vy b4
2b3 a1

2 − 2 b4
2b2 b3 a1

2 + 2 qy
2b1

2a4 a1

− 4 py a1 a4 a3 b4 b1,

93

c3 =− 2 px a4
2ux b1

2 − 2 py a4
2uy b1

2 − 2 py a4
2a2 b1

2 + 2uy a4
2a2 b1

2 + 2 py a1 a4 a3 b4
2

− 2uy a1 a4 a3 b4
2 + uy

2a4
2b1

2 + py
2a4

2b1
2 − qx2b12a42 − vx2b12a42

− b12b32a42 − b12b22a12 − qy2b12a42 − vy2b12a42 − b42b32a42

− b42b22a12 + a2
2a1

2b1
2 + ux

2a4
2b1

2 + px
2a4

2b1
2 + a4

2a2
2b1

2

− 2 px a4 a2 a1 b1
2 + 4 px

2a4 a1 b4 b1 + 4ux
2a4 a1 b4 b1 − 4 px a1

2a2 b4 b1 − 4 a1
2a2 a3 b4 b1

+ 4ux a1
2a2 b4 b1 + 4 py

2a4 a1 b4 b1 + 4 py a4
2a3 b4 b1 + 4uy

2a4 a1 b4 b1 − 4uy a4
2a3 b4 b1

− 4 a4
2a2 a3 b4 b1 − 4 qx

2b4 b1 a4 a1 + 2 qx b4 b1 b2 a1
2 + 4 qx b1

2b2 a4 a1 − 4 vx
2b4 b1 a4 a1

− 2 vx b4 b1 b2 a1
2 − 4 vx b1

2b2 a4 a1 + 4 b1
2b2 b3 a4 a1 − 4 qy

2b4 b1 a4 a1 − 4 qy b4
2b3 a4 a1

− 4 vy
2b4 b1 a4 a1 + 4 vy b4

2b3 a4 a1 + 4 b4
2b2 b3 a4 a1 − 2 qy b1 b4 b3 a4

2 + 2 vy b1 b4 b3 a4
2

+ 2ux a4 a2 a1 b1
2 + a1

2a3
2b4

2 − 2 px a1
2ux b4

2 + 2 px a1
2a3 b4

2 − 2ux a1
2a3 b4

2

− 2 py a1
2uy b4

2 + 2 qx b4
2vx a1

2 + 2 qy b4
2vy a1

2 − 4 vy b1 b4 b2 a4 a1 + 8 qy b4 vy b1 a4 a1

− 4ux a4 a1 a3 b4 b1 + 4uy a1 a4 a2 b4 b1 − 8 px a4 ux a1 b4 b1 − 8 py a4 uy a1 b4 b1 + 4 qy b1 b4 b2 a4 a1

+ 8 qx b4 vx b1 a4 a1 − 4 py a1 a4 a2 b4 b1 − vy2b42a12 + px
2a1

2b4
2 + ux

2a1
2b4

2

+ py
2a1

2b4
2 + uy

2a1
2b4

2 + a4
2a3

2b4
2 − qx2b42a12 − vx2b42a12

− qy2b42a12 + 2 qx b1
2vx a4

2 − 2 qx b1
2b3 a4

2 + 2 vx b1
2b3 a4

2 + 2 qy b1
2vy a4

2

+ 2 qy b4
2b2 a1

2 − 2 vy b4
2b2 a1

2 + 4 px a4 a1 a3 b4 b1 − 4 qx b4 b1 b3 a4 a1 + 4 vx b4 b1 b3 a4 a1,

c4 =2 b4
2b2

2a4 a1 − 2 a2
2a1

2b4 b1 − 2ux
2a4

2b4 b1 − 2 px
2a4

2b4 b1 − 2 a4
2a2

2b4 b1

− 2uy
2a4

2b4 b1 − 2 py
2a4

2b4 b1 + 4 px a4
2ux b4 b1 + 4 py a4 uy a1 b4

2 + 2 py a1 a4 a2 b4
2

− 2uy a1 a4 a2 b4
2 − 4 qx b4

2vx a4 a1 − 4 qy b4
2vy a4 a1 + 4 px a4 ux a1 b4

2 − 4 qx b4 vx b1 a4
2

+ 2 qx b4 b1 b3 a4
2 − 2 vx b4 b1 b3 a4

2 − 4 qy b4 vy b1 a4
2 − 2 qy b1 b4 b2 a4

2 + 2 vy b1 b4 b2 a4
2

− 4 qy b4
2b2 a4 a1 + 4 vy b4

2b2 a4 a1 + 4 py a4
2uy b4 b1 + 4 py a4

2a2 b4 b1 − 4uy a4
2a2 b4 b1

− 2 px a4 a1 a3 b4
2 + 2ux a4 a1 a3 b4

2 + 2 a2 a1
2a3 b4

2 − 2 px
2a4 a1 b4

2 + 2 px a1
2a2 b4

2

− 2ux
2a4 a1 b4

2 − 2ux a1
2a2 b4

2 − 2 py
2a4 a1 b4

2 − 2 py a4
2a3 b4

2 − 2uy
2a4 a1 b4

2

+ 2uy a4
2a3 b4

2 + 2 a4
2a2 a3 b4

2 + 2 qx
2b4

2a4 a1 + 2 vx
2b4

2a4 a1 + 2 qy
2b4

2a4 a1

+ 2 vy
2b4

2a4 a1 + 4 vx b4 b1 b2 a4 a1 + 4 px a4 a2 a1 b4 b1 + 2 qx
2b4 b1 a4

2 − 2 qx b1
2b2 a4

2

+ 2 vx
2b4 b1 a4

2 + 2 vx b1
2b2 a4

2 − 2 b1
2b2 b3 a4

2 + 2 b1
2b2

2a4 a1 + 2 qy
2b4 b1 a4

2

+ 2 qy b4
2b3 a4

2 + 2 vy
2b4 b1 a4

2 − 2 vy b4
2b3 a4

2 − 2 b4
2b2 b3 a4

2 − 4 qx b4 b1 b2 a4 a1

− 4ux a4 a2 a1 b4 b1,

and

c5 =2 qy b4
2vy a4

2 − 2 px a4
2ux b4

2 − 2 py a4
2uy b4

2 + 2 qx b4
2vx a4

2 + px
2a4

2b4
2

+ ux
2a4

2b4
2 + py

2a4
2b4

2 + uy
2a4

2b4
2 − qx2b42a42 − vx2b42a42

− qy2b42a42 − vy2b42a42 + 2 qy b4
2b2 a4

2 − 2 vy b4
2b2 a4

2 + 2 qx b4 b1 b2 a4
2

− 2 vx b4 b1 b2 a4
2 − 2 px a4 a2 a1 b4

2 + 2ux a4 a2 a1 b4
2 + a2

2a1
2b4

2

− 2 py a4
2a2 b4

2 + 2uy a4
2a2 b4

2 − b12b22a42 − b42b22a42 + a4
2a2

2b4
2.

94

7.5.3 One Point on the Polygon Boundary

In the third setting, we seek the intersection points between two functions, where the first is f1
(Equation 7.1) from above, and the second is that of a point on the boundary of the polygon.
Therefore, to find the intersection points, we solve the following:

√(
px − ux − a1

a2 + a3 tan(θ)

a4 − a1 tan(θ)

)2

+

(
py − uy − a4

a2 + a3 tan(θ)

a4 − a1 tan(θ)

)2

− d1 sin(θ1 − θ) = 0, (7.4)

where the constants a1, a2, a3 and a4 are defined in Equation 7.3.

In this case, the solution is much more complex than that of the previous section, and to write
out the complete representation of the coefficients would require over 20 pages. The fundamental
component of the solution is a root of the following polynomial, whose roots we call the set R:

R = RootOf (c′1 · Z4 + c′2 · Z3 + c′3 · Z2 + c′4 · Z + c′5).

Now the solutions may be found by evaluating:

arctan

(√
R,

c6 + c7R+ c8R
2

c9R3/2 + c10
√
R

)
, arctan

(√
R,

c6 + c7R+ c8R
2

−c9R3/2 − c10
√
R

)
.

The precise values of the constants may be seen by solving Equation 7.4 with Maple. Note that
the arctan function used here has two arguments. This means that the solution to arctan(y, x) is
the principal argument of the complex number x+ iy [115], where the signs of x and y determine
the quadrant of the plane which contains the solution [160]:

arctan(x, y) =

arctan(y/x) x > 0

arctan(y/x) + π y ≥ 0, x < 0

arctan(y/x)− π y < 0, x < 0

π/2 y > 0, x = 0

−π/2 y < 0, x = 0

undefined y = 0, x = 0

95

8
Approximation Algorithms for the Hausdorff Core Problem on

Simple Polygons

In this chapter we outline parameterized and approximation algorithms to solve the general
Hausdorff Core problem which operate by manipulating disks centred on selected vertices of P
(precisely which vertices have disks is discussed shortly)1. We begin by describing parameterized
decision and optimization algorithms, and we describe how the decision algorithm may be mod-
ified to obtain a fully polynomial time approximation scheme (FPTAS) for the decision version
of the Hausdorff Core problem.

Theorem 8.1. There exists a parameterized algorithm for the general Hausdorff Core problem
on simple polygons with O

(
log
(
ε−1
) (
n3 + n2ε−6

))
running time. Given an input polygon P , the

algorithm computes a convex polygon Q, where Q ⊆ P , and with Hausdorff distance H (P,Q) <
kOpt+drad ·ε, where kOpt is the value of the optimal solution, and drad is the radius of the polygon
(i.e. the distance from a constrained 1-centre of P to the most distant vertex in P).

To simplify the discussion, we will scale the problem so that drad = 1, and so the parameterized
algorithm finds a Hausdorff Core where H (P,Q) < kOpt+ε. By Corollary 6.1 (page 80), Invariant
8.1 implies that there exists a Hausdorff Core solution with H (P,Q) = k:

Invariant 8.1. Given a simple polygon P with convex hull CH (P), there exists a set of points
{q1, . . . , qn′} ⊂ Q, where n′ is the number vertices of CH (P), such that ∀i, qi ∈ C (pi, k) and
∀i, j, i 6= j, qiqj does not cross outside P (recall that C (pi, k) is a disk of radius k centred at pi).

We sketch a continuous version of the solution in Algorithm 8.1, and we illustrate an example
of the operation of the algorithm in Figure 8.1. In this algorithm, we use Lemma 6.4 which states
that an optimal Hausdorff Core Q of P may always cover at least one vertex of P . We call this
vertex of P covered by Q the point qp, and we try all possible values of qp in the algorithm. The
algorithm operates by placing disk centres on the vertices of the convex hull of P and shrinking
their radii uniformly as long as there exists a Hausdorff Core which pierces all disks. We simplify
this test by considering only those disks that do not cover qp and checking for intersection between
Q and the boundary of each disk.

The solution Q is a convex polygon which intersects every disk. If each disk C (pi, k) touches
Q, we know that the distance from each vertex with a disk to Q is at most k, the radius of

1Elements of this chapter have appeared in [53].

97

Algorithm 8.1 HCORE(P)

1: Input: A simple polygon P .
2: Output: Q, a Hausdorff Core of P .
3: Q = ∅, kmin =∞
4: for each qp ∈ PV do
5: Begin with disks of radius k0 centred on the vertices v ∈ CH (P)V , where k0 = 1 (recall

drad = 1).
6: Any disk centred at a vertex v where dist (qp, v) < k0 covers qp; such disks are ignored for

now.
7: Reduce the radius such that at time ti ∈ [0, 1], each disk has radius k (ti) = 1 − ti. Let

Q (ti) be a Hausdorff Core covering qp at time ti, if it exists (we discuss how this may be
done approximately in Section 8.2). The radius is reduced until one of three events occurs:

1. k (ti) = dist (qp, vn), where vn is the farthest vertex from qp that is not the centre of
a disk. Add a disk centred at vn with radius k (ti).

2. Q (ti) cannot cover qp. In this case, we break and if k (ti) < kmin, then set Q = Q (ti)
and kmin = k (ti).

3. A further reduction of k (ti) would prevent visibility in P between two disks. Again,
we break and if k (ti) < kmin, then set Q = Q (ti) and kmin = k (ti).

8: end for
9: return Q

C (p, k). We ensure that if a vertex v ∈ CH (P)V (the set of vertices of the convex hull of P) does
not have a disk, then dist (v, qp) ≤ k. Therefore, given a simple polygon P , this algorithm finds a
convex polygon Q contained in P such that ∀p ∈ CH (P)V ,∃q ∈ Q such that dist (p, q) ≤ k. By
Lemma 6.3 (page 79), we know that Q is a solution where H (P,Q) = k. It remains to be shown
that there does not exist a convex polygon Q′ such that dist (p,Q′) ≤ k′, where k′ < k. This
cannot be the case, for if the disks were shrunk any further, no convex polygon could intersect
some pair of the disks by Invariant 8.1. Therefore, the polygon would necessarily be of distance
dist (p, q′) > k′ for some vertex p and any point q′ ∈ Q.

Finally, the optimality of the algorithm is guaranteed since we exhaustively explore the dif-
ferent possibilities for the point qp which is contained in a solution Q. By Lemma 6.4, we know
that at least one such point qp is contained in an optimal solution. By trying all possibilities, we
ensure that the globally optimal solution is obtained.

Our formal approximation algorithm, described in Section 8.3, operates in a similar way
to Algorithm 8.1 except that we use a parameterized (binary) search on the values of possible
Hausdorff Core solutions to obtain the approximation algorithm, rather than reducing the value
continuously. We find the Euclidean 1-centre p1c using the technique of [22] described in Section
6.2.11; there may be multiple such vertices, but we can choose one arbitrarily.

98

p1

p2

p3

p4

p1c
p5

p6

p7

p8 q5

q1

(a) Two disks are centred on p1 and p5, which are
the critical points for determining the position of
the 1-centre p1c. Let qp = p8.

p1
p5

p3

q1
q3

q5

p8

(b) We have shrunk the disks to have radius
k′, and dist (p3, p8) = k′, so we add a new
disk C (p3, k

′) to the set. The fat lines indi-
cate a set of lines of strong visibility between the
disks, and so there exists a Hausdorff Core where
H (P,Q) = k′.

p1

p3

p5

p7

q1

p8 = q7

q5q3

(c) Another disk is added centred at point p7,
so now we have four disks C (pi,dist (p7, p8)), for
each i ∈ {1, 3, 5, 7}.

p1

p3

p5

p7

q1

q7

q5

q3

p8

(d) We cannot shrink the disks any further, other-
wise Invariant 8.1 would be violated. Therefore,
a solution Q can be composed from the fat line
segments such that H (P,Q) = k, where k is the
radius of the disks. Note that all vertices of P
are within distance k of Q, and vice versa.

Figure 8.1: Finding a Hausdorff Core by shrinking disks centred on the vertices of P , as discussed
in Algorithm 8.1. We are using qp = p8 in this example.

8.1 Algorithmic Challenges of the Hausdorff Core Problem

The decision version of the Hausdorff Core problem on P consists of determining whether we can
draw a polygon Q with one vertex in or on each disk centred on a vertex of P and so that each
successive pair of vertices in Q defines a line segment which does not cross outside P . We may
try to solve this by selecting a point on the first disk, and then choosing the clockwise-most point
on the next disk, iterating this procedure in a counter-clockwise direction around the interior of
P until we return to the first disk.

99

q7

p6
q5

p4

q3
p2q1

q′1

p8

p1 p3

p5

p7

Figure 8.2: There can be two disconnected solution intervals for the Hausdorff Core problem.
The points pi are vertices of the polygon P , and the points qj are points that are being selected
on disks as the vertices of the solution polygon Q.

As shown in Figure 8.2, it is possible for our problem to have two disconnected sets of solutions,
even with as few as four disks. For a point q1 on the first disk, we can trace the polygon through
the vertex p2 ∈ P to the intersection with the second disk at q3, then through the vertex p4, and
so on, around to p8. The lines ←−→q1p2 and ←−→q7p8 intersect at q′1, which is a choice for one vertex of
the polygon Q (the others being q3, q5, and q7). If q′1 is inside the same disk as q1, then we have
a feasible solution. However, the heavy curves show the locus of q′1 for different choices of q1,
and the portion of it inside the disk is in two disjoint pieces. The set of solutions to the problem
as shown is disjoint, corresponding to a slice (for a constant value of the radius of the disks)
through a non-convex optimization region. As a result, neither second-order cone programming
(i.e. [112]) nor any other convex optimization technique is immediately applicable.

8.2 Discretization of the Problem

In this section, we discuss the decision version of the approximation algorithm, where we are
given a distance k and we wish to determine whether there is an approximate Hausdorff Core
solution Q′ with H (P,Q′) ≤ k+ε. This approximation scheme seeks to grow disks by an additive
factor ε, and determine whether there exists a solution for these expanded disks. ε is the fraction
of drad that we wish to use as a bound on the approximation, where drad is the distance from the
constrained 1-centre p1c to the most distant vertex in P : drad = maxp∈P dist (p1c, p). We scale
the input so that drad = 1 to simplify the analysis. Notice that this method of approximation
maintains a scale invariant approximation factor, and the size of the approximation factor for a
given P is constant, regardless of Q and the magnitude of k. We still require that the approximate
solution Q′ must not cross outside P , and that Invariant 8.1 holds.

The strategy behind this approximation algorithm is to grow the disks by ε/3, so that they
may be discretized into arc segments on the boundary of each disk. We grow them by ε/3 rather
than ε because there is some additional error that comes into the algorithm, and we wish to have
a final additive approximation factor of ε. It is possible to check for strong visibility between
discrete intervals2, which avoids some of the problems faced by the exact formulation of the

2Strong visibility here means that given a pair of intervals, all points on each interval are visible from any point

100

ε/3

ϕ = ε/6 2

Cϕ

Figure 8.3: Determining whether there exists a straight line segment that would serve as a
Hausdorff Core solution. Consider a circular segment Cϕ of radius 2, arc length ε/3, and with
an interior angle of ϕ = ε/6. If Q′ can be covered by Cϕ, then a straight line segment Q` exists
such that H (Q′, Q`) < ε/3.

problem. One of the challenges of this approach is the selection of the length of the intervals on
the new disks of radius k + ε/3. We require that the intervals be small enough so that we will
find a solution for the approximation if one existed for the original disk radius. In other words,
given an exact solution Q for the original radius k such that H (P,Q) ≤ k, we are guaranteed
that at least one interval on each of the expanded disks will be contained inside Q.

We study two possible cases for the properties of a Hausdorff Core Q: either the minimum
angle in Q is ε/6 (we justify this choice shortly), or else Q may be approximated by a line segment.
We begin by looking at the latter case.

We first determine whether any Hausdorff Core Q can be approximated by a single line
segment. We consider an arc segment of radius 2 (i.e. the maximum diameter of P) and arc
length ε/3, as shown in Figure 8.3. The interior angle of the circular segment Cϕ formed by this
arc is ϕ = ε/6. If an interior angle of Q is less than or equal to ϕ, then Q may be fully covered
by Cϕ since Q is convex. In this case, there exists a line segment Q` which approximates Q′ such
that H (Q′, Q`) < ε/3.

We now describe how to determine such a line segment Q`, assuming there exists some Cϕ
that covers Q. First, we grow all existing disks by an additional factor of ε/3, so that they have
radius kg = k + 2ε/3. Since Q is convex, this operation means that any line segment which
approximates Q will now intersect at least one arc from each disk if a solution exists where
H (P,Q) ≤ k. By Lemma 6.4, we know that qp ∈ PV is contained in Q. Therefore, we attempt
to find a line intersecting a point qp and a segment of each disk of radius kg for each qp. For a
selected qp, we build an interval graph in the range [0 . . . π]. For each disk C (pi, k

g), if a line at
angle θ mod π from an arbitrary reference line intersects a segment of C (pi, k

g) contained in P
before intersecting P itself, then C (pi, k

g) covers θ in the interval graph. If there is a non-zero
intersection between all disks in the interval graph at θ?, then the solution is a line segment Q`
at angle θ? to the reference line, intersecting qp with endpoints on the last disks intersected by
Q`. Therefore, if there exists a solution H (P,Q) ≤ k where Q can be approximated by a line
segment Q` with H (Q,Q`) < 2ε/3, then we will find Q`.

If we have not found a solution Q`, we know that all interior angles of some polygon Q are
greater than ϕ, and so we wish to determine an approximating polygon Q′. If we divide the

expanded disk of radius k + ε/3 into 36π2(k+ε/3)
ε2

equal intervals, at least one interval is fully
contained in Q regardless of where the intervals are placed on the disk.

Lemma 8.1. If there exists a Hausdorff Core Q with Hausdorff distance k to the polygon P , then
by Invariant 8.1, Q pierces all disks of radius k centred on the vertices of the convex hull of P .
If disks of radius k + ε/3 are placed on all the same vertices and the minimum angle of Q is at

on the other interval.

101

Q

p1

C(p1, k)

C(p1, k
′)

q1

Figure 8.4: To find the minimum length interval for the discretization of the expanded disks, we
need to ensure that at least one full interval is always covered by Q. We know the minimum angle
at any vertex of Q is at least ϕ, since there was no single line segment that could approximate
Q. The minimum arc length of C(p1, k

′) spanned by Q is realized when the bisector of the edges
incident upon q1 is collinear with the line ←−→p1q1.

least ϕ, then the expanded disks may be divided into O(ε−2) disjoint intervals so that at least one
interval on every expanded disk is on the interior of Q.

Proof. The smallest arc length of an expanded disk that may be covered by Q is realized when
the bisector of the angle at a vertex q1 is collinear with the line formed by q1 and the centre of
the disk p1 (see Figure 8.4). The minimum angle at a vertex in Q is ϕ = ε/6, and so we want to
determine the maximum angle ϕ′ for a circular segment CP of radius k+ε/3 centred at p1 so that
two such circular segments may be covered by Q. A circular segment CQ of radius ε/3 and angle
ε/12 has arc length ε2/36, and two disjoint such segments may be covered by Q∩C(p1, k+ ε/3).
Therefore, given points qc1 and qc2 as the endpoints of the arc on CQ, we may place the endpoints
of the arc on CP at these points to determine a lower bound on ϕ′. The arc length of CP is at
least 2/π times that of CQ on these points. Since the arc length of CQ is ε2/36, the arc length

of CP is at least ε2/18π. The interior angle ϕ′ of CP is given by ϕ′ = ε2/18π
k+ε/3 = ε2

18π(k+ε/3) . The

number of such circular segments in C(p1, k + ε/3) is 2π18π(k+ε/3)
ε2

= 36π2(k+ε/3)
ε2

. Since k + ε/3 is
at most 1, the number of segments is in O

(
ε−2
)
.

Now finding Q′ is simply a matter of finding a set of intervals such that there exists one
interval on each disk which has strong visibility with an interval on all the other disks, and then
selecting one point from each interval. A solution has the form Q′ = {q1 . . . qk}, where qi is a
point on C (pi, k

g) in the interval contained in the solution.

We use a dynamic programming algorithm to find a solution given a set of disks in the input
polygon. We use a table A[i, j] that stores, for a pair of intervals i and j in different disks, a range
of possible solutions that include those intervals (see Figure 8.5). We find the convex polygon
that includes intervals i and j by combining two convex polygons, one that includes i and an
interval α? and another that includes j and α?. In order to compute A[i, j] we lookup the entries
for A[i, α1] . . . A[i, αm] and A[α1, j] . . . A[αm, j], where α1, . . . , αm are the intervals of a disk α,

102

i j

α?

A[i, j]

A[i, α?] A[α?, j]

θ

Figure 8.5: The convex polygon that includes intervals i and j is built by combining a polygon
that includes i and α? and one that includes j and α? (the shaded polygons).

to determine if there exists a α? for which there are solutions A[i, α?] and A[α?, j] that may be
combined into a convex polygon. There are many solutions that include a certain pair of intervals,
but we store only O (n) solutions for each pair. For example, for the entry A[i, j] we would store
the edge coming out of j that minimizes the angle θ for each choice of an edge coming out of
interval i, as shown in Figure 8.5. This would be done recursively at each level, which would
make partial solutions easier to combine with other solutions while keeping convexity. Note that
a particular choice of pairs of disks to form the solution Q′ corresponds to a triangulation of Q′,
and since there are O (n) pairs of vertices joined in the triangulation, we need to store entries for
the intervals of O (n) pairs of disks. Given the clique of strongly visible intervals, we may now
freely choose a point from each interval to obtain the solution polygon Q′. We run the dynamic
programming algorithm iteratively for each qp ∈ PV , using only disks centred on vertices v ∈ PV
where dist (v, qp) ≥ k. If no solution Q′ is found for any qp, then there is no solution where
H (P,Q) = k.

We present the following observations pertaining to Q and Q′:

• ∃Q ⇒ ∃Q′, ¬∃Q′ ⇒ ¬∃Q. The intervals are defined such that at least one interval from
each disk will be contained in Q′.

• ∃Q′ ; ∃Q. The existence of Q′ does not imply the existence of Q because the optimal
solution may have disks of radius k + ν, where ν < ε/3.

8.3 The Minimization Problem

If there exists an optimal solution polygon Q where H (P,Q) = kOpt, our algorithm finds an
approximate solution Q′ such that H (P,Q′) < kOpt + ε. To determine a value of k′ such that

103

k′ ≤ kOpt + ε, it suffices to perform a binary search over possible values for k′ in the range of
[0 . . . 1], executing the decision approximation algorithm at each iteration. At the ith iteration
of the algorithm, let the current radius be ki. If the algorithm finds a solution Qi such that
H (P,Qi) = ki, we shrink the disks and use ki+1 = ki − 1/2i. If the algorithm fails to find a
solution, we use ki+1 = ki + 1/2i. Initially, k0 = 1, and the stopping condition for the parametric
search is met when we find an approximate solution for radius k, and the approximate decision
algorithm fails for radius k−ε/3. Thus, the minimization version of the approximation algorithm
requires O

(
log
(
ε−1
))

iterations of the decision algorithm to find a solution. In the decision
version, we showed that H (Q,Q′) < 2ε/3 (in the case that Q′ is a line), if Q exists. In the
minimization version, the best solution for a value of k may approach ε/3 less than the optimal
value located on one of the radius intervals. Therefore, the minimization algorithm returns a
solution Q′ where H (P,Q′) < kOpt + ε.

8.4 Running Time and Space Requirements

We begin by analyzing the space requirements and running time of the approximate decision
algorithm. We compute the 1-centre using the technique in [22], which takes O

(
n2
)

time (see
Section 6.2.11). The single line solution tests a line against O (n) disks, each of which may have
O (n) segments. This procedure is repeated O (n) times, so this requires O

(
n3
)

time in total. In
the dynamic programming table, there are O (n) pairs of disks. The number of intervals on each
disk is bounded by O

(
ε−2
)
, so we have O

(
ε−4
)

possible combinations of intervals between two
disks. Therefore there are O

(
nε−4

)
entries in the table, and each of them stores a description

of O (n) solutions. Hence the table needs roughly O
(
n2ε−4

)
space. If the number of entries in

the table is O
(
nε−4

)
, the dynamic programming algorithm should run in time O

(
nε−6

)
, since

in order to calculate each entry we need to check all the O
(
ε−2
)

intervals of one disk. The
algorithm may require O (n) iterations to test each value of qp, so the approximate decision algo-
rithm requires O

(
n3 + n2ε−6

)
time. Finally, the minimization version of the algorithm performs

O
(
log
(
ε−1
))

iterations of the approximate decision algorithm, so the complete algorithm requires
O
(
log
(
ε−1
) (
n3 + n2ε−6

))
time to find a Hausdorff Core with Hausdorff distance kOpt+ε, where

kOpt is the value of an optimal solution.

8.5 An FPTAS for the Hausdorff Core Decision Problem

Definition 8.1. Fully Polynomial Time Approximation Scheme (FPTAS): An FPTAS is a family
of approximation algorithms for a minimization problem A, so that for any constant ε > 0,
there exists a 1 + ε-approximation algorithm for A, where the running time of the algorithm
is polynomial in both 1/ε and the size of the input instance. Analogously, for a maximization
problem, an FPTAS is a family of 1−ε-approximation algorithms with running times of the same
form.

Modifying the decision algorithm of Section 8.2 to admit an FPTAS rather than an additive
approximation factor is straightforward. In this case, we begin by determining whether there
eixsts a circular segment Cϕ which covers a Hausdorff Core solution for P , but now we use arc
length kε/2. This way, our algorithm will find a line segment which is a Hausdorff Core solution
with Hausdorff distance (1 + ε) kOpt if one exists, where kOpt is the value of an optimal solution.

104

Otherwise, the dynamic program requires 4π2(1+ε)
ε2

∈ O(ε−2) equal intervals so that at least one
interval is contained in any solution when the disks are grown to have radius (1 + ε/2) k. The
running time is asymptotically the same as the previous approximation algorithm. However,
we are not able to perform a parametric search in the same way as before, as this could have
an arbitrarily large running time relative to the sizes of the inputs. Since the running time of
the decision algorithm remains O

(
n3 + n2ε−6

)
, this is an FPTAS for the decision version of the

Hausdorff Core problem.

8.6 Conclusions and Future Work

We have described an algorithm which computes a Hausdorff Core Q of a simple polygon P with
Hausdorff distance H (P,Q) < kOpt + ε, where kOpt is the value of the optimal solution, and ε is
a fraction of drad (the distance from a constrained 1-centre to the most distant vertex in P). The
running time of the algorithm is O

(
n3 + n2ε−6

)
log
(
ε−1
)

time for the optimization version. We
extended this by describing an FPTAS for the decision version of the Hausdorff Core problem.
These are the first known algorithms for the Hausdorff Core problem on general simple polygons.

For future work, it would be interesting to explore other metrics. We studied the Hausdorff
metric, but any of the other metrics discussed in Section 6.2.6 could be used. In our original
application, we envisioned the creation of a hierarchy of simplified polygons, from full-resolution
contour lines down to the simplest possible approximations. This would permit testing paths
against progressively more accurate (and more expensive) approximate representations of poly-
gons until we found a definitive answer regarding whether the path and polygon intersect. Our
definition of d-core (including the Hausdorff Core) requires the solution to be convex. While
convexity has many useful consequences, it represents a compromise to the original goal because
it only provides one non-adjustable level of approximation. It would be interesting to consider
other related problems that might provide more control over the approximation level. Another
direction for further work would be to define some other constraint upon the simplified polygon.
For instance, we could require that it be star-shaped, i.e. there exists some point p ∈ P such that
every q ∈ P can see p. A similar but even more general concept might be defined in terms of link
distance.

Finally, it would be interesting to study other computational geometry problems in a setting
similar to Invariant 8.1. For example, in the following chapter, we study a variant of the Minimum
Spanning Tree problem, where each point in the tree is selected from a disk centred on a point
in the input set.

105

9
Minimum Spanning Trees with Neighborhoods

In the previous chapters, the objective involved piercing a set of disks with a convex polygon. We
now turn to the problem of piercing a set of disks with a Minimum Spanning Tree. This problem
is best framed in the context of a geometric problem on imprecise data1. In this setting, for each
point of the input we are provided with a region of uncertainty, i.e., a geometric object such as a
line, disk, set of points, etc., and the exact position of the point may be anywhere in the object.
Each object is understood to represent the set of possible positions for the corresponding point.
In this chapter, we consider the Euclidean Minimum Spanning Tree (MST) problem. Given a
tree T , we define its weight w (T) to be the sum of the weights of the edges in T . For a set of
fixed points P in Euclidean space, the weight of an edge is the distance between the endpoints,
and we write mst (P) for the weight of the MST on P . Thus, mst (P) = minw (T), where the
minimum is taken over all spanning trees T on P .

Given a set of disjoint disks as input, we wish to determine the minimum and maximum
weight MSTs possible when a point is chosen in each disk. The minimum weight MST version
of the problem has been studied previously, and is known as the Minimum Spanning Tree with
Neighborhoods2 problem (MSTN). We introduce the maximum weight MST version of the
problem, which we call the max-MSTN problem. These problems represent upper and lower
bounds respectively on the weight of a Minimum Spanning Tree in the model where one point is
chosen in each disk.

Definition 9.1. The MSTN Problem: Assume we are given a set D = {D1, . . . , Dn} of disjoint
disks in the plane, i.e., Di ∩ Dj = ∅ if i 6= j. The MSTN problem on D asks for the selection
of a point pi ∈ Di for each Di ∈ D such that the weight of the MST of the selected points is
minimized.

Definition 9.2. The max-MSTN Problem: Given a set D = {D1, . . . , Dn} of disjoint disks in
the plane, the max-MSTN problem is to compute a set of points P , where pi ∈ Di and |P | = n,
such that the weight of the MST of the selected points is maximized.

1Elements of this chapter have appeared in [54].
2While this thesis is written using Canadian spelling, we use the American spelling of ‘neighborhood’ when

referring to the MSTN and max-MSTN problems, because this is established nomenclature in the literature.

107

9.1 Related Work

The first known MST algorithm was published over 80 years ago [98], and a number of successful
variants have followed (see [85] for the history of the problem). A review of models of uncertainty
and data imprecision for computational geometry problems is provided in [113]. Here, we discuss
a few results that are directly related to the MST problem and our model of imprecision.

The MSTN problem on disjoint unit disks has been shown to admit a PTAS [166]. An
NP-hardness proof for a generalization of MSTN where the neighborhoods are either disks or
rectangles appeared in [166]. This proof was faulty however, and one of the authors later conjec-
tured that a reduction from planar 3-SAT might be used to show the NP-hardness of the MSTN
problem [165, p.106]. In Section 9.4.3, we prove this conjecture. The hardness of MSTN is of
interest, and the previous result has been cited a number of times, e.g. [30, 35].

When regions of uncertainty are modelled as disks or squares, even the problem of maximizing
the smallest pairwise distance in a set of n imprecise points is NP-hard [69].

Löffler and van Kreveld [113] discussed two results on computing Minimum Spanning Trees
under the model of uncertainty that we are considering. First, they demonstrated that it is
algebraically difficult (see Section 9.2) to compute the MST when the regions of uncertainty are
continuous regions of the plane, even for very simple inputs such as disks or squares. Secondly,
they demonstrated that the problem is also NP-hard if the regions of uncertainty are not pairwise
disjoint, through a reduction from the minimum Steiner tree problem. In this thesis we prove the
hardness of the special case in which the regions are pairwise disjoint.

Erlebach et al. [62] used a model of uncertainty where information regarding the weight of
an edge between a pair of points or the position of a point may be obtained by pinging the edge
or vertex, and they sought to minimize the number of pings required while obtaining the optimal
solution. The distinction is that in their work, they were interested in reducing the amount of
communication that is required to locate points within a region of uncertainty, while in our model,
the objective is to optimize the MST given regions of uncertainty.

The minimum k-spanning tree (k-MST) problem asks for the minimum weight MST over a
set of k ≤ n points, where n is the number of vertices in the input. This was shown to be NP-hard
by reduction from the Steiner tree problem [70]. The Euclidean version of k-MST was shown to
admit a PTAS by Arora [11], as a corollary of his traveling salesman problem result.

The travelling salesman with neighborhoods (TSPN) problem has been studied extensively.
The problem was introduced by Arkin and Hassin [9], in a paper that has been applied, improved,
built-upon or otherwise referenced over 150 times. There exists a PTAS for TSPN when the
neighborhoods are disjoint unit disks [57]. The most general version of the problem, where
regions may overlap and may have varying sizes, is known to be APX-hard [50].

Löffler and van Kreveld [113] studied the convex hull problem on imprecise points in detail,
and they presented a number of new results. We provide a sampling of these results in Table
9.1. Their paper includes many results beyond those mentioned in the table; these are simply
intended to provide a flavour of the range of problems and their complexities.

We present a variety of results related to the MSTN and max-MSTN problems. For both
problems we assume the regions of uncertainty are disjoint.

• max-MSTN: 1/2-approximation algorithm;

108

Table 9.1: Algorithms/Hardness of Convex Hulls on Various Models of Imprecision [113]

Setting Running Time/Hardness

Largest area on:

parallel line segments O
(
n3
)

non-intersecting line segments O
(
n3
)

in convex position

line segments NP-hard

non-intersecting squares O
(
n7
)

non-intersecting, equal size squares O
(
n3
)

equal size squares O
(
n5
)

Largest perimeter on:

parallel line segments O
(
n5
)

line segments NP-hard

non-intersecting squares O
(
n10
)

equal size squares O
(
n13
)

Smallest area on:

parallel line segments O (n log n)

squares O
(
n2
)

Smallest perimeter on:

parallel line segments O (n log n)

squares O (n log n)

• max-MSTN: parameterized
(

1− 2
k+4

)
-approximation algorithm (where k represents the

separability of the instance);

• max-MSTN: proof of NP-hardness;

• MSTN: parameterized (1 + 2/k)-approximation algorithm (k is the separability of the in-
stance);

• MSTN: proof of NP-hardness.

The approximation algorithm for max-MSTN (Section 9.3.1) is based on choosing the centre
points of the disks; the interesting aspect in this section lies in the analysis. The parameterized
algorithms (Sections 9.3.2 and 9.4.2) for both settings were inspired by the observation that
the approximation factor improves rapidly as the distance between disks increases. To address
this, we introduce a measure of how much separation exists between the disks, which we call
separability, and we analyze the approximation factor of the MST on disk centres with respect to
separability.

For both hardness results, we establish that not only are the problems NP-hard, but also that
there is no FPTAS for the problems unless P=NP. Although the hardness proofs both consist
of reductions from planar 3-SAT, the gadgets used are quite distinct and either reduction is
interesting even given the existence of the other. In both cases, we construct an instance of our
problem from the planar 3-SAT instance and then show that the weight of an optimal solution to
the given problem on our construction may be determined a priori, using the assumption that the

109

3-SAT instance is satisfiable. If the instance is not satisfiable, we prove that the weight is changed
by at least a constant amount (reduced by at least 0.33 units for max-MSTN, and increased by
at least 0.66 units for MSTN).

9.2 Algebraic Complexity

There are two main types of complexity that one encounters when working with optimization
problems in computational geometry: algebraic complexity and combinatorial complexity. In
this section, we provide a brief discussion of the former.

Many geometric optimization problems that are simple to formulate and conceptualize can
nonetheless have solutions that are difficult to compute. Borrowing from an example in [14] and
[113], consider the problem of computing a Minimum Spanning Tree over a set of points, where
the tree consists of one root vertex of degree k and k leaf vertices of degree one. If we know the
positions of all of the leaves and simply wish to compute an optimal position for the root vertex,
then this is an algebraically difficult problem. Formally, suppose we have points P = {p1, . . . , pk},
where pi = (xi, yi), and we wish to place the point c = (x, y) in the plane. Then the optimal
weight w of the tree is

w = min
x,y

k∑

i=1

√
(xi − x)2 + (yi − y)2 (9.1)

The problem is well known as the Fermat-Weber problem, and Bajaj [14, Table 1] shows that
even for k = 5, that the solution to this problem requires the determination of the roots of a
polynomial of degree 8, for which there is no known solution. The problem was first proposed
by Fermat for problems where k = 3 [51], while exact solutions to the settings for k = 3 and
k = 4 were found by Cavalieri in 1647 (with a tightening by Heinen in 1834) and Fagnano in
1775, respectively [13].

Durocher and Kirkpatrick [58] studied the Fermat-Weber problem, and they suggest several
approximation schemes which maintain a robust approximation while removing the algebraic
complexity from the problem. The most basic approach is to compute the centre of mass of the
points, which provides a 2-approximation for the position of the Fermat-Weber point (where the
value of the optimal solution is the value of w in Equation 9.1).

9.2.1 Euclidean MST Problems are Sum-of-Square-Roots-Hard

We note that Euclidean MST problems are not known to be in NP, since comparing two candidate
solutions is an instance of the sum of square roots problem3, which is not known to be in NP.
The sum of square roots problem accepts two sequences of integers as input, A = a1, . . . , am and
B = b1, . . . , bn, and is asked to determine whether

∑m
i=1

√
ai >

∑n
i=1

√
bi. While the status of the

general version of the sum of square roots problem is unknown, there is a randomized polynomial
time algorithm to determine whether

∑m
i=1

√
ai =

∑n
i=1

√
bi [20]. Every MST problem in the

thesis is studied under the Euclidean distance metric, and so are generalizations of the standard
Euclidean MST problem and are not known to be in NP. We circumvent this hardness issue in
the usual fashion, by working in the real RAM model.

3For a discussion of sum-of-square-roots-hard problems, see [156].

110

(a) The optimal result for
max-MSTN (TOpt).

(b) The MST Tc on centres. (c) The spanning tree T ′c with
the same topology as Tc, using
the points of TOpt.

Figure 9.1: To compare w (Tc) with w (TOpt), we use an intermediate tree T ′c.

9.3 MAX-MSTN

In this section we study a few approximation algorithms for the max-MSTN problem, and then
we present the proof of hardness of approximation. We begin with a 1/2-approximation algorithm
below, followed by a parameterized algorithm in Section 9.3.2.

9.3.1 1/2-Approximation Algorithm

To approximate the solution to max-MSTN, we first consider the algorithm that builds an MST
on the centres of the disks. We show this algorithm approximates the optimal solution within a
factor of 1/2, i.e., the weight of the MST built on the centres is not smaller than half of that of
the optimal tree.

Theorem 9.1. Consider the max-MSTN problem for a set D of disjoint disks. Let Tc denote
the MST on the centres of the disks, and let TOpt be the maximum MST (i.e., the optimal solution
to the problem). Then w (Tc) ≥ 1/2 · w (TOpt).

Proof. Let T ′c be the spanning tree (not necessarily an MST) with the same topology (i.e., com-
binatorial structure of the tree) as Tc but on the points of TOpt (see Figure 9.1). Since T ′c and
TOpt span the same set of points, and TOpt is an MST, we have w (TOpt) ≤ w (T ′c). On the other
hand, since T ′c and Tc have the same topology, we have w (T ′c) ≤ 2w (Tc); this is because when we
move the points from the centre to somewhere else in the disks, the weight of each edge increases
by at most the sum of the radii of the two involved disks and, since the disks are disjoint, the
increase is at most equal to the original weight. To summarize, we have w (TOpt) ≤ w (T ′c) and
w (T ′c) ≤ 2w (Tc), which completes the proof.

9.3.2 Parameterized
(
1− 2

k+4

)
-Approximation Algorithm

Observe that in order to get the approximation algorithm for max-MSTN in Section 9.3.1, we
require the disks to be disjoint. Intuitively, if we know that the disks are further apart, we can get

111

better approximation ratios. We formalize this intuition by providing a parameterized analysis,
i.e., we express the performance of the algorithm in terms of a separability parameter4. Let rmax

be the maximum radius of any disk in the input set. We say that a given input for our problem
satisfies k-separability if the minimum distance between any two disks is at least k · rmax. The
separability of an input instance I is defined as the maximum k such that I satisfies k-separability.
With this definition, we have the following result:

Theorem 9.2. For max-MSTN when the regions of uncertainty are disjoint disks with separa-
bility parameter k > 0, the algorithm that builds an MST on the centres of the disks achieves a
constant approximation ratio of k+2

k+4 = 1− 2
k+4 .

Proof. Let Tc be the MST on the centres of the disks. We can extend the analysis in the proof of
Theorem 9.1 to show that the approximation factor is k+2

k+4 = 1− 2
k+4 for any input that satisfies

k-separability. Define TOpt and T ′c as before. Consider an arbitrary edge e in T ′c and let Di and
Dj be the two disks connected by e. Let ri and rj be the radii of Di and Dj , respectively, and
let d be the distance between Di and Dj . In Tc the disks Di and Dj are connected by an edge e′

whose weight is d + ri + rj . The weight of e, on the other hand, can be at most d + 2ri + 2rj .
Therefore, the ratio between the weight of an edge in Tc and its corresponding edge in T ′c is at
least

d+ ri + rj
d+ 2ri + 2rj

≥ krmax + ri + rj
krmax + 2ri + 2rj

≥ krmax + rmax + rmax

krmax + 2rmax + 2rmax
=
k + 2

k + 4
.

Since this holds for any edge of T ′c, we get w (Tc) ≥ k+2
k+4w (T ′c) ≥ k+2

k+4w (TOpt), and we get an

approximation factor of k+2
k+4 = 1− 2

k+4 .

The approximation ratio gets arbitrarily close to 1 as k increases. This confirms our intuition
that if the disks are further apart (more separate), we get a better approximation factor.

9.3.3 NP-Hardness of max-MSTN

We present a hardness proof for the max-MSTN problem with a reduction from the planar 3-SAT
problem. Planar 3-SAT is a variant of 3-SAT in which the graph G = (V,E) associated with the
formula is planar.

Theorem 9.3. max-MSTN is NP-hard, and it does not admit an FPTAS unless P=NP.

We show a reduction from any instance of the planar 3-SAT problem to the max-MSTN
problem. In planar 3-SAT, we have a planar bipartite graph G = (V,E), where V = Vv ∪ Vc,
so that there is a vertex in Vv for each variable and a vertex in Vc for each clause; there is an
edge (vi, vj) in E between a variable vertex vi ∈ Vv and a clause vertex vj ∈ Vc if and only if the
clause contains a literal of that variable in the 3-SAT instance. In [111] it was shown that the
planar 3-SAT problem is NP-hard via a reduction from the standard 3-SAT problem. Further, it
was observed that the resulting instance of planar 3-SAT permits the addition of a path through
all the vertices Vv while maintaining planarity. We call this path the spinal path and denote it
by P = (Vv, EP). We further observe that additional edges can be added to P to get a spinal
tree T which also covers clause vertices Vc. In this sense T will be a tree that covers all vertices
without crossing an edge of G such that all vertices corresponding to clauses are leaves. These

112

(a) The reduction from 3-SAT to planar 3-SAT.

(b) The planar gadget located in the intersection
points. Variable and clause vertices are repre-
sented by large and small circles, respectively.

Figure 9.2: The reduction from 3-SAT to planar 3-SAT as presented in [111]. (a) The variable
and clause vertices of 3-SAT are located on the x and y axes respectively, and the edges are
drawn as orthogonal paths. (b) A planar gadget is placed on each intersection point. Each
gadget introduces some new variable and clause vertices. In [111], it is observed that there is a
path (we call it the spinal path) that covers all variable vertices of the planar instance without
crossing any edge (solid lines). We observe that additional edges can be added to the spinal path
to obtain a tree (spinal tree) which spans clause variables as leaves (dashed lines).

observations are illustrated in Figure 9.2. To prove the hardness of max-MSTN, we make use of
the spinal tree.

We use the following theorem to ensure that a polynomial number of disks are required for
the reduction:

Theorem 9.4. [19, Theorem 4] Let G be a simple graph without nodes of degree ≤ 1. Then G
has an orthogonal drawing in an m+n

2 × m+n
2 -grid with one bend per edge. The box size of each

node v is at most deg(v)
2 × deg(v)

2 . It can be found in O(m) time.

We use an orthogonal drawing of the planar 3-SAT instance in our reduction, although we
will expand the drawing by a factor of 2 so that all edges of the drawing are separated by at least
2 units. All edges of the drawing will be replaced by wires in the reduction, where a wire consists
of a set of points (disks of radius 0) placed along an edge of the drawing every unit distance. This
ensures that each wire has a unique MST over the points, and that the number of points required
for all wires is polynomial in the size of the input. The gadgets used in the reduction may not
fit within boxes of size deg(v)

2 × deg(v)
2 , but they are within a constant factor of this bound. The

variable gadgets require boxes of size at most 15.75 (deg(v) + 1) × 11 (we discuss these gadgets
shortly), while clause gadgets require boxes of (constant) size 108× 52 units. Therefore, the size
of the drawing remains polynomial in the size of the input provided the gadgets also require a
polynomial number of disks (and we will show that this is the case).

4Separability is similar in spirit to the notion of a well-separated pair; see [25].

113

Next, we study an important theorem for our reduction which states that an optimal solution
for max-MSTN on a chain of unit disks has a characteristic zigzag pattern. A chain is a set of
k unit disks Dc = {Dc

1, . . . , D
c
k} whose centres are collinear, incident upon a horizontal line `hz,

and adjacent disk centres are 2d (with d ≥ 1) units distant from each other. Furthermore, there
are two terminal points tl and tr incident upon `hz, where tl is located d units to the left of the
centre of the leftmost disk, and tr is located d units to the right of the centre of the rightmost
disk of the chain.

Theorem 9.5. Given a chain of disks, the solution to the max-MSTN problem on the chain Dc
and the points tl and tr is the set of points {tl, p1, . . . , pk, tr}, where pi is the selected point for
disk Dc

i , and these points form one of the two possible zigzag paths that traverse the extreme top
and bottom points of the disks (see Figure 9.3).

p1

p2

tl

d

pk

pk−1

tr

Figure 9.3: The two possibilities for the max-MSTN solution for chain of disks. Here we have
d = 1.5.

We define ZD as this proposed zigzag path that alternates between the extreme upper and
lower points of a set of disks Dc, where the centres of all disks in Dc are collinear. Note that the
MST for the chain of disks with points in such positions forms a polygonal chain starting from tl
and ending at tr.

To prove Theorem 9.5, we require a few additional lemmas.

Lemma 9.1. Given a disk, if the set of edges containing a point in the disk is fixed for any
position of the point, any max-MSTN solution does not contain a point inside the disk (i.e., the
selected point is on the circumference of the disk).

Proof. Suppose we are given a point p in a disk D, and a set of points Q, |Q| ≥ 1, where there
exists an edge between p and each point in Q. Given any line `, where p ∈ `, let p′ be a point on
` ∩D. Let w be the sum of the weights of edges between p′ and each point in Q. The weight of
each edge (as p′ runs along `) is a convex function, and therefore so is the sum w [144]. Hence,
the sum of the weights of the edges is maximized at one of the two intersection points of ` with
D.

The following lemma states that an optimal max-MSTN solution follows the path of a ray
initiated at point tl and reflected at a point of intersection with each disk.

Lemma 9.2. Let p1 be the selected point of a max-MSTN solution on the leftmost disk in a
chain. Consider the ray

−−→
tlp1 which is then reflected on the interior face of each disk. Any valid

max-MSTN solution follows the path traversed by the ray, i.e., the two neighboring segments of
the MST are the reflection of each other on the tangent line of the intersection point.

114

Proof. Let b be the selected point of any disk in a max-MSTN solution and a and c be the points
of the MST connected to b on the left and right in the tree, respectively (for the leftmost disk
we have b = p1 and a = tl). Let Db be the disk such that b ∈ Db, and by Lemma 9.1, b is on the
circumference of Db. Let `b be the line tangent to Db at point b. For this proof we refer to the
diagram in Figure 9.4a. By definition, the ellipse with foci a and c consists of the set of points P
that are equidistant, on the aggregate, to a and c, i.e., dist (a, p) + dist (p, c) is a constant for all
p ∈ P. Points inside the ellipse are closer, on the aggregate, to a and c while points outside the
ellipse are farther.

If the disk Db and an ellipse incident upon b are not tangent at b, it follows that there are
points in Db outside the ellipse and hence the length of the MST grows if such a point is chosen
instead of b, which contradicts the assumption that the MST through b is maximal. Since a and

b are the foci, the projective property of the ellipse implies that
−→
bc is the reflection of

−→
ab on the

tangent `b to the ellipse.

Let cclose,cfar be the intersection points of a line `′ incident upon b and disk Dc, so that cclose
is closer to b than cfar. If we apply the same argument by replacing a with b and b with cclose, we

see that the reflected path is located to the left of the line
←−→
bcfar, which is not a feasible path (e.g.,

the red line in Figure 9.4b). This implies that the max-MSTN solution cannot contain cclose,
hence, c can only be located at cfar. The proof is complete if we apply this argument by setting
a = tl and b = p1 to set c = cfar and then inductively apply the same reasoning by replacing a
with b and b with c.

a c

b

Db

`b

(a) The ellipse with foci a and c and incident upon b should be tangent to Db if ab and bc are
edges in a max-MSTN solution.

c
far

c
close

Dc DdDb

a

b`b

`′

d

(b) If the max-MSTN solution selects point b, it has to select point cfar.

Figure 9.4: The reflection effect.

115

Lemma 9.2 implies that selecting the first point p1 on the leftmost disk D1 defines all other
points that are selected by the max-MSTN algorithm. In particular, if p1 is the extreme top or
bottom point of D1, then the points selected for all other disks will be on the extreme top or
bottom points of the disks as well, which produces the ZD configuration described in Theorem
9.5. Note that if the reflected line on any disk does not intersect the next disk to the right, or if
at the rightmost disk the reflected line is not incident upon the terminal point tr, then in these
cases the initial selection for p1 does not produce a max-MSTN solution (Figure 9.5).

p1

p2

p3

p4

trtl

(a) The path of the ray when p1 is slightly moved to the left.

p3p1

p2 p4

trtl

(b) The path of the ray when p1 is slightly moved to the right.

Figure 9.5: If the selected point p1 on the leftmost disk is not the extreme top or bottom point,
then the path of the ray does not pass through tr.

Lemma 9.3. Let P = {p1, p2, . . . , pn} be the selected points of a max-MSTN solution on the
consecutive disks in a horizontal chain, from left to right. Then for any i ∈ {1, . . . , n} we have
the following two properties:

1. If pi is on the bottom half of disk Di, then pi+1 is on the top half of disk Di+1 and vice
versa.

2. If pi is on the right half of disk Di, then pi+1 is on the left half of disk Di+1 and vice versa.

Proof. To establish the first property, let pi and pi+1 both be on the bottom halves of two
consecutive disks. A larger MST can be found by replacing all points pj (j ≥ i + 1) with their
reflection over `hz (the horizontal line passing through the disk centres). Such a transformation
increases the weight of the edge (pi, pi+1) and preserves the weight of other edges of the MST (the
same holds if two selected points are on the top halves of consecutive disks). Using mathematical
induction, the second property is direct from Lemma 9.2. More precisely, if pi−1 and pi are on the
right and left halves of their disks respectively, then Lemma 9.2 dictates that pi+1 is on the right

116

half of Di+1. Similarly, if pi−1 and pi are on the left and right halves of their disks respectively,
then pi+1 is on the left half of Di+1 (this effect may be seen in Figure 9.5).

To prove Theorem 9.5, we show that if we select p1 as any point except the extreme bottom or
top points of the leftmost disk D1, then the path described in Lemma 9.2 does not pass through
the terminal point tr. For each disk Di ∈ D, define the canonical line as the line passing through
the centre of Di and pi, and the canonical angle αi as the acute angle between `hz and the
canonical line of the disk if the lines are not perpendicular. Note that Lemma 9.3 implies that
if the canonical lines have defined slope, then either all canonical lines have positive slope or all
have negative slope. To make the explanation simpler, consider another disk D0 centred at a
distance 2d to the left of the centre of the leftmost disk, and let p0 be the intersection of D0 with
the line passing through tl and p1 (Figure 9.6). Since tl is located at the midpoint of the centres
of p0 and p1, observe that the canonical angles of D0 and D1 are equal regardless of the choice
of p1, i.e., α0 = α1.

Lemma 9.4. If the selected point is any other point than the extreme top or bottom points of
disk D1, the sizes of the canonical angles form a strictly decreasing sequence, i.e., π/2 > α0 =
α1 > α2 > . . . > αn.

Proof. We use mathematical induction. As observed before, we have α0 = α1. In the base case,
we show α1 > α2. Consider otherwise, i.e., α1 ≤ α2. Note that the slopes of all canonical lines
are either positive or negative. Without loss of generality assume all slopes are negative (see
Figure 9.6). Let px be the intersection point of the line passing through p1 and p2 with the
horizontal line `hz. dist (px, q1) is the distance between px and the centre point q1 of D1. Since
α1 ≤ α2, we have dist (px, q1) ≤ d. Let θ be the angle between lines p0p1 and q1p1, which is the
same as the angle between p1p2 and q1p1 (by the reflection law). Applying the Law of Sines for
triangle 4q1p1px we get dist (px, q1) = sin θ/ sin (α1 − θ). Let p′x be the intersection point of p0p1
and horizontal line `hz (which is tl in the base case). Since α0 ≥ α1, we have dist (p′x, q1) ≥ d
(equivalence occurs in the base case). Applying the Law of Sines on triangle 4q1p1p′x, we get
dist (p′x, q1) = sin θ/ sin (π − α1 − θ).

Since dist (px, q1) ≤ d and dist (p′x, q1) ≥ d, we get sin θ/ sin (α1 − θ) ≤ sin θ/ sin (π − α1 − θ),
which implies that α1 ≥ π/2; this cannot happen as we assumed α0 is strictly smaller than π/2.
So we conclude α1 > α2. To complete the proof, we can apply the same argument by replacing
p0, p1, and p2 with pi−1, pi and pi+1 to show αi > αi+1 for i > 2.

Now we are ready to prove Theorem 9.5.

Proof. Lemma 9.2 implies that the max-MSTN solution should follow the path of a ray that
is initiated at tl, reflected at each point pi of disk Di, and finally passes through tr. Note that
the two ZD (zigzag) paths stated in the theorem have this property. We show that no other ray
can do so. Assume the selected point of the leftmost disk is not on the extreme top or bottom
(otherwise the reflected path would be one of the paths described in the theorem). By Lemma
9.4, the canonical angles of the disks are strictly decreasing. This implies that for any disk Di,
the reflected path does not pass through the mid-point of the segment between qi and qi+1 (the
centres of Di and Di+1, respectively). Otherwise, the canonical angles of the two disks would
be equal. In particular, if one assumes the existence of an extra disk on the right, the reflected

117

θ θ

p0

p1

p2

q1

q2q0`hz
α0

α1

α2

α1 + θ

p′x px
α1 − θ

Figure 9.6: If α0 < π/2, the canonical angles are strictly decreasing.

path does not pass through tr. This implies that selecting any point other than an extreme point
on the top or bottom of the leftmost disk results in a non-optimal max-MSTN solution for the
chain of disks.

Now that we have established Theorem 9.5, we revisit the reduction. Recall that we are
reducing to the planar 3-SAT problem, in which an instance of 3-SAT is represented as the
planar graph G = (V,E), and that we have a spinal tree T = (V,ET), where T is connected and
G ∪ T = (V,E ∪ ET) remains planar while E ∩ ET = ∅ (Figure 9.2). Furthermore, we make use
of wires, where a wire is a set of disks of radius 0 (i.e. points) placed in close succession so that
we may interpret them as a fixed line in the max-MSTN solution.

For some intuition on the structure of the reduction, consider the graph G∪T . In this graph,
we replace all variable and clause vertices with variable and clause gadgets, respectively. Also,
we replace the edges in G ∪ T with fixed wires so that they will be part of any MST, and these
fixed wires are disjoint from the gadgets. The fixed wires correspond to the edges of G (which
we call e-wires) and also the edges of the spinal tree. The clause and variable gadgets include
some disks, and the goal of the max-MSTN algorithm is to select points in each disk so that the
resulting MST has maximum weight. Note that any MST is composed of the disconnected fixed
wires that are each connected to some gadgets. We design the gadgets so that the e-wires (i.e.,
the edges of G) attach exclusively to clause gadgets. The combinatorial structure of the resulting
MST includes the spinal tree as a sub-tree (that is why we call it ’spinal’); hence, an optimal
max-MSTN algorithm selects the points in gadgets in a way to impose the maximum weight for
the edges that connect the e-wires to the spinal tree.

Variable Gadgets

For each variable xi, we build a set Di consisting of 3c+ 2 disks in the configuration described in
Theorem 9.5, spaced by d = 21/8 = 2.625, where c is the number of clauses containing instances
of the variable (note that adjacent disk centres are 2d = 5.25 units apart). The reasons for the
particular choices of distances are explained in the Reduction section below. The terminal points
til and tir of the gadget are joined to the spinal tree of the construction. Specifically, a wire joins
tir to ti+1

l , i ∈ {1, . . . , n− 1} for each of the n variable gadgets. Assume for ease of discussion that
the centres of Di are incident upon a horizontal line `hz, so that the terms above, below, left, and
right are well defined.

118

Wires from the clause gadgets may approach the variable gadget from above, below, or both.
As mentioned earlier, we call these the e-wires, because each such wire corresponds to an edge of
E in the input planar 3-SAT graph. Each e-wire terminates at a point that is distance 6.5 units
from a disk centre, along a line incident upon the disk centre and perpendicular to `hz, i.e., the
terminal point of the wire and the disk centre share the same x-coordinate (see Figure 9.7). We
provide more details regarding e-wires shortly. Finally, suppose without loss of generality that
disk Di

j ∈ Di has the terminal points of an e-wire above it. All other e-wires are restricted so

that no other e-wires may approach Di
j , and furthermore, no e-wires may approach disks Di

j−1
or Di

j+1 from above, so that there is at least distance 4d = 10.5 between adjacent e-wires. In
other words, e-wires that approach the variable gadget from the same side have at least one disk
between them.

e-wire to clause gadget e-wire to clause gadget

7.5
5.5

5.25

Figure 9.7: The configuration used for the variable gadgets. Here, two clauses include the variable
in the opposite truth values. Filled small circles represent disks of radius 0, while larger empty
circles represent unit disks. E-wires are placed so that the nearest point on any disk is at distance
5.5, and the terminal point of the e-wire is on a line that is vertical and incident upon the disk
centre. This way, if the ZD configuration for the variable gadget matches the truth value of the
e-wire, then the nearest point to the e-wire in the gadget is 7.5 units distant, while a mismatch
in truth values means the nearest point in the gadget would only be distance 5.5 away. The disk
centres in the gadget are placed at a distance 5.25 apart so that the nearest point to an e-wire
can only be from the nearest disk, regardless of the path through the disks.

Lemma 9.5. Suppose we are given a variable gadget where points are placed in the disks as
described in Theorem 9.5. Then a point in a disk is either distance 7.5 or 5.5 from the nearest
point in an e-wire, and we may arrange it so that these distances correspond to agreement or
disagreement respectively between the truth value of the variable gadget and that of the instance
of the variable represented by the e-wire.

Proof. Given the two possible ZD configurations shown in Theorem 9.5, we arbitrarily select one
of the configurations as the true setting, and the opposite configuration as false. This way, we
can place the terminal points of the e-wires near the disks of the variable gadget so that if the
truth value used for the variable gadget matches that of the e-wire, then the minimum distance
between the e-wire and the nearest point in the variable gadget is 7.5. However, a mismatched
truth value would mean that a point lies only distance 5.5 from the e-wire when the points are
in the ZD configuration.

119

Clause Gadgets

For each clause in the 3-SAT instance, we build a clause gadget by assembling unit disks and
wires (composed of disks of zero radius spaced by two units) as shown in Figure 9.8. The unit
disks are placed in chain, either horizontally or vertically, using d = 4 for spacing (i.e., disks are
centred 4 units away from the two terminal points, and disks are placed with centres 8 units apart
from each other). From the spinal tree, a wire joins to one of the terminal disks of a chain.

spinal tree

(2, 6)

(2,−6)(−2,−6)

(−2, 6)

e-wire to variable gadget

e-wire to variable gadget

e-wire to variable gadget

Figure 9.8: The configuration used for the clause gadgets, with the gadget placed in the canonical
position. The filled small circles (black dots) are disks of radius 0, while the larger empty circles
are unit disks. A wire extends from the gadget as part of the spinal tree, and three e-wires go to
three variable gadgets (one for each literal in the corresponding clause of the 3-SAT instance).

Each e-wire terminates with four branches near the clause gadget and a single terminal near
the variable gadget which corresponds to the literal. As mentioned in the variable gadgets section,
the terminal point pt of the e-wire near the variable gadget lies at distance 5.5 above a disk D in
the gadget. The other terminals of the e-wire are placed so that a pair of points is near the middle
disk on two of the rays, as shown in Figure 9.8. To be specific, suppose that the construction
is positioned so that the centre point of the middle disk of the horizontal chain is placed at the
origin of the plane. Call this the canonical position of the gadget. Terminal points from one
e-wire are placed at the coordinates (−2,−6) and (2,−6), while terminal points from another
e-wire for the clause are placed at positions reflected through the x-axis, i.e., (−2, 6) and (2, 6).
This way, the terminal points of each pair of e-wires for a clause are positioned symmetrically
about a disk in the clause gadget.

Supposing points were selected in these three disks in a zigzag ZD configuration (shown to be
an optimal configuration in Theorem 9.5), then the edges between points in adjacent disks have
weight 2

√
17 ≈ 8.25, and those from the first and last disk to the nearest points along the ray

have weight
√

17 ≈ 4.12. The distance from the point in the middle disk to the nearest point on
one e-wire is

√
29 ≈ 5.39, and to the nearest point on the opposite e-wire is

√
53 ≈ 7.28.

120

Lemma 9.6. Suppose that a clause gadget is placed in the canonical position. Then the weight
of the max-MSTN solution is optimized when the point for the middle disk is placed at (0, 1) or
(0,−1).

Proof. Observe that the minimum distance from a point on an e-wire to the first or the third

disk of the chain is
√

(8− 2)2 + (0− 6)2 − 1 ≈ 7.49, while the maximum distance from such a

point to a point in the middle disk is
√

53 ≈ 7.28. Therefore, if edges of the MST exist between
an e-wire and points in the disks of the clause gadget, such edges join to the point in the middle
disk of the chain.

Suppose that no edges exist between the e-wires and the point in the disk; the optimal path
through the disks is the ZD configuration, and the lemma holds. Next, suppose only one of the
e-wires is joined with an edge; the weight of this edge is maximized at the farther of the two
candidate positions for the point in the middle disk, and so the lemma holds again. Finally
suppose that both e-wires have edges joining to the point in the middle disk. We know that the
point that maximizes the sum of the weights ws of all edges incident upon the point is found on
the edge of the disk by Lemma 9.1. Suppose without loss of generality that the point p is chosen
in the middle disk so that the x-coordinate is ≥ 0, and so we may assume that the edges join to
the right terminals of each e-wire (positioned at (2, 6) and (2,−6)). The distance from these two
points to a point on the right half of a unit disk centred at the origin is maximized at either (0, 1)
or (0,−1), and so the lemma follows.

Lemma 9.7. If all three e-wires associated with a clause gadget are joined to the clause gadgets
with edges, then the weight of these edges is maximized when two e-wires are joined with edges of
weight

√
29, and the other is joined with an edge of weight

√
53.

Proof. By Lemma 9.6, we know that all clause gadgets will use the ZD configuration through
their disks. Therefore, the weight of an edge between the clause gadget and an e-wire is either√

29 or
√

53. Further, because two e-wires approach each set of disks, if one e-wire is distance√
29 from a point in the clause, then another e-wire is

√
53 from the same point. The e-wires

are arranged so that each pair of e-wires associated with a clause gadget has this relationship.
Therefore, there are two possible settings:

1. Each e-wire is distance
√

29 from the nearest point in the clause gadget (Figure 9.9a).

2. One e-wire is distance
√

53 from the nearest point in the clause gadget, while the other two
e-wires are distance

√
29 from the nearest point in the clause gadget. The configuration

of the path through the triple of disks between the latter two e-wires is inconsequential
(Figure 9.9b).

Since we are computing a Minimum Spanning Tree with maximum weight, the second configura-
tion is preferable.

121

spinal tree

e-wire to variable gadget

e-wire to variable gadget

e-wire to variable gadget

√
29

√
29

√
29

(a) A suboptimal configuration.

spinal tree

e-wire to variable gadget

e-wire to variable gadget

e-wire to variable gadget

√
53

√
29

√
29

(b) An optimal configuration. Note that the top left portion of the gadget requires an edge
of weight

√
53 in order to be connected to the remainder of the gadget (one of the four

possible such edges is shown).

Figure 9.9: Paths through the max-MSTN clause gadget.

122

Reduction

The key to the reduction is that an optimal max-MSTN solution to the construction outlined
above will join all of the e-wires to the clause gadgets, leaving the variable gadgets unaffected, if
and only if there exists a satisfying assignment to the given planar 3-SAT instance. Therefore,
we begin the reduction by determining the weight of an optimal solution. If there is no satisfying
assignment, the optimal max-MSTN algorithm selects the points in a way that the ZD path
through at least one variable gadget is affected, and the total weight of the optimal max-MSTN
solution is reduced. We determine a lower bound on this effect, and in so doing, establish the
hardness of the problem.

Let us consider the structure of an optimal solution to max-MSTN if there exists a satisfying
assignment, and in particular we examine the weights of the edges required to join each of the
three e-wires associated with a clause gadget (the same reasoning applies to all clause gadgets).
Recall that an e-wire may be distance

√
29 ≈ 5.39 or

√
53 ≈ 7.28 from the nearest point in

the clause gadget, by Lemma 9.6. Assuming that the points in the variable gadget are in the
ZD configuration, the nearest point to an e-wire in the variable gadget may be 5.5 or 7.5, by
Lemma 9.5. Since at least one of the literals may be satisfied in the clause (by our assumptions),
the corresponding e-wire, call it esat, is distance 7.39 from the nearest point in the variable
gadget when the variable gadget has the ZD configuration associated with the satisfying truth
assignment. To maximize the weight of the max-MSTN solution, the paths through the disks
in the clause gadget should be set so that esat is

√
53 from the nearest point in each of the two

disks that it approaches. Thus, the weight of the edge to connect to esat is
√

53. The other two
e-wires, whether they correspond to literals that may be satisfied or not, are each connected with
an edge of weight

√
29, by Lemma 9.7. Since no point in any variable gadget is closer to an e-wire

than the points in the clause gadget, we have shown that the e-wires are all joined to the clause
gadget in an optimal max-MSTN solution. Therefore, all variable gadgets are connected to the
rest of the MST only at their endpoints and, by Theorem 9.5, selecting a setting other than the
ZD configuration in any variable gadget is sub-optimal.

We now compute the optimal weight of a max-MSTN solution under the assumption that
there exists a satisfying assignment to the planar 3-SAT instance. Let wst be the total weight of
the MST over the wires in the spinal tree segments of the construction, and let wew be that for the
e-wires, which are both fixed for any max-MSTN solution. The max-MSTN solution over the
clause gadgets has a fixed weight, consisting of the weight of all wires, plus 2

√
29 +

√
53 ≈ 240.05

for each gadget to join the e-wires to the disks. Finally, assume there is a total of h disks in all
of the variable gadgets of the construction. The total weight of the optimal ZD configuration
in these disks is wvg = h

√
5.252 + 22 ≈ h · 5.62. Therefore, the total weight of the optimal

max-MSTN solution is wtot = wst +wew +wcg +wvg, all of which we can compute a priori once
the max-MSTN instance is constructed5.

Now consider the case that there is no satisfying assignment for the 3-SAT instance. In
particular, consider a truth assignment (defined by the alignment of zigzag paths in variable
gadgets) and a clause that is not satisfied by that assignment (such a clause exists since the 3-
SAT instance is not satisfiable). Note that a max-MSTN algorithm might deviate from selecting
zigzag paths; this will be addressed shortly. For the clause that is not satisfied, we may dismiss
the setting where each e-wire is

√
29 from a point in the clause gadget as sub-optimal, by Lemma

5Note that the number of edges in the construction is a polynomial in the size of the input. Since all we need
to determine is whether the weight of the solution is at least 0.34 units less than wtot, we can round the measure
of the total weight to a number of bits that is logarithmic in the size of the input.

123

9.7. Therefore, one of the e-wires, call it ensat, is
√

53 from the nearest point in the clause gadget,
and this affects the positions of the points in the corresponding variable gadget at the other end
of the e-wire6. Let pvg be the nearest point in the variable gadget to ensat. Notice that the Fermat
point of the two points neighboring pvg in the variable gadget and the nearest point in ensat lies
above the disk containing pvg, so moving pvg down within the disk increases the weight of the
total MST if there is an edge between pvg and the nearest point in ensat. Moving the point at
least

√
53 away from ensat increases the weight of the max-MSTN solution as much as possible.

Now the configuration of the clause gadget is the same as in the satisfying assignment above, so
we need only measure the reduction in weight resulting from the changes to the points in the
variable gadget to see the total reduction in weight relative to an optimal max-MSTN solution
for a satisfying assignment.

To determine a lower bound on this effect, assume that there is only one transition in the
zigzag pattern. That is, assume without loss of generality that at some point the ZD configuration
is in the true setting, and then the pattern switches to the false setting for the remainder of
the gadget. All the wires in the construction must maintain a minimum separation of at least√

53 to preserve the desired structure of the MST, and so e-wires that approach the variable
gadget from the same side must have at least two disks between them (since they correspond to
mismatched truth values), and those approaching from opposite sides may have one disk between
them at minimum. To find an appropriate bound, first we assume that the closest points to each
e-wire, call these p` and pr, remain in the positions that would be optimal for a ZD configuration,
i.e., at the farthest point possible from the axis of the variable gadget, and then we compute
the maximum weight path between p` and pr in the gadget. Next, we bound the possible error
introduced by placing p` and pr in the extreme positions.

Case 1: Two separating disks (Figure 9.10). Without loss of generality, we position points at
coordinates p` = (0,−1) and pr = (15.75,−1), and seek the maximum weight path using points
p1 and p2, where p1 is in a unit disk centred at (5.25, 0), and p2 is in one centred at (10.5, 0).
If we define the points as p1 = (5.25 + sin (θ1) , cos (θ1)) and p2 = (10.5 + sin (θ2) , cos (θ2)), then
the total weight w′ is defined by:

f (θ1, θ2) =

√
(−5.25− sin (θ1))

2 + (−1− cos (θ1))
2

+

√
(5.25 + sin (θ2)− sin (θ1))

2 + (cos (θ2)− cos (θ1))
2

+

√
(5.25− sin (θ2))

2 + (−1− cos (θ2))
2.

Using Maple, we observe that the optimal path uses the values θ1 ≈ 0.005 and θ2 ≈ 3.33 radians,
for a total weight of more than 16.49 over the three edges. By moving p1 to (5.25, 1) and p2 to
(10.5,−1), we reduce the total weight of the edges by less than 0.01 (the weight remains greater
than 16.48).

Case 2: One separating disk (Figure 9.11). Now points are placed at p′` = (0,−1) and
p′r = (10.5, 1), and we seek the path using a point p′1 again found in a unit disk centred at

6If the ZD configuration were maintained, then the e-wire could be joined sub-optimally to the variable gadget
with weight 5.5, since the assignment is not satisfying. However, a larger MST can be achieved by deviating from
the ZD configuration in the variable gadget.

124

p` = (0,−1) pr = (15.75,−1)

p1 ≈ (5.255, 1)

p2 ≈ (10.313,−0.982)

(0, 0)

(5.25, 0)

(10.5, 0) (15.75, 0)

Figure 9.10: The optimal setting for Case 1. The optimal point in the first separating disk is
slightly to the right of the extreme upper point in the disk, while that of the second disk is nearly
11◦ clockwise of the extreme lower point. Despite these differences, the change in path weight
between this optimal path and a path using the extreme points is less than 0.01 units.

(5.25, 0). Define p′1 = (5.25 + sin (θ) , cos (θ)), and the total weight w′ is now defined by:

f (θ) =

√
(−5.25− sin (θ))2 + (−1− cos (θ))2

+

√
(5.25− sin (θ))2 + (1− cos (θ))2.

Using Maple, we observe that such a path has maximum weight greater than 10.87, realized when
θ ≈ 2.95 radians. To create a simplified configuration, we shift this point so that p′1 = (5.25,−1),
and we observe that this change reduces the total weight of the edges by less than 0.01 (so that
the weight is greater than 10.86).

p′` = (0,−1)

p′r = (10.5, 1)

p′1 ≈ (5.437,−0.982)

(0, 0) (5.25, 0)

(10.5, 0)

Figure 9.11: The optimal setting for Case 2. The abberation of the point in the separating disk
from the extreme lower point is similar to that of the second separating disk in Case 1, and the
difference in path weight between the optimal path and that using only the extreme points is less
than 0.01 units.

The final remaining possible suboptimality is the assumed positions for pr in Case 1 and p′` in
Case 2 (p` and p′r are in the midst of points in the ZD configuration). Consider the adjusted path
from p′1 = (5.25,−1) to p′` to a point in the disk left of D′`, i.e., the disk centred at (−5.25, 0).
This setting is again analogous to Case 2, and so we can conclude that this assumed position
reduces the total weight by less than another 0.01 units. We know by Theorem 9.5 that any
changes in position from the extreme points in the remainder of the gadget only decrease the
total weight of the MST.

Therefore, the overall introduced errors of our assumptions are less than 0.02 for each case. For
Case 1, we conclude that the total weight lost as a result of an unsatisfiable clause is greater than
3
√

31.5625−16.49−0.02 ≈ 0.34. In Case 2, the effect is greater than 2
√

31.5625−10.87−0.02 ≈
0.34. Hence, given a planar 3-SAT instance, we know that the total weight of the optimal solution
to the max-MSTN construction is less than wtot − 0.34 if and only if there is no satisfying
assignment for the instance. By Theorem 9.4, we have that the number of disks (including

125

points) required for the construction is polynomial in the size of the input, and all points are
either on the integer grid or else have rational coordinates where the denominator is a constant.
This establishes the NP-hardness of the max-MSTN problem.

If we choose a value of ε so that ε < 0.34/wtot, then a (1− ε)-approximate solution to the
max-MSTN problem may be used to determine whether there is a satisfying assignment for the
planar 3-SAT instance. Since the latter problem is NP-hard, we conclude that max-MSTN does
not admit an FPTAS unless P=NP. We cannot rule out the possibility of a PTAS, because the gap
between solutions on satisfiable and non-satisfiable instances that we have demonstrated is not a
factor that is proportional to the size of the optimal solution on the max-MSTN construction.

9.4 MSTN

In this section we present an asymptotic 3-approximation algorithm and a parameterized approx-
imation algorithm for the MSTN problem, followed by the proof of NP-hardness. Recall that for
MSTN, we seek a minimum weight spanning tree on imprecise input represented as disks.

9.4.1 3-Approximation Algorithm on Disjoint Unit Disks

In this section, we define disjoint disks to be disks that are disjoint with respect to their interiors;
a pair of disks are allowed intersect at a single point on their boundaries so that the pairwise
distance between the disks is zero. This section consists of some refinements of the work of
Yang et al. [166]. In that work, an asymptotic 3-approximation was presented for this problem,
but the algorithm contained a bug and the lower bound used was false (see Figure 9.12). We
conjecture a new lower bound, and we describe an improved approximation algorithm for which
the asymptotic 3-approximation holds, based on the new conjecture.

Consider a pair of disjoint unit disks in the plane. The optimal MSTN solution for this
problem is trivial: it is simply the minimum length segment between the two disks. In Yang et al.
[166], they introduce the minimum connecting tree Tc on a set of disks D in order to generalize
this idea and obtain a lower bound on the weight of the optimal MSTN solution.

Definition 9.3. The Minimum Connecting Tree [166]: Given a set of disks D, define the graph
Gc = (V,E), where vi ∈ V corresponds to Di ∈ D, and the weight of the edge eij = (vi, vj) is
defined by the minimum distance between the disks Di and Dj. The minimum connecting tree Tc
is the Minimum Spanning Tree on Gc, which has weight Lc ≥ 0.

Since Tc is the minimum weight tree to connect the disks of the input, any MSTN solution
necessarily has greater weight [166, Lemma 4]. Next we examine the general lower bounds on the
weight of an MSTN solution on disjoint unit disks, and tighten the conjectured bounds slightly.

Conjecture 9.1. Given n ≥ 5 disjoint unit disks, the weight L of an optimal MSTN solution
may be bounded as follows:

• L ≥ n− 6 + 2
√

3 ≈ n− 2.54 for even values of n ≥ 6;

• L ≥ n− 4 +
√

3 ≈ n− 2.27 for odd values of n ≥ 5.

126

(a) (b) (c)

Figure 9.12: The constructions conjectured to have the minimum weight MSTN solutions on
disjoint unit disks where the number of disks in the input is at least five. (a) The lower bound
for odd numbers of disks from [166, Figure 3(a)]. Each adjacent vertical stack of disks is joined
by an edge weight 2, and the odd disk out is connected by an edge of weight

√
3− 1. There are

(n− 1) /2 such stacks, and all stacks but one require an edge to an adjacent stack, so the total
weight of the construction is 2 ((n− 1) /2− 1) +

√
3− 1 = n− 4 +

√
3. (b) The conjectured lower

bound for even numbers of disks from [166, Figure 3(b)]. This construction has weight n − 2.
(c) A new conjectured lower bound for even numbers of disks. The analysis is similar to Figure
9.12a, except that there are (n− 2) /2−1 edges of weight 2, and a pair of edges of weight

√
3−1.

Thus, the total weight of the construction is 2 ((n− 2) /2− 1) + 2
(√

3− 1
)

= n− 6 + 2
√

3.

Therefore, we conjecture that in general, L ≥ n−6+2
√

3 for n ≥ 5. The constructions supporting
the conjecture are shown in Figure 9.12.

We describe the approximation algorithm in Algorithm 9.1, which builds rather simply on
the minimum connecting tree Tc. First, the MST of Tc is computed. Then a set of points P is
built using one point from each disk. If a vertex of the MST on Tc has degree one, then we place
the point in the disk at the end point of the edge incident upon the disk in Tc

7. Otherwise, the
centre point of the disk is used. Finally, the MST is computed on the point set P.

Algorithm 9.1 MSTN-3(D)

1: Input: A set of disjoint unit disks D.
2: Output: A MSTN solution with an approximation factor of 2 (see Definition 9.1).
3: P ← ∅
4: Compute the minimum connecting tree Tc
5: for i := 1 to n do
6: Let Pi be the set of end points of edges incident upon disk Di

7: if (|Pi| > 1) then
8: Set pi to the centre point of Di

9: else
10: Set pi to the single point in Pi
11: end if
12: P ← P ∪ {pi}
13: end for
14: Compute Ta, the Minimum Spanning Tree of P
15: return Ta

To analyze the algorithm, we place an upper bound on the increase in weight of T relative to

7A better result may be obtained by using the Fermat-Weber point of Pi (see Section 9.2), although it does not
improve the approximation factor, and it is algebraically difficult to determine for more than four points.

127

Tc. For any disk that is a leaf of Tc, the chosen point will be the endpoint of the edge. For all
other disks, there is unit distance from the endpoints of the edges to the approximating point.
In any tree, there are n− 1 edges, and at least two vertices of any tree must be leaves. We may
construct an intermediate tree Ti consisting of the edges Tc, plus edges of at most unit weight
to join the endpoints of every edge of Tc to the approximating point in each corresponding disk,
and so the weight of Ti is

Li ≤ Lc + 2(n− 3) + 2 ≤ Lc + 2(n− 2).

Since Lc ≤ L and n− 6 + 2
√

3 ≈ n− 2.54 ≤ L, we have that

Li ≤ L+ 2L+ 2(6− 2
√

3− 2) < 3L+ 1.08.

If there is an edge between Di and Dj in Tc, then the edges between vertices pi and pj may be
replaced by a single edge (pi, pj) to create a spanning tree on the points of P with weight less
than Li (note that Li is not necessarily an MST). The Minimum Spanning Tree Ta over this
same set of points has weight La, and La ≤ Li < 3L+ 1.08, since Ta is an MST. Therefore, Ta is
solution for the MSTN problem with an asymptotic approximation factor of 3.

Theorem 9.6. There exists an asymptotic 3-approximate algorithm for MSTN on a set of dis-
joint unit disks D for |D| ≥ 5, assuming the lower bounds of Conjecture 9.1 hold.

9.4.2 Parameterized (1 + 2/k)-Approximation Algorithm on Disjoint Disks

Recall that to have k-separability means that the minimum distance between any two disks is at
least krmax, where rmax is the maximum radius of any disk in the instance. The separability of
an input instance I is defined as the maximum k such that I satisfies k-separability.

Theorem 9.7. For MSTN when the regions of uncertainty are disjoint disks with separability
parameter k > 0, the algorithm that builds an MST on the centres of the disks achieves an
approximation factor of k+2

k = 1 + 2/k.

Proof. Assume that we have a set D of n disks that satisfies k-separability. Let Tc be the MST
on the centres and TOpt be an optimal MST, i.e., an MST that contains one point from each disk
and its weight is the minimum possible. Define Tm as the spanning tree (not necessarily an MST)
with the same topology as TOpt but on the points of Tc, i.e., on the centres. Since Tc is an MST
on centres, we have w (Tc) ≤ w (Tm). Consider an arbitrary edge e in Tm and let Di and Dj be
the two disks that are connected by e. Let ri and rj be the radii of Di and Dj , respectively, and
let d be the distance between Di and Dj . In TOpt the disks Di and Dj are connected by an edge
e′ whose weight is at least d. The weight of e, on the other hand, is d + ri + rj . Therefore the
ratio between the weight of an edge in TOpt and its corresponding edge in Tm is at least

d

d+ ri + rj
≥ krmax

krmax + ri + rj
≥ krmax

krmax + rmax + rmax
=

k

k + 2
.

Since this holds for any edge of Tm, we get w (Tc) ≤ w (Tm) ≤ k+2
k w (TOpt). Therefore we get an

approximation factor of k+2
k = 1 + 2/k for the algorithm.

128

As with the parameterized algorithm for max-MSTN, as the disks become further apart (as
k grows), the approximation factor approaches 1. The principal difference between this analysis
and that of the max-MSTN setting (Section 9.3.2) is that the intermediate spanning tree Tm
is defined as the tree whose vertices are disk centres and whose topology is the same as TOpt,
whereas T ′c is the spanning tree with the same topology as Tc but on the vertices of TOpt.

9.4.3 NP-Hardness of MSTN

To prove the hardness of the MSTN problem, we present a reduction from the planar 3-SAT
problem. Planar 3-SAT is a variant of 3-SAT in which the graph G = (V,E) associated with the
formula is planar (see Figure 9.2 and the associated text for further details).

Theorem 9.8. MSTN is NP-hard. Furthermore, MSTN does not admit an FPTAS, unless
P=NP.

In the hardness proof of max-MSTN (Section 9.3.3), we used a spinal tree in the reduction.
In this section, we use the spinal path, defined as a path P = (Vv, EP) with a set of edges EP such
that E ∩ EP = ∅, where P passes through all variable vertices in G without crossing any edge
in E. As mentioned earlier, this restricted version of planar 3-SAT remains NP-hard [111]. To
reduce planar 3-SAT to MSTN, we begin by finding a planar embedding of the graph associated
with the SAT formula. We force the inclusion of the spinal path as a part of the MST using wires.
A wire is a set of disks of radius 0 placed in close succession (usually 2 units apart) so that we
may interpret them as a fixed line in the MSTN solution. We replace each variable vertex of V
by a variable gadget in our construction. These gadgets are composed of a set of disks and some
wires, and are defined in such a way that the optimal MSTN solution has a weight less than k
(for some value k dependent on the input) if and only if the SAT formula is satisfiable.

As in Section 9.3.3, we use an orthogonal drawing of the planar 3-SAT instance in our re-
duction, expanded by a factor of 2. All edges of the drawing are replaced by wires, where a
wire consists of a set of points (disks of radius 0) placed along an edge of the drawing every unit
distance so that each wire has a unique MST over the points and the number of points required
for all wires is polynomial in the size of the input (see Theorem 9.4). Again, the gadgets used

in the reduction may not fit within boxes of size deg(v)
2 × deg(v)

2 , but they are within a constant
factor of this bound. The variable gadgets require boxes of size at most (8 deg(v) + 5)× 15 units
(we discuss these gadgets shortly), while clause gadgets consist of a single point (note that these
vertices have degree 3, so this does not cause a problem). Therefore, the size of the drawing
remains polynomial in the size of the input.

Variable Gadgets

A variable gadget is formed by k disks, where k ≤ 8mi + 6 and mi is the number of clauses in
the planar 3-SAT instance that include the variable. Each clause requires 4 disks, each edge of
the spinal path requires 3 disks, and we may need to add extra disks as discussed in Figure 9.13.
Disks are placed 2 units apart so that each disk is tangent to its two neighboring disks, and each
pair of consecutive disks Di, Di+1 around the gadget intersects at a single point qi,i+1 = Di∩Di+1,
which we call a tangent point8. Moreover, there is a set of points in the middle of the gadget,

8Using this construction, pairs of disks of the gadget trivially intersect at a single point, which simplifies our
analysis. To achieve strict disjointedness, the disks of the gadget may be contracted to have radius 1 − γ so that

129

spinal pathspinal path

C(x
+
i

)

B(x
+
i

) A(x
−
i

)

+

−

+

−

Figure 9.13: A variable gadget contains up to 6 + 8mi disks for a variable xi, where mi is the
number of clauses containing literals of the variable. In this case, the gadget contains 22 disks.
B(x+i) and C(x+i) are the endpoints of the wires that connect to clauses that include xi in the
positive form, while A(x−i) terminates a wire connecting to a clause that includes xi in negative
form. The figure illustrates the case in which the algorithm has used the positive configuration
for xi, and clause B is satisfied by x. Clause C is satisfied via some other variable, as is clause A
(assuming that it is satisfiable). Note that disks are connected to the wires inside the gadget in
pairs. The gadget contains 4 disks for each wire from a clause gadget, and extra disks are used
if there are differing numbers of wires approaching the top and bottom (this is why the upper
bound has the factor 8mi, since it may happen that all mi wires approach the top or bottom
only).

whose MST has fixed weight (although the topology is not unique). There are k terminal points
to this MST, each unit distance from the nearest tangent point, i.e. there exists a point ti for
each qi,i+1 so that dist (ti, qi,i+1) = 1. The spinal path is placed so that it approaches the variable
gadget twice, and each of these approaches requires three disks. We split the wires of the spinal
path once near the variable gadget as shown in Figure 9.13, and wires terminate at a distance
2.5 units from the nearest tangent point, for reasons discussed in the Clause Gadgets section.

Lemma 9.8. Suppose we are given two unit disks D1 and D2 that intersect exclusively at a single
point q = D1 ∩ D2, and a line ` such that q ∈ ` and ` is tangent to both D1 and D2 (i.e., ` is
the perpendicular bisector of the centre points of D1 and D2). Now, given a point p ∈ ` where p
is unit distance from q, the shortest path consisting of points p, q1 ∈ D1, and q2 ∈ D2 has weight
d ≈ 0.755.

the tangent point is now distance γ from the nearest point in the adjacent disks. Any path which uses the tangent
point in our analysis will have less than 2γ units of additional weight on these shrunken disks, and there are fewer
than n(8m+6) disks, where n and m are the number of variables and clauses respectively. Choosing an appropriate
value of γ so that 2γn(8m+ 6)� 0.66 achieves the same result as our simplified analysis.

130

Proof. If q1 = q2 = q, then the path has unit length, so a path of length d is shorter. A path
with edges e1 = (q1, p) and e2 = (p, q2) has length at least 0.828, since the nearest point on D1

or D2 to p is
√

2− 1 > 0.414 units distant.

Therefore, we may assume without loss of generality that the path consists of the edges
e1 = (p, q1) and e2 = (q1, q2) and the path has length d = w (e1) + w (e2), where w (e) is the
length of the edge e. We must choose q1 and q2 so that d is minimized. Note that candidate
positions for each of q1 and q2 may be restricted to the boundaries of their respective disks.

For the purposes of simplifying the proof, assume that p is at the origin of the Cartesian plane,
and D1 and D2 are centred at (1, 1) and (1,−1), respectively. Then a point q1 on the boundary
of D1 may be expressed as (sin (α) + 1, cos (α) + 1), for some α ∈ [0 . . . 2π], and analogously
q2 = (sin (β) + 1, cos (β)− 1), for some β ∈ [0 . . . 2π]. Therefore, we simply have to find the
minimum of the function

f (α, β) =

√
(sinα+ 1)2 + (cosα+ 1)2

+

√
(sinβ − sinα)2 + (cosβ − cosα− 2)2,

over the variables α ∈ [0 . . . 2π], β ∈ [0 . . . 2π]. Using Maple, we see that this minimum has value
d ≈ 0.755, at α ≈ 3.62, β ≈ 5.89. The optimal path in this setting is shown in Figure 9.14.
Since this path is shorter than all other possible path configurations, we conclude that this is the
shortest possible path including p and points q1 ∈ D1 and q2 ∈ D2.

−0.1

−0.2

0

0.1

0.2

0.2 0.4 0.6 0.8 1p

q1

q2

D1

D2

Figure 9.14: The shortest possible path is shown from a point at the origin to some point in each
of two unit disks; one of the disks is centred at (1, 1), the other is at (1,−1).

For the remainder of the discussion, we refer to the weight of this shortest path as the constant
d ≈ 0.755. Before going to the details of the reduction, we consider optimal MSTN solutions when
the problem instance is a variable gadget as described above (without the wires approaching from
clauses). We claim that such an instance has two possible MSTN solutions, and in each of these
solutions consecutive pairs of disks are connected to a single wire of the interior of the gadget
with a path of length d described in Lemma 9.8. We associate these two possible MSTN solutions
with the two assignments for the variable. To prove the claim, we show that in an optimal MSTN
solution for the interior of the gadget, there is no path containing points from more than two
disks.

131

Lemma 9.9. In the optimal MSTN solution for a variable gadget, each consecutive pair of disks
is connected to a distinct point on the interior of the gadget via a path of length d.

Proof. Recall that by Lemma 9.8, connecting a pair of disks in the configuration shown in Figure
9.14 may be done with a path of weight d, while the same point may be connected to a single disk
with weight

√
2 − 1. Therefore, three consecutive disks in a variable gadget may be connected

to two wires of the interior of the gadget using edges with weight d+
√

2− 1 ≈ 1.169, while four
such disks may be connected with weight 2d ≈ 1.51.

Now consider three consecutive disks that we wish to connect to a single wire of the interior
of the gadget. The minimum distance between any two non-adjacent disks is dmin ≥ 2

(√
2− 1

)
,

which occurs in the corners. Note that a path spanning this nearest distance passes through the
point of the interior of the gadget nearest the three disks in the corner, and so the shortest path
to connect to the third disk in the corner requires another edge of

√
2− 1. Two of these adjacent

paths may now be replaced by a path of weight d, as shown in Lemma 9.8, and so the weight
of the shortest path joining three consecutive disks to a point on the interior of the gadget is
d+
√

2−1 ≈ 1.169. Since d+
√

2−1 > 3d/2, and there are an even number of disks in the gadget,
an optimal path containing one point of the interior of a variable gadget in the MST contains
points from at most two disks of the variable gadget.

Hence, there are two possible solutions for MSTN on a variable gadget. We use this fact
to assign a truth value for the variable gadget: one configuration is arbitrarily considered to be
true, the other false. In Figure 9.13, we show an example where the true configuration is used,
and every other wire of the interior of the gadget has an edge to some point in the disks. The
false configuration would contain edges between the complementary set of wires of the interior
of the gadget and the disks of the variable gadget.

Clause Gadgets

The clause gadgets are composed of three wires that meet at a single point. Each wire associated
with the clause gadget is placed so that it terminates at a distance 2.5 from a tangent point of
a variable gadget, as shown in Figure 9.13. As a result, a line segment of length 3.5 units can
connect the clause gadget to the interior of a variable gadget, while also intersecting the shared
point between two disks. If the truth value of the variable gadget matches that of the clause, this
means that connecting the clause gadget to the variable gadget requires 3.5 − d units of extra
weight, since otherwise the two disks are connected to the interior of the gadget with d weight,
as outlined in Lemma 9.8. Therefore, given a clause gadget where at least one literal matches
the truth value of the corresponding variable gadget, the clause gadget is connected to the MST
with 3.5− d units of additional weight.

The spinal path wires terminate in positions exactly analogous to those of the clause gadgets
so that the analysis is the same. This raises the possibility that the wires of a clause gadget
may be connected to two variable gadgets, leaving a gap in the spinal path, but note that such a
configuration does not affect the weight of the optimal tree. The spinal path is necessary however,
since some variables may not be used by any clauses in an optimal solution.

Lemma 9.10. Joining a clause wire to a variable gadget that has a truth value differing from
that of the clause requires at least 4.16− (3.5) ≈ 0.66 units of additional edge weight relative to a
configuration with matching truth values.

132

Proof. In an optimal MSTN solution on a construction corresponding to a satisfiable 3SAT in-
stance, a pair of disks and a clause wire may be joined to the interior of the gadget with weight
3.5 units, and an additional adjacent pair of disks may be joined to the interior of the gadget
with a path of weight d. Therefore, the total weight of the edges incident upon points in four
such disks is 3.5 + d.

Now consider a configuration where the truth value of the literal for each variable in a clause
does not match the truth value of the corresponding variable gadgets. Connecting one of the
clause gadget wires to the interior of the gadget requires edges of weight of at least 3.5 units,
as discussed previously, and the shortest path intersects points from two disks; call them Di

and Di+1. The neighboring two disks in the variable gadget, Di−1 and Di+2, are not attached
to the interior of the gadget by paths like those found in Lemma 9.8. Rather, each of these
adjacent paths may be shortened to

√
2 to cover the two singleton disks. Note that there may be

a non-empty sequence of pairs of disks connected as in Lemma 9.8 before the singleton is reached,
creating a section of the gadget with an inverted truth value for the variable9. Therefore, the net
extra weight of such a transition is 3.5 + 2

√
2− (3.5 + d) = 2

√
2− d ≈ 2.0735.

A configuration that may require less additional weight is to connect the clause wire to the
interior of the gadget using a path with points in disks Di−1 and Di (it is a slightly modified
configuration from that of Lemma 9.8). For our analysis, we can place the centre of Di−1 at
(1, 1), the end of the interior wire between Di−1 and Di at (0, 0), and the end of the clause wire
at (3.5,−2) (Figure 9.15). The weight of the path from the interior of the gadget to Di−1 to the
clause wire may be expressed by the function

f (θ) =

√
(1 + sin θ)2 + (1 + cos θ)2 +

√
(2.5− sin θ)2 + (−3− cos θ)2,

which has a minimum weight greater than 4.16 units at θ ≈ 3.43 radians. Since this path
intersects Di, it is also the shortest path that includes a point pi ∈ Di. Therefore, without loss
of generality a path connecting a clause wire to a wire in a variable gadget with a mismatched
truth value has weight greater than 4.16. Note that such a path does not affect the truth value
of the variable gadget, and so Di+1 and Di+2 may be joined to the interior of the gadget with a
path of weight d. Therefore, the extra weight incurred for such a configuration is greater than
4.16 + d− (3.5 + d) ≈ 0.66.

As described earlier, the terminal points of the clause wires (and the spinal path) are collinear
with wires of the interior of the gadget. Note that the wires approaching the variable gadget need
not lie within 4 units of one another, and so there will not be edges directly between different
clause wires or between a clause wire and the spinal path.

Reduction

We would like to reduce a given instance of planar 3-SAT to the MSTN problem. Note that
the given 3-SAT instance is assumed to be embedded in the plane, and there exists a spinal

9Di+2 may be more generally indexed as Di+2+4c, where there is a block of 4c disks in the variable gadget
joined to the interior of the gadget in a truth configuration opposite of that of the neighboring disks in the variable
gadget. This does not affect the analysis, it simply relocates the singleton disk. Recall that by Lemma 9.9, such
singletons would exist rather than having three disks connected by a path to a single edge of the interior of the
gadget.

133

Di−1

Di

Di+1

2

0−2 2 4

−2

−4

gadget interior

clause wire

(3.5,−2)

Figure 9.15: The shortest possible path is shown (the dashed line) from the end of the clause
wire to points in Di and Di−1, and finally connecting to the interior of the gadget for Di and
Di−1.

path P = (Vv, EP) that passes through all variable vertices without crossing any edge of G (as
mentioned at the beginning of Section 9.4.3, this restricted version is also NP-hard).

To create the instance of the MSTN problem, we fix the spinal path as a part of the MST,
using wires consisting of disks of radius 0. We replace each variable node with a variable gadget
as explained. Each clause gadget includes three wires, which we place so that they approach the
associated variable gadgets as described.

The wires forming the spinal path, the m clause gadgets, and each of the n variable gadget
interiors have a fixed weight, call the total weight of all these wires wwires. The remaining weight
of the MST is that of connecting to a point from each disk in the variable gadgets, and that
of connecting each clause gadget. Suppose there exists a satisfying assignment for the 3-SAT
instance. Each pair of disks in the variable gadgets can be connected with weight d; this will be
the case for all but m pairs. The remaining m pairs will be connected with edges that also join
to the clause gadgets with weight 3.5 in the manner described in the Variable Gadget section
above. Therefore, assuming that there is a total of i pairs of disks in the variable gadgets of
the construction, the remaining weight of the MST is wdisks = id + (3.5 − d)m. Thus, if there
exists a satisfying assignment to the 3-SAT instance, the total optimal weight of the MST is
wtot = wwires + wdisks

10. If there is no satisfying assignment, at least one of the clause gadgets
must be connected to the MST in the manner described in Lemma 9.10, which requires an
additional weight of at least 0.66 units.

All points in the construction were placed on the integer grid or else have fractional coordinates
where the denominator is 2, and the size of the grid required for the construction is polynomially
bounded in the size of the input. This establishes the NP-hardness of MSTN.

Now suppose there exists an FPTAS for MSTN. Given an instance of planar 3-SAT, we build
the MSTN construction and determine wtot. We choose a value of ε so that ε < 0.66/wtot, and so
a (1 + ε)-approximate solution to the MSTN problem may be used to determine whether there

10Note that the number of edges in the construction is a polynomial in the size of the input. Since all we need to
determine is whether the weight of the solution is at least 0.66 units greater than wtot, we can round the measure
of the total weight to a number of bits logarithmic in the size of the input.

134

is a satisfying assignment for the planar 3-SAT instance. Since the latter problem is NP-hard, we
conclude that MSTN does not admit an FPTAS, unless P=NP.

9.5 Conclusions and Future Work

We considered geometric MST with Neighborhoods problems, and established that computing
the MST of minimum or maximum weight is NP-hard in both cases, even when disks are disjoint.
We extended the hardness results to show that the problems are hard to approximate by proving
that there is no FPTAS for either problem, assuming P 6= NP. We conjectured an asymptotic
3-approximation algorithm for the MSTN problem, as well as a parameterized algorithm based
upon how well separated the disks are from one another. For max-MSTN, we showed that a
deterministic algorithm which selects disk centres gives an approximation ratio of 1/2. Further-
more, we showed that when the instance of the problem satisfies k-separability, the same approach
achieves a constant approximation ratio of 1− 2

k+4 .

For further research, it will be interesting to study this problem under different models of
imprecision. Depending on the application, the regions of uncertainty may consist of other shapes,
e.g., line segments, rectangles, etc., or they may be composed of discrete sets of points, as discussed
in Chapter 10.

135

10
2-Generalized Minimum Spanning Trees

The discretized version of the imprecise data problem is one where there is a set of points P in
the plane, and a range space S where each element of S is a collection of points from P. The
Minimum Spanning Tree problem in this model is known as the Generalized Minimum Spanning
Tree (GMST) problem (or also the GMSTP, see below). In this chapter, we consider the setting
where the input consists of sets of points, all sets have cardinality 2, and the two points in each
set are incident upon a vertical line. We call each set of points in the range space an imprecise
vertex .

Definition 10.1. The 2-GMST Problem: Assume we are given a set P = {p±0 , . . . , p±n−1} of
imprecise vertices in which p±i = {p+i , p−i } is a pair of points in the plane, and p+i and p−i have the
same x coordinate. The 2-GMST problem is to determine a set of choices C = (c0, . . . , cn−1) ∈
{+,−}n, inducing the point set V c = { pcjj : j = 0, . . . , n− 1 }, which minimizes the weight of the
Minimum Spanning Tree on (V c).

Definition 10.2. The max-2-GMST Problem: Assume we are given a set P = {p±0 , . . . , p±n−1}
of imprecise vertices in which p±i = {p+i , p−i } is a pair of points in the plane, and p+i and p−i
have the same x coordinate. The max-2-GMST problem is to determine a set of choices C =
(c0, . . . , cn−1) ∈ {+,−}n, inducing the point set V c = { pcjj : j = 0, . . . , n− 1 }, which maximizes
the weight of the Minimum Spanning Tree on (V c).

We begin by discussing these problems in one dimension, and then we show that the 2-GMST
problem is NP-hard in two dimensions. Finally, we show that a simple recursive algorithm solves
the problem exactly if the topology of the solution is known.

10.1 Related Work

A generalized version of our problem was first defined as the Generalized Minimum Spanning Tree
Problem (GMSTP) by Myung et al. [124]. They showed that the general version is NP-hard,
and that there is no constant-factor approximation algorithm for the problem. This generalizes
the 2-GMST problem in many senses: the cardinality of each set is unrestricted, the positions
of the points in a set are unconstrained, and the problem considers general graphs, rather than
being restricted to the Euclidean plane. Due to the hardness results, research on the problem

137

has primarily been directed toward using heuristics for finding good solutions for the problem or
deriving exact solutions which run as quickly as possible, e.g. [82, 94, 124, 134]. A nice review of
GMSTP and further generalizations is presented by Feremans et al. [68].

Pop [133] studied several problems related to the GMSTP. While studying the problem on sets
of unrestricted size, a dynamic programming solution was described for the case that the number
of sets of points is bounded by a constant. Furthermore, it was demonstrated that GMSTP
is NP-hard even if the problem is restricted to trees [133, Theorem 2.3] (however, we provide
an exact dynamic programming solution for the 2-GMST problem on trees in Section 10.6).
Finally, Pop [133, Theorem 4.3] described a 2ρ-approximate algorithm for GMSTP, where ρ is
the maximum cardinality of any imprecise vertex. This immediately provides a 4-approximate
algorithm for the 2-GMST problem. The algorithm solves the linear programming relaxation of
the integer programming formulation of the problem, and then chooses a spanning tree from the
points in the solution. This result follows the approximation framework used by Slav́ık [147, 148]
to establish approximation algorithms for the Generalized Travelling Salesman Problem (GTSP)
and the Group Steiner Tree problem with approximation factors of 3ρ/2 and 2ρ, respectively.

Recently, Jørgensen et al. [100] presented results on a number of geometric problems such as
determining the radius of the smallest enclosing ball with a model where each point is represented
with a set of points in the input, which they call indecisive points, where the set of points is
intended to represent the set of candidate positions for the point. A polynomial time algorithm
is described for the smallest enclosing ball problem in this setting, and they demonstrate that
computing the diameter of the point set is #P-hard.

For the Travelling Salesman Problem, this generalized setting is usually called Group TSP.
The solution to Group TSP is the minimum weight tour which visits a point in each element
of S. For Group TSP, there is a (1 + ε) (9α+ 1) approximation algorithm for groups that may
be disjointly covered by α-fat objects, and an O (1) approximation algorithm if such objects are
allowed to intersect [61].

10.2 Minimum Spanning Trees on Intervals

For convex hulls, one of the common settings is to model the areas of uncertainty as parallel
line segments [113]. For convex hull algorithms, the vertices that contribute to the solution are
invariably one of the endpoints of the segments and so this setting may be reduced to the model
of imprecision used for 2-GMST. However, this same property does not hold for the Minimum
Spanning Tree problem on line segments, as we show with Lemma 10.1.

Lemma 10.1. Vertices of the optimal maximum weight Minimum Spanning Tree computed over
parallel line segments may be found in the interior of the line segments.

Proof. We present a proof by example in Figure 10.1a. Suppose point p can be chosen from
within the segment (0, [−10, 10]), and all other points p0, ..., pn are fixed, with p0 at (1, 10), pn at
(1,−10), and the other n− 1 points have x > 1 and lie densely on the circle of radius 10 centred
at (0, 0). Then the maximum weight MST is attained when p is at the coordinates (0, 0), the
midpoint of the segment.

The lemma and proof are easily modified to show that the conditions for the minimum weight
MST on intervals are similar, as shown in Figure 10.1b.

138

p0

p

p1

pn

(a) The maximum weight Minimum Span-
ning Tree uses a point p located in the mid-
dle of the interval.

p0p

(b) The minimum weight Minimum Span-
ning Tree uses a point p located in the mid-
dle of the interval.

Figure 10.1: Constructions which use a point in the middle of an interval when constructing the
minimum and maximum weight MSTs.

10.3 One-Dimensional 2-GMST and MAX-2-GMST

Consider the one-dimensional versions of the 2-GMST and max-2-GMST problems, where all
points are all collinear, and assume the line is vertical. It is not surprising that both problems are
easy (each solution consists of an interval over the points, and there are O

(
n2
)

such intervals),
but the nature of the solutions illuminates some of the fundamental differences between the
problems. The solution to 2-GMST is solved using a linear scan of the vertices, while the
solution to max-2-GMST has only three possible configurations. To begin, we sort all of the
points by descending value of y-coordinate, and label the points so that the set is of the form
P = {p+1 , . . . , p+i , . . . , p−i , . . . , p−j }, i.e., p+i appears before p−i and p+i appears before p+j if i < j.
Note that in the set P, the value of j in the subscript of the last point can take any value in
{1, . . . , |P|}. The sorting step dominates the running time of both algorithms.

10.3.1 2-GMST Solution

The solution is the minimum weight interval which spans at least one point from each imprecise
vertex. The solution may be found by running a scan over the points from top to bottom. We
begin with the upper point from each imprecise vertex as the solution (i.e., T = ∪i∈{1,...,|P|}{p+i })
and we take note of the weight of the solution (call it wmin). In the iterative step, we remove
the top-most point from the solution, which is the point with the smallest value in the subscript,
call it p+i . We insert the lower point from the corresponding imprecise vertex, p−i , and adjust the
value of lmin accordingly. The procedure concludes when the upper-most point in the solution is
the lower point of an imprecise vertex, i.e. some p−j , since removal of p−j would mean that T no
longer spans the set of input vertices. We test all of the relevant possible solutions in linear time,
and can output the structure and size of the solution to 2-GMST.

10.3.2 max-2-GMST Solution

The solution is trivial. It consists of the interval spanned by p+1 and p−j , where p−j is the last point
in the sorted set, unless j = 1 (i.e. the points come from the same imprecise vertex). If j = 1,

139

we compare the weight of the interval spanning p+2 to p−1 (which we now know is the last point)
to the weight of the interval spanning p+1 to p−i , where p−i is the second-to-last point in the set
P. All intermediate points in the solution can be chosen from the imprecise vertices arbitrarily.

10.4 NP-Hardness of 2-GMST

In this section, we establish the hardness of the 2-GMST problem.

Theorem 10.1. 2-GMST is NP-hard in R2. Furthermore, there is no FPTAS for the 2-GMST
problem in R2, unless P=NP.

We show the hardness of 2-GMST by reduction from max2-sat, a known APX-hard problem
[130]1. In the max2-sat problem, we are given a set of m clauses, each of which contains two
literals from a set of n variables. The objective is to select truth values for the variables so that
a maximal number of clauses are satisfied.

Definition 10.3. The max2-sat Problem: The input to max2-sat consists of a set X =
{xi, . . . , xn} of boolean variables and a set of clauses C = {c1, . . . , cm}, where a clause ci ∈ C
is of the form ([¬]xj , [¬]xk), where j, k ∈ {1, . . . , n} and [¬] indicates that the literal may be the
negation of the truth value assigned to the corresponding variable. The solution consists of a truth
assignment φ = (p1, . . . , pn) ∈ {+,−}n for X which maximizes the number of satisfied clauses in
C.

10.4.1 Gadgets

We outline the structure of the construction used for the reduction before delving into the details.
The hardness construction consists of a number of gadgets on imprecise vertices which we use to
assemble a configuration like that shown in Figure 10.2. All vertices corresponding to variables
will be placed in order vertically from top to bottom in the construction, and wires (defined
below) extend from these vertices to the right. The solution is a tree which is rooted at the left
side of the construction, and all leaves are to the right. Vertices corresponding to clauses will
only be leaves of the tree in any optimal 2-GMST solution, although not all leaves correspond to
a clause. Each clause that may be satisfied in the max2-sat instance reduces the weight of the
optimal 2-GMST solution by some fixed amount. Using this, we show that an exact 2-GMST
algorithm may be used to determine an optimal solution for any max2-sat instance.

Root

The root of the tree is constructed by aligning many imprecise vertices vertically as shown on the
left in Figure 10.2. Generally, the root is composed of imprecise vertices, aligned vertically, the
lower point of one placed two units above the upper point of the imprecise vertex below. The pair
of points in each imprecise vertex are placed two units apart with two exceptions: one imprecise
vertex in the root is aligned horizontally with each imprecise variable vertex (discussed below),

1In [130], it is shown that max2-sat is max SNP-hard, and in [101] it is demonstrated that the closure of max
SNP is in APX, ruling out the possibility of the existence of a PTAS for all max SNP-hard problems if P 6= NP.
max2-sat was first shown to be NP-complete by Garey et al. [81].

140

root wires clauses

c+1

c+2

c+3

c+4

x+
1

x−
1

∈W−
x1

∈W+
x1

In wires:

Figure 10.2: An example section (the top half) of a construction for the reduction from max2-sat
to 2-GMST. Only the section corresponding to the variable x1 is shown, and so there is only
one imprecise variable vertex: x±1 = {x+1 , x−1 }. The clauses in the max2-sat instance are C1 =
(x1 ∨ x2) , C2 = (x1 ∨ x2) , C3 = (x1 ∨ x2) , C4 = (x1 ∨ x2). Both x1 and x2 have been set to
true, and c+1 , c

−
2 , c

+
3 and c+4 are the imprecise clause vertices used. This is one of several optimal

solutions for this configuration. The bottom half of the figure, which is very similar to the top
half shown here, is omitted for clarity. The filled circles are points associated with x+1 , and the
hollow circles are points associated with x−1 . You may wish to peek ahead to Figure 10.4 to see
how the wires are branched.

141

and so these points are separated by 24 units, and one imprecise vertex with points separated by 4
units is nested in between each of the previous vertices so that we may used integer coordinates.
The optimal 2-GMST solution over the root consists of many collinear vertical edges and n
horizontal edges, one for each variable of the max2-sat instance, as shown in Figure 10.3(a).

Wires

Each variable xi of the max2-sat instance is represented by an imprecise vertex x±i , which we
call an imprecise variable vertex. The imprecise variable vertices are stacked vertically at the left
of the wires section of the construction (see Figure 10.2). Choosing the point x+i of the imprecise
variable vertex x±i is equivalent to setting the value of xi to true, while choosing the point x−i
in the max2-sat instance is equivalent to setting xi to false. The initial distance between x+i
and x−i is 24 (all distances are relative to some unit distance).

Each imprecise variable vertex is the first of a sequence of imprecise vertices, which we call a
wire. For a variable xi, the wire Wxi consists of a set of imprecise vertices configured so that if the
top point w+

j of any imprecise vertex w±j ∈ Wxi is in our MST, then the top points of all of the

imprecise vertices forming the wire will be used in the MST (we define W+
xi as this set of all top

points of the imprecise vertices in the wire Wxi ; analogously W−xi is the set of all bottom points
of Wxi). In other words, over the set Wxi , given any w±j where cj = + (inducing the selection of

w+
j , recall Definition 10.1), then ∀k ∈ {1, . . . , |Wxi |}, w±k ∈Wxi =⇒ ck = +. To realize this, the

imprecise vertices are placed so that the nearest points to the top point of an imprecise vertex
are the top points of the adjacent imprecise vertices in the wire. This argument is analogous for
W−xi .

For each variable xi in the max2-sat instance, we use the branching gadget (Figure 10.3) to
duplicate the wire Wxi extending from the imprecise variable vertex x±i until we have a number
of branches equivalent to the number of occurrences of the variable xi in the clauses of the input.
That is, given an instance of max2-sat, if the variable xi appears in clauses k times, we need
k branches of the wire corresponding to xi. To ensure that the truth value for the variable is
consistent across all branches of the wire, we build the branching gadget shown in Figure 10.3(b).
The area where the actual crossing of wires takes place is between W−xi of the upper branch and
W+
xi of the lower branch. The points at the crossing form the corners of a 3× 4 rectangle. After

the crossing, the points of W−xi on the upper branch and those of W+
xi on the lower branch have an

extra set of edges (the “extra tail”) so that the path connecting all of the points on the wires has
weight 30 (see Figure 10.3(b)). This configuration ensures that the MST over the wires consists
only of either the set W+

xi or W−xi ; the proof of correctness is presented on page 147. The distance
between the points in the imprecise vertices of the wires is consistent at 24 prior to each branching
as well as before the clause gadgets.

Furthermore, wires are shifted up or down as needed, with imprecise vertices on the wire
placed every two units, and the edges of the resulting MST alternate between horizontal and
vertical orientations. These are sufficiently dense to ensure that the truth value from the imprecise
variable vertex is preserved, since the minimum distance between W+ and W− of any wire at
any point is always greater than 12.

142

12

24

x+
i

x−
i

(a) (b)

W+
xi

W−
xi

W−
xi

W−
xi

W+
xi

W+
xi

22

30

4

3

24

r+j
r−j

r+j+1

r−j+5

r+xi

r−xi

3

28

24

24

“extra tail”

r+j+3

r−j+3

Figure 10.3: The numbers in the figure indicate the weight of the MST over each portion of the
gadgets. (a) The root consists of a set of imprecise vertices R = {r±1 , . . . , r±|R|} stacked vertically

(drawn as pairs of empty circles), as well as an imprecise vertex (pair of filled disks) r±xi for each
imprecise variable vertex x±i . Using two units of spacing between the imprecise vertices as shown
in the figure ensures that there is a vertical edge which joins all of the points along the root,
and horizontal edges reach out to the points in the imprecise variable vertices (see Figure 10.2).
Note the special imprecise vertex rj+3 whose points are separated by 4 units. (b) The branching
gadget is used to provide wires from each imprecise variable vertex to all of the clauses where
they are required. The spacing between top and bottom points in the imprecise vertices of the
wires is consistent at 24 before and after the branching gadget.

143

Clauses

For each clause Ck in the instance max2-sat, we have an imprecise clause vertex c±k in the clauses
portion of the construction. The mapping is simple: if a clause has the form Ck = (xi ∨ xj), then
wires extend from each of the imprecise variable vertices x±i and x±j to the vicinity of the imprecise

clause vertex c±k . The points in c±k are set so that they are slightly closer to the truth value on
the wire matching that in the clause. For example, given the clause Ck = (xi ∨ xj), the point c+k
of c±k is distance 12 − β from a point in W+

xi and 12 + β from a point in W−xi on the same wire
(we discuss the precise value of β on page 145). Correspondingly, the point c−k is 12 − β from a
point in W−xj and 12 + β from a point in W+

xj . This way, the MST has an extra weight of 2β if
and only if the truth values carried by the wires are xi = − and xj = +, and so the weight of an
edge to join c±k to the MST is 12 + β regardless of which point is used.

10.4.2 Weight of the MST

We begin by determining the weight of the MST on the wires section of the construction, followed
by the root and finally the clauses.

Wires

To simplify this analysis, we increase the weight of the structure by building redundant wires and
branching gadgets. Determine α ∈ {1, . . . , n} such that the variable xα appears in the clauses
of the max2-sat instance a maximal number of times over all variables x1, . . . , xn; we call this
number of occurrences n′. Clearly, we require n′ wires for variable xα. If n′ is not a power of 2,
we set n′ to the next largest power of 2, so that n′ = 2γ , γ ∈ N. Note that γ < logm+ 2, where
m is the number of clauses, since n′ can be at most 2m. We create n′ wires for each variable
x1, . . . , xn, so that each set W+

x1 , . . . ,W
+
xn ,W

−
x1 , . . . ,W

−
xn has the same cardinality.

The MST over the set of wires has a fixed weight regardless of the truth values of the imprecise
variable vertices. When all wires are strictly horizontal (if n′ = 1) this is trivially true, so we
show that the weight remains fixed with branching gadgets by case analysis. Suppose that the
MST on the wire for xi is using the points W+

xi prior to branching. For ease of exposition, in
this analysis we denote the upper wire after branching2 as Wu,xi and the lower wire as W`,xi , as
shown in Figure 10.4. The possible outcomes after branching are (this analysis is analogous for
W−xi):

1. W+
xi → W+

u,xi ,W
+
`,xi

(Figure 10.4(a)) - This route has weight 22 + 3 + 28 for W+
xi → W+

u,xi ,

and 22 + 5 + 30 for W+
xi →W+

`,xi
, for a total of 110.

2. W+
xi → W−u,xi ,W

+
`,xi

(Figure 10.4(b)) - This route has weight 22 + 3 + 30 for W+
xi → W−u,xi ,

and 22 + 4 + 30 for W+
xi →W+

`,xi
, for a total of 111.

3. W+
xi → W+

u,xi ,W
−
`,xi

(Figure 10.4(c)) - This route has weight 22 + 3 + 28 for W+
xi → W+

u,xi ,

plus at least 22 + 28 for W+
xi → W−`,xi , and at least another 4 units for the “extra tail”,

for a total of 107, but the W−`,xi wire is disconnected from the tree. There is no way to

2In general however, these are considered the same wire Wxi , as shown in Figure 10.3(b).

144

connect the W−`,xi wire to the MST built so far so that the total weight of the branching
plus the connection is 131 or less, since the branches are set so that the wires are never
within distance 24 of another connected part of the tree.

4. W+
xi → W−u,xi ,W

−
`,xi

(Figure 10.4(d))- This route has weight 22 + 3 + 30 for W+
xi → W−u,xi ,

and 22 + 28 for W+
xi → W−`,xi , for a total of 105, but again the W−`,xi wire is disconnected

from the tree. The total cost is therefore at least 129.

Therefore, the minimum weight feasible path through the gadget is that which preserves the truth
values of the variables, and the weight is fixed at 110 regardless of the truth value carried by the
wires.

As we mentioned earlier, each variable is split into n′ wires from a single initial wire, which
requires n′ − 1 branching gadgets in general, each of which has a weight of 110. Between each
level of branching gadgets, we need to shift the wires to create room for the gadgets to follow
(see Figure 10.2). Recall that there are n′ = 2γ wires created for each variable, so log n′ levels of
branching gadgets are required, and thus log n′− 1 levels of shifting wires. Let h = 1 be the level
of the wires at the clause gadgets, and let h = log n′ be the level of the wires at the imprecise
variable vertices. At each level h ∈ {1, . . . , log n′}, the wires are shifted by a vertical distance
of 12 ·

(
2h − 1

)
, and 2γ−h+1 wires are needed. Given that the shifting wires climb at 45◦ using

orthogonal edges, the length of the wires is 2 times the vertical shift required. Therefore, the
total weight of all the wires needed for shifting each variable is 12 · 2 · 2γ+1 log n′ = 48 · n′ log n′.
Call the total weight of the MST in the wires section of the construction wwires; it follows that
wwires = n · (48 · n′ log n′ + 110 (n′ − 1)).

Root

The total weight of the root structure for any MST over the structure is simply the distance from
the top point of the bottom-most imprecise vertex to the bottom point of the top-most imprecise
vertex. Further, we consider the distance to connect the root to the wires. The imprecise vertices
of the root are placed to span all of the wires at the clauses section of the construction, as shown
in Figure 10.2, so that the total weight of the vertical edges is 48nn′ (there are nn′ wires in total,
and there is a vertical distance of 24 both between wires and between points in the imprecise
vertices of the wires). By having imprecise vertices in the root aligned horizontally with the
imprecise variable vertices, the MST will join the root to these vertices with horizontal edges,
since any other option would have greater weight. The weight of these edges is fixed by setting
this horizontal distance to 12, so that the total weight over all imprecise variable vertices is 12n.
Let the weight of the root and these horizontal edges be wroot = 12n+ 48nn′.

Clauses

The only remaining weight to the tree is that of the edges to connect the wires to the imprecise
clause vertices. If either one of the terms in clause Ci matches the value carried on the relevant
wires, then the edge to connect c±i has weight 12 − 1

2n′ , otherwise it has weight 12 + 1
2n′ (we

have now defined β = 1
2n′ . If none of the clauses are satisfied, the weight of the clauses section is

wclauses max = m ·
(
12 + 1

2n′
)
, where m is the number of clauses in the max2-sat instance.

145

W+
xi

W+
`,xi

W+
u,xi

(a)

W−
u,xi

(b)

W+
xi

W−
`,xi

W+
u,xi

(c)

W+
xi

W−
u,xi

W−
`,xi

(d)

W+
xi
→W+

u,xi
,W+

`,xi
= 110 W+

xi
→W−

u,xi
,W+

`,xi
= 111

W+
xi
→W+

u,xi
,W−

`,xi
> 131 W+

xi
→W−

u,xi
,W−

`,xi
> 129

22
3

28

28

22

30

3

4

22

Disconnected segments

22

5

3

28

22

28

22

30

4

3

W+
`,xi

Disconnected segment

22 22

3030

Figure 10.4: The four possible routes through the crossing gadgets are shown. The optimal
configuration, shown in (a), is that which preserves the truth value of the incoming wire.

146

Total Weight

Let wmax be the total weight of the 2-GMST solution, supposing that no clauses of the max2-sat
instance are satisfied:

wmax = wroot + wwires + wclauses max

= 12n+ 48nn′ + n ·
(
48 · n′ log n′ + 110

(
n′ − 1

))
+m ·

(
12 +

1

2n′

)

= 2n ·
(
24 · n′ log n′ + 79n′ − 49

)
+m ·

(
12 +

1

2n′

)
(10.1)

Notice that all points except those of the imprecise clause vertices have integer coordinates,
and that there are a polynomial number of vertices in the construction. The imprecise clause
vertices coordinates, although not integers, have coordinates that are polynomial in the size of
the input.

For each satisfied clause, the total weight of the tree reduces by winc = 1
n′ . If we subtract

the total weight computed for an optimal 2-GMST instance from wmax, the remaining weight
is of the form δ/n′, for some δ ∈ N. δ is equivalent to the number of unsatisfied clauses, so
m − δ = k is the number of clauses that are satisfied in the max2-sat instance. Therefore, a
solution to the reduced 2-GMST instance has a solution with weight at most wmax − δ/n′ if
and only if at least k clauses may be satisfied in the max2-sat instance. In the optimization
version of 2-GMST, we ask for the minimum weight MST over the input set of imprecise vertices
V , and with our reduction an optimal solution to 2-GMST provides an optimal solution to the
max2-sat instance. This establishes the NP-hardness of the 2-GMST problem.

Now suppose there exists a FPTAS for the 2-GMST problem. We have demonstrated that
the smallest increment in weight for the construction is winc = 1/n′, which is the increase in
weight for each unsatisfied clause of the max2-sat instance. Now if there exists a FPTAS for
2-GMST, we may select a value ε so that it is smaller than the fraction of this increment over
the weight of the MST:

ε <
winc

wmax
=

1

2nn′ · (24 · n′ log n′ + 79n′ − 49) +m ·
(
12n′ + 1

2

) ,

which is polynomial in the size of the input, since n′ ≤ 2m. This choice of ε allows us to solve
this instance of 2-GMST optimally, which in turn provides an optimal solution for the max2-sat
instance. This completes the proof of the theorem.

For an illustration of the reduction, consider once again Figure 10.2. We see that there are
4 clauses over 2 variables, and so m = 4, n = 2 and n′ = 4 (each variable appears in a clause 4
times). Given these values, wmax = 2 · 2 · (24 · 4 log 4 + 79 · 2− 49) + 4 ·

(
12 + 1

2·4
)

= 1252.5 and
we know that each satisfied clause reduces this weight by 1/n′ = 1/4. Therefore, by choosing
ε = 1

4·1252.5 = 1
5010 , we may find the optimal solution to the max2-sat instance given the existence

of an FPTAS for 2-GMST.

10.5 Approximation Algorithms for 2-GMST

We mentioned that there is a 4-approximation algorithm for 2-GMST which uses an LP-based
technique [133]. The 2-GMST problem is resistant to most typical strategies for developing

147

Figure 10.5: A difficult problem for 2-GMST. We place points as shown, where imprecise vertices
are alternately drawn with circles and squares from left to right to visually simplify the figure.
The optimal 2-GMST solution for this problem (in red) uses each bottom point. If points from
the imprecise vertices are added to the solution greedily (e.g., something like Kruskal’s or Prim’s
MST algorithms), then all top points would be added to the solution (the green dashed lines),
since the top left points have the smallest pairwise distance of any in the input. By increasing
the slope between points at the top right of the figure, an arbitrarily poor approximation factor
may be realized.

a combinatorial constant factor approximation algorithm. A first attempt usually uses greedy
strategies of some sort. In Figure 10.5, we show an example where many greedy strategies fail.

Another line of attack would be to compute the MST of all points in the input set (and so
eliminating the imprecision notion for the time being), in the hopes that the optimal 2-GMST
solution would be a subset of the edges of this tree. In Figure 10.6 we provide a counter-example
to this approach with a construction in which the optimal 2-GMST solution uses edges that are
not part of the MST on all points.

10.6 Problems with Known Topology

If an oracle provides us with the topology of the Minimum Spanning Tree, the 2-GMST problem
becomes much easier to solve. In this binary setting the imprecision of each vertex v is modelled
by two choices v+ and v−. Here, we consider the case when the topology of the tree T forming
the MST is given.

148

e
p
+
1

p
−
1

p
+
2

p
−
2

p
+
n

p
−
n

Figure 10.6: Another difficult problem for 2-GMST. We place points as shown, where imprecise
vertices are alternately drawn with circles and squares from left to right to visually simplify the
figure. The optimal 2-GMST solution for this problem (in red) uses each top point. If all points
of the input (all individual points, not just one from each imprecise vertex) are added to the
solution greedily, then all points would be added to the solution (the green dashed lines) before
the edge e would be considered, yet this edge is part of the optimal solution. In other words,
the optimal 2-GMST solution does not use of subset of the edges of the MST over all points. A
generalized version of this construction may be used to realize an arbitrarily poor approximation
factor for any solution which does not include e.

Theorem 10.2. An optimal solution to 2-GMST where the topology (combinatorial structure)
of the MST is known may be found in O (n) time using a recursive algorithm.

To find the minimum weight of the MST, given a free tree T that defines its topology, we first
root the tree at an arbitrary vertex, say r. For any vertex v, let Tv be the subtree rooted at v.
Then we define the following values:

• mst (Tv+) = weight of the MST of Tv in which v+ is chosen.

• mst (Tv−) = weight of the MST of Tv in which v− is chosen.

• mst (Tv) = weight of the MST of Tv = min{mst (Tv+) ,mst (Tv−)}.

The weight of the MST in T is mst (Tr), where r is the root of the tree, and it can be computed
in constant time once we have mst+ (Tr) and mst− (Tr).

Base Case

We can express mst (Tv+) and mst (Tv−) recursively. For the base case, assume that l is a leaf, so
Tl contains only one imprecise vertex, l. A tree without any edges has weight 0. So mst (Tv+) = 0
and mst (Tv−) = 0.

Recursive Case

Lemma 10.2. Let v be a vertex in T , let w1, . . . , wk be the children of v in T , and let
dist

(
v−, w−i

)
(resp. dist

(
v−, w+

i

)
) be the weight of the edge (v, wi) when we imprecise vertices

149

v− and w−i (resp. w+
i) are chosen. Then

mst (Tv−) =
k∑

i=1

min{dist
(
v−, w−i

)
+ mst− (Twi) , dist

(
v−, w+

i

)
+ mst+ (Twi)}. (10.2)

The case for v+ is analogous.

Proof. As the vertex v− has been fixed, each subtree Twi rooted at a child node wi contributes to
the weight of the MST rooted at Tv− , independently of its siblings. The minimization considers
the two single options for the MST rooted at Twi and deeper nodes in this subtree can be assumed
fixed because they are far enough from v− (i.e. there is no edge in the MST solution connecting
them with v). Combining all individual contributions gives Equation 10.2.

10.6.1 2-GMST Algorithm

The algorithm is simple given the above definitions. While doing a post-order traversal of the tree
T , compute the values of mst (Tv−) and mst (Tv+) for all vertices v. Since we use a post-order
traversal, upon reaching any node in the traversal the values for the children have been previously
computed and can simply be looked up. This can be done in O (deg (v)) time per vertex v and
thus the running time of the algorithm is O (n).

10.7 Conclusions and Future Work

We have studied a restricted version of the Generalized Minimum Spanning Tree (GMST) prob-
lem, in which each imprecise vertex contains exactly two points, and the points in a set are
incident upon a vertical line. We call this version the 2-GMST problem. We have shown that
even this setting, perhaps the simplest non-trivial form of the Generalized Minimum Spanning
Tree problem, is NP-hard and that no FPTAS exists for the problem unless P = NP. The hard-
ness of 2-GMST separates from that of GMST when the input graph is restricted to a tree (or
if the topology of the solution is known), and we provide an exact recursive solution for this
setting on 2-GMST. Since the previous best solution to 2-GMST (a 4-approximation) is geared
toward a much broader class of problems, it is tempting to believe that a better approximation
algorithm may exist if it were tailored to our setting. However, the problem does not yield to
several traditional approaches.

For future work, it will be interesting to see if an approximation algorithm for 2-GMST exists
with an approximation factor of less than 4, or alternatively to determine a lower bound on the
approximation factor.

150

11
Conclusions

In this thesis, we have examined an array of challenging problems in computational geometry,
and several of the solutions outlined in this work have advanced the state of the art in these
areas. While some of the problems yielded to polynomial time algorithms, the majority of the
results presented here are approximation algorithms for hard problems.

In Chapters 2-5, we described the Discrete Unit Disk Cover (DUDC) problem, along with some
variants. We showed a simple algorithm for Line-Separated DUDC, and we demonstrated that,
rather surprisingly, Within-Strip DUDC is NP-complete. Based on these results, we presented
some of the best known approximation algorithms for the DUDC problem.

In Chapters 6-8, we examined a new problem, which we call the Hausdorff Core of a polygon.
We demonstrated that the solution may be found in polynomial time on polygons with a single
reflex vertex. Contrary to our intuition, demonstrating this result was not a straightforward
exercise. Predictably however, the problem on general polygons is more convoluted, and we
described parameterized algorithms and an FPTAS for this setting.

Finally, we studied Generalized Minimum Spanning Tree problems in Chapters 9 and 10.
We looked at minimization and maximization versions of the Minimum Spanning Trees with
Neighborhoods problem, and we demonstrated that each setting is NP-hard. We augment this
by bounding the effectiveness of approximation algorithms which simply use the centre point of
each disk. The minimization of the 2-GMST problem was also shown to be NP-hard, and we
described simple algorithms for the problem in one dimension, or in any number of dimensions if
the topology (combinatorial structure) of the solution is known.

There are a number of open problems described in this thesis, and we conclude by providing
several high-level research directions that are worth pursuing. For the DUDC problem, there
remains a gap in terms of a smooth trade-off between running time and approximation factors
for the known approximation algorithms, lying between the PTAS and the remainder of the
techniques. There are also many variants and generalizations of DUDC that would be worthy of
further study, such as on different types of regions or weighted ranges. For the Hausdorff Core
problem, we described a number of other useful metrics for measuring distance between polygons,
and the d-Core problem remains unexplored on most of these metrics. Finally, computational
geometry on imprecise data is a burgeoning field of study with broad applications. Maximization
versions of problems on imprecise input are analogous to the determination of upper bounds,
which are a fundamental component of any analysis. Such bounds have not been determined for
most problems on any model of imprecision, and so this is a ripe area for further study.

151

Bibliography

[1] P. K. Agarwal and C. M. Procopiuc. Exact and approximation algorithms for clustering.
In Proceedings of the Symposium on Discrete Algorithms (SODA). ACM Press, 1998. 18,
65

[2] P. K. Agarwal and M. Sharir. Efficient algorithms for geometric optimization. ACM Com-
puting Surveys, 30:412–458, 1998. 18

[3] A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber. Geometric applications of a
matrix-searching algorithm. Algorithmica, 2(1):195–208, 1987. 73

[4] A. Aggarwal and J. Park. Notes on searching in multidimensional monotone arrays. In
Proceedings of the Symposium on Foundations of Computer Science (FOCS), pages 497–
512. IEEE, 1988. 73

[5] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theoretical
Computer Science, 237(1-2):123 – 134, 2000. 48

[6] H. Alt, B. Behrends, and J. Blömer. Approximate matching of polygonal shapes. In
Proceedings of the ACM Symposium on Computational Geometry (SoCG), pages 186–193,
1991. Full version in: Annals of Mathematics and Artificial Intelligence, Vol. 15, pp. 251-
265, 1995. 71

[7] H. Alt and M. Godau. Measuring the resemblance of polygonal curves. In Proceedings of
the Symposium on Computational Geometry (SoCG), pages 102–109, New York, NY, USA,
1992. ACM. 71

[8] C. Ambühl, T. Erlebach, M. Mihal’ák, and M. Nunkesser. Constant-factor approxima-
tion for minimum-weight (connected) dominating sets in unit disk graphs. In Proceedings
of the Workshop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), pages 3–14, 2006. 9, 10, 23, 38

[9] E. Arkin and R. Hassin. Approximation algorithms for the geometric covering salesman
problem. Discrete Applied Mathematics, 55(3):197 – 218, 1994. 108

[10] B. Aronov, E. Ezra, and M. Shair. Small-size epsilon-nets for axis-parallel rectangles and
boxes. In Proceedings of the ACM Symposium on Theory of Computing (STOC), pages
639–648. ACM, 2009. 14

153

[11] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. Journal of the ACM, 45(5):753–782, 1998. 108

[12] M. J. Atallah. Some dynamic computational geometry problems. Computers & Mathematics
with Applications, 11(12):1171 – 1181, 1985. 76

[13] C. Bajaj. Geometric Optimization and Computational Complexity. PhD thesis, Cornell
University, 1984. 110

[14] C. Bajaj. The algebraic degree of geometric optimization problems. Discrete and Compu-
tational Geometry, 3(1):177 – 191, 1988. 110

[15] B. Baker. Approximation algorithms for NP-complete problems on planar graphs. Journal
of the ACM, 41(1):153–180, 1994. 17

[16] D. H. Ballard. Strip trees: a hierarchical representation for curves. Communications of the
ACM, 24(5):310–321, 1981. 70

[17] R. Bellman. On the approximation of curves by line segments using dynamic programming.
Communications of the ACM, 4(6):284, 1961. 67

[18] B. Bhattacharya and A. Mukhopadhyay. On the minimum perimeter triangle enclosing a
convex polygon. In Proceedings of the Japan Conference on Discrete and Computational
Geometry, volume 2866 of LNCS, pages 84–96. Springer, 2002. 73

[19] T. Biedl and M. Kaufmann. Area-efficient static and incremental graph drawings. In
Proceedings of the European Symposium on Algorithms, volume 1284 of Lecture Notes in
Computer Science, pages 37–52. Springer Berlin / Heidelberg, 1997. 113

[20] J. Blömer. Computing sums of radicals in polynomial time. In Proceedings of the Symposium
on Foundations of Computer Science (FOCS), pages 670–677. IEEE Computer Society,
1991. 110

[21] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Classifying learnable geometric
concepts with the Vapnik-Chervonenkis dimension. In Proceedings of the ACM Symposium
on Theory of Computing (STOC), pages 273–282. ACM, 1986. 14

[22] P. Bose and G. Toussaint. Computing the constrained Euclidean, geodesic and link centre
of a simple polygon with applications. In Proceedings of the Pacific Graphics International,
pages 102–111. IEEE, 1996. 77, 78, 98, 104

[23] H. Brönnimann and M. Goodrich. Almost optimal set covers in finite VC-dimension. Dis-
crete and Computational Geometry, 14(1):463–479, 1995. 9, 10, 11, 14

[24] B. R. Calder and L. A. Mayer. Automatic processing of high-rate, high-density multibeam
echosounder data. Geochemistry Geophysics Geosystems, 4(6), 2003. 1

[25] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with ap-
plications to k-nearest-neighbors and n-body potential fields. Journal of the ACM, 42(1):67–
90, 1995. 113

[26] S. Cameron. Approximation hierarchies and s-bounds. In Proceedings of the ACM Sympo-
sium on Solid Modeling Foundations and CAD/CAM Applications, SMA ’91, pages 129–137,
New York, NY, USA, 1991. ACM. 2

154

[27] S. Cameron and C.-K. Yap. Refinement methods for geometric bounds in constructive solid
geometry. ACM Transactions on Graphics, 11(1):12–39, January 1992. 2

[28] Caris. Lots browser. http://www.caris.com/, 2009. 1

[29] P. Carmi, M. Katz, and N. Lev-Tov. Covering points by unit disks of fixed location. In
Proceedings of the International Symposium on Algorithms and Computation (ISAAC),
volume 4835 of Lecture Notes in Computer Science, pages 644–655, 2007. vii, xvii, 10, 19,
21, 24, 25, 33, 34, 59

[30] E. Chambers, A. Erickson, S. Fekete, J. Lenchner, J. Sember, S. Venkatesh, U. Stege,
S. Stolpner, C. Weibel, and S. Whitesides. Connectivity graphs of uncertainty regions.
In Proceedings of the International Symposium on Algorithms and Computation (ISAAC),
volume 6507 of Lecture Notes in Computer Science, pages 434–445. Springer Berlin / Hei-
delberg, 2010. 108

[31] J. S. Chang and C. K. Yap. A polynomial solution for the potato-peeling problem. Discrete
and Computational Geometry, 1(1):155–182, 1986. 66, 73, 89

[32] J.-M. Chassery and D. Coeurjolly. Optimal shape and inclusion. In Mathematical Morphol-
ogy: 40 Years On, volume 30, pages 229–248. Springer, 2005. 71, 73, 74, 75

[33] D. Chen and O. Daescu. Space-efficient algorithms for approximating polygonal curves in
two dimensional space. Proceedings of Computing and Combinatorics (COCOON), LNCS
1449:169–183, 1998. 70

[34] X. Cheng, X. Huang, D. Li, W. Wu, and D.-Z. Du. A polynomial-time approximation
scheme for the minimum-connected dominating set in ad hoc wireless networks. Networks,
42(4):202–208, 2003. 16

[35] C.-C. Chou. An efficient algorithm for relay placement in a ring sensor networks. Expert
Systems with Applications, 37(7):4830 – 4841, 2010. 108

[36] V. Chvátal. A Greedy Heuristic for the Set-Covering Problem. Mathematics of Operations
Research, 4(3):233–235, 1979. 9, 12

[37] B. N. Clark, C. J. Colbourn, and D. S. Johnson. Unit disk graphs. Discrete Mathematics,
86(13):165 – 177, 1990. 15

[38] K. L. Clarkson and K. Varadarajan. Improved approximation algorithms for geometric set
cover. Discrete and Computational Geometry, 37(1):43–58, 2007. 17

[39] F. Claude, G. Das, R. Dorrigiv, S. Durocher, R. Fraser, A. López-Ortiz, B. Nickerson, and
A. Salinger. An improved line-separable algorithm for discrete unit disk cover. Discrete
Mathematics, Algorithms and Applications (DMAA), 2(1):77–87, 2010. 7, 10, 19, 20, 27, 59

[40] F. Claude, R. Dorrigiv, S. Durocher, R. Fraser, A. López-Ortiz, and A. Salinger. Practical
discrete unit disk cover using an exact line-separable algorithm. In Proceedings of the
International Symposium on Algorithms and Computation (ISAAC), volume 5878 of LNCS,
pages 45–54. 2009. 7, 10, 27, 59

[41] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms,
Second Edition. McGraw-Hill Science/Engineering/Math, July 2001. 11, 12

155

http://www.caris.com/

[42] G. Călinescu, I. I. Măndoiu, P.-J. Wan, and A. Z. Zelikovsky. Selecting forwarding neigh-
bours in wireless ad hoc networks. Mobile Networks and Applications, 9(2):101–111, 2004.
9, 19

[43] G. D. Da Fonseca, C. M. H. de Figueiredo, V. G. P. de Sá, and R. Machado. Linear time
approximation for dominating sets and independent dominating sets in unit disk graphs.
In Proceedings of the Workshop on Approximation and Online Algorithms (WAOA), 2012.
16

[44] O. Daescu. New results on path approximation. Algorithmica, 38(1):131–143, 2003. 70

[45] G. K. Das, S. Das, and S. C. Nandy. Homogeneous 2-hop broadcast in 2D. Computational
Geometry: Theory and Applications, 43:182–190, 2010. 19

[46] G. K. Das, R. Fraser, A. López-Ortiz, and B. G. Nickerson. On the discrete unit disk cover
problem. In Proceedings of the International Workshop on Algorithms and Computation
(WALCOM), volume 6552 of Lecture Notes in Computer Science, pages 146–157. Springer
Berlin / Heidelberg, 2011. 10, 37, 59

[47] G. K. Das, R. Fraser, A. López-Ortiz, and B. G. Nickerson. On the discrete unit disk cover
problem. International Journal of Computational Geometry and Applications, to appear,
2012. 10, 37, 59

[48] H. Davenport and A. Schinzel. A combinatorial problem connected with differential equa-
tions. American Journal of Mathematics, 87(3):pp. 684–694, 1965. 76

[49] M. De, G. Das, and S. Nandy. Approximation algorithms for the discrete piercing set prob-
lem for unit disks. In Proceedings of the Canadian Conference on Computational Geometry
(CCCG), pages 375–380, 2011. 16

[50] M. de Berg, J. Gudmundsson, M. Katz, C. Levcopoulos, M. Overmars, and A. van der
Stappen. TSP with neighborhoods of varying size. Journal of Algorithms, 57(1):22 – 36,
2005. 108

[51] P. de Fermat. Oeuvres de Fermat (Tome 1). Gauthier-Villars et Fils, Paris, 1891. 110

[52] D. Dobkin and L. Snyder. On a general method for maximizing and minimizing among
certain geometric problems. In Proceedings of Foundations of Computer Science (FoCS),
pages 9–17, 1979. 73

[53] R. Dorrigiv, S. Durocher, A. Farzan, R. Fraser, A. López-Ortiz, J. Munro, A. Salinger,
and M. Skala. Finding a Hausdorff core of a polygon: On convex polygon containment
with bounded Hausdorff distance. In Proceedings of the Workshop on Algorithms and Data
Structures (WADS), volume 5664 of LNCS, pages 218–229. Springer Berlin / Heidelberg,
2009. 65, 97

[54] R. Dorrigiv, R. Fraser, M. He, S. Kamali, A. Kawamura, A. López-Ortiz, and D. Seco. On
minimum- and maximum-weight minimum spanning trees with neighborhoods. In Proceed-
ings of the Workshop on Approximation and Online Algorithms (WAOA), 2012. 107

[55] D. Douglas and T. Peucker. Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature. The Canadian Cartographer, 10(2):112–122,
1973. 67, 68

156

[56] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley & Sons
Inc, 1973. 68

[57] A. Dumitrescu and J. S. Mitchell. Approximation algorithms for TSP with neighborhoods
in the plane. Journal of Algorithms, 48(1):135 – 159, 2003. 108

[58] S. Durocher and D. Kirkpatrick. The projection median of a set of points. Computational
Geometry, 42(5):364 – 375, 2009. Special Issue on the Canadian Conference on Computa-
tional Geometry (CCCG 2005 and CCCG 2006). 110

[59] A. Efrat, L. Guibas, S. Har-Peled, J. Mitchell, and T. Murali. New similarity measures
between polylines with applications to morphing and polygon sweeping. Discrete and Com-
putational Geometry, 28(4):535–569, 2001. 71, 72

[60] P. Egyed and R. Wenger. Ordered stabbing of pairwise disjoint convex in linear time.
Discrete Applied Mathematics, 31(2):133–140, 1991. 71

[61] K. Elbassioni, A. Fishkin, N. Mustafa, and R. Sitters. Approximation algorithms for Eu-
clidean group TSP. In Automata, Languages and Programming, volume 3580 of Lecture
Notes in Computer Science, pages 105–105. Springer Berlin / Heidelberg, 2005. 138

[62] T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihalák, and R. Raman. Computing minimum
spanning trees with uncertainty. In Proceedings of the Symposium on Theoretical Aspects
of Computer Science (STACS), pages 277–288, 2008. 108

[63] T. Erlebach and M. Mihal’ák. A (4+ε)-approximation for the minimum-weight dominating
set problem in unit disk graphs. In Proceedings of the Workshop on Approximation and
Online Algorithms (WAOA), volume 5893 of Lecture Notes in Computer Science, pages
135–146. Springer Berlin / Heidelberg, 2010. 15

[64] T. Erlebach and E. van Leeuwen. PTAS for weighted set cover on unit squares. In Procced-
ings of Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM), volume 6302 of Lecture Notes in Computer Science,
pages 166–177. Springer Berlin / Heidelberg, 2010. 10, 18, 38

[65] R. Estkowski and J. S. B. Mitchell. Simplifying a polygonal subdivision while keeping it
simple. In Proceedings of the Symposium on Computational Geometry (SoCG), pages 40–49.
ACM, 2001. 72

[66] W. M. Faucette. A geometric interpretation of the solution of the general quartic polyno-
mial. The American Mathematical Monthly, 103(1):pp. 51–57, 1996. 92

[67] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–
652, 1998. 9, 12, 14

[68] C. Feremans, M. Labbé, and G. Laporte. Generalized network design problems. European
Journal of Operational Research, 148(1):1 – 13, 2003. 138

[69] J. Fiala, J. Kratochv́ıl, and A. Proskurowski. Systems of distant representatives. Discrete
Applied Mathematics, 145(2):306–316, 2005. 108

[70] M. Fischetti, H. W. Hamacher, K. Jørnsten, and F. Maffioli. Weighted k-cardinality trees:
Complexity and polyhedral structure. Networks, 24(1):11–21, 1994. 108

157

[71] R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, and C. Yap. Simultaneous inner and outer
approximation of shapes. Algorithmica, 8(1):365–389, 1992. 71

[72] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the
plane are NP-complete. Information Processing Letters, 12(3):133–137, 1981. 8, 17

[73] R. Fraser and A. López-Ortiz. The within-strip discrete unit disk cover problem. In Pro-
ceedings of the Canadian Conference on Computational Geometry (CCCG), 2012. 7, 10,
37, 59

[74] R. Fraser and P. K. Nicholson. Hausdorff core of a one reflex vertex polygon. In Proceedings
of the Canadian Conference on Computational Geometry (CCCG), pages 183–186, 2010.
65, 83

[75] H. Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid. Combinatorica,
10:41–51, 1990. 50

[76] G. Frederickson. Fast algorithms for shortest paths in planar graphs, with applications.
SIAM Journal on Computing, 16(6):1004–1022, 1987. 13

[77] H. Freeman. On the encoding of arbitrary geometric configurations. IRE Transactions on
Electronic Computers, EC-10(2):260–268, June 1961. 67, 70

[78] H. Freeman. Computer processing of line-drawing images. ACM Computing Surveys,
6(1):57–97, 1974. 70

[79] S. Funke, A. Kesselman, U. Meyer, and M. Segal. A simple improved distributed algorithm
for minimum CDS in unit disk graphs. ACM Transactions on Sensor Networks, 2(3):444–
453, 2006. 16

[80] M. R. Garey and D. S. Johnson. The rectilinear Steiner tree problem is NP-complete. SIAM
Journal on Applied Mathematics, 32(4):pp. 826–834, 1977. 48

[81] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1(3):237 – 267, 1976. 140

[82] B. Golden, S. Raghavan, and D. Stanojević. Heuristic search for the generalized minimum
spanning tree problem. INFORMS Journal on Computing, 17(3):290–304, July 2005. 138

[83] T. Gonzalez. Covering a set of points in multidimensional space. Information Processing
Letters, 40:181–188, 1991. 17, 18

[84] Google. Google maps. http://maps.google.com/, 2009. 1

[85] R. L. Graham and P. Hell. On the history of the minimum spanning tree problem. IEEE
Annals of the History of Computing, 7(1):43–57, 1985. 108

[86] P. M. Gruber. Approximation of convex bodies. In Convexity and its Applications, pages
131–162. Birkhauser Verlag, 1983. 65, 71, 72

[87] L. Guibas, J. Hershberger, J. Mitchell, and J. Snoeyink. Approximating polygons and
subdivisions with minimum-link paths. International Journal of Computational Geometry
& Applications, 3(4):383–415, 1993. 71

158

http://maps.google.com/

[88] S. Har-Peled. Geometric Approximation Algorithms (Mathematical Surveys and Mono-
graphs). American Mathematical Society, 2011. 14

[89] D. Haussler and E. Welzl. epsilon-nets and simplex range queries. Discrete and Computa-
tional Geometry, 2(1):127–151, 1987. 14

[90] P. Heckbert and M. Garland. Survey of polygonal surface simplification algorithms: Mul-
tiresolution surface modeling course. In Proceedings of the Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH, 1997. 68

[91] J. Hershberger and J. Snoeyink. Speeding up the Douglas-Peucker line-simplification al-
gorithm. In Proceedings of the International Symposium on Spatial Data Handling, pages
134–143, 1992. 68

[92] J. D. Hobby. Polygonal approximations that minimize the number of inflections. In Proceed-
ings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 93–102. SIAM,
1993. 70

[93] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing problems
in image processing and VLSI. Journal of the ACM, 32:130–136, 1985. 8, 17, 18, 38

[94] B. Hu, M. Leitner, and G. Raidl. Combining variable neighborhood search with integer
linear programming for the generalized minimum spanning tree problem. Journal of Heuris-
tics, 14:473–499, 2008. 138

[95] H. B. Hunt III, M. V. Marathe, V. Radhakrishnan, S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. NC-approximation schemes for NP- and PSPACE-hard problems for geometric
graphs. Journal of Algorithms, 26(2):238 – 274, 1998. 16

[96] R. Z. Hwang, R. C.-T. Lee, and R. C. Chang. The generalized searching over separators
strategy to solve some NP-hard problems in subexponential time. Algorithmica, 9:398–423,
1993. 18

[97] H. Imai and M. Iri. Computational-geometric methods for polygonal approximations of a
curve. Computer Vision, Graphics, and Image Processing, 36(1):31–41, 1986. 67, 70

[98] V. Jarńık. O jistém problému minimálńım (About a certain minimal problem). Práca
Moravské Pŕırodovedecké Spolecnosti, 6:57–63, 1930. (in Czech, German summary). 108

[99] D. Johnson. The NP-completeness column: An ongoing guide. Journal of Algorithms,
3(2):182–195, 1982. 8, 11

[100] A. Jørgensen, M. Löffler, and J. M. Phillips. Geometric computations on indecisive points.
In Proceedings of the Workshop on Algorithms and Data Structures (WADS), volume 6844
of Lecture Notes in Computer Science, pages 536–547. Springer Berlin / Heidelberg, 2011.
138

[101] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational
views of approximability. SIAM Journal on Computing, 28(1):164–191, 1999. 140

[102] C. Koeman and F. van der Weiden. The application of computation and automatic drawing
instruments to structural generalisation. Cartographic Journal, 7(1):47–49, 1970. 68

159

[103] A. Kolesnikov and P. Fr anti. Polygonal approximation of closed contours. In Proceedings
of the Scandinavian Conference on Image Analysis (SCIA), pages 409–417, 2003. 67, 73

[104] J. Komlós, J. Pach, and G. Woeginger. Almost tight bounds for epsilon-nets. Discrete and
Computational Geometry, 7(2):163–173, 1992. 14

[105] I. Koutis and G. Miller. A linear work, o(n1/6) time, parallel algorithm for solving planar
Laplacians. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1002–1011, 2007. 13

[106] M. K. Leung and Y.-H. Yang. Dynamic two-strip algorithm in curve fitting. Pattern
Recognition, 23(1-2):69–79, 1990. 70

[107] M. Leung and Y.-H. Yang. Dynamic strip algorithm in curve fitting. Computer Vision,
Graphics, and Image Processing, 51(2):146 – 165, 1990. 70

[108] N. Lev-Tov. Algorithms for Geometric Optimization Problems in Wireless Networks. PhD
thesis, Weizmann Institute of Science, 2005. 25

[109] Z. Li. Algorithmic Foundation of Multi-Scale Spatial Representation. CRC Press, Boca
Raton, 2007. 72

[110] C. Liao and S. Hu. Polynomial time approximation schemes for minimum disk cover prob-
lems. Journal of Combinatorial Optimization, pages 1–14, 2009. 10

[111] D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–
343, 1982. 15, 112, 113, 129

[112] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order cone
programming. Linear Algebra and its Applications, 284(1–3):193–228, 1998. 100

[113] M. Löffler and M. van Kreveld. Largest and smallest convex hulls for imprecise points.
Algorithmica, 56(2):235–269, 2010. 108, 109, 110, 138

[114] M. Lopez and S. Reisner. Hausdorff approximation of convex polygons. Computational
Geometry: Theory and Applications, 32(2):139–158, 2005. 71, 73

[115] Maplesoft, a division of Waterloo Maple Inc. invtrig - maple help. http://www.maplesoft.
com/support/help/Maple/view.aspx?path=invtrig, 2012. 95

[116] M. V. Marathe, H. Breu, H. B. Hunt, S. S. Ravi, and D. J. Rosenkrantz. Simple heuristics
for unit disk graphs. Networks, 25(2):59–68, 1995. 15, 16

[117] S. Masuyama, T. Ibaraki, and T. Hasegawa. The computational complexity of the m-center
problems on the plane. IEICE Transactions (1976-1990), E64-E(2):57–64, 1981. 15

[118] J. Matoušek, R. Seidel, and E. Welzl. How to net a lot with little: small epsilon-nets
for disks and halfspaces. In Proceedings of the Symposium on Computational Geometry
(SoCG), pages 16–22, 1990. 13, 14

[119] T. Matsui. Approximation algorithms for maximum independent set problems and frac-
tional coloring problems on unit disk graphs. In Proceedings of the 1998 Japanese Confer-
ence on Discrete and Computational Geometry (JCDCG), volume 1763 of Lecture Notes in
Computer Science, pages 194–200. Springer Berlin / Heidelberg, 2000. 38

160

http://www.maplesoft.com/support/help/Maple/view.aspx?path=invtrig
http://www.maplesoft.com/support/help/Maple/view.aspx?path=invtrig

[120] E. Melissaratos and D. Souvaine. On solving geometric optimization problems using shortest
paths. In Proceedings of the Symposium on Computational Geometry (SoCG), pages 350–
359. ACM, 1990. 73

[121] N. Mustafa and S. Ray. Improved results on geometric hitting set problems. Discrete and
Computational Geometry, 44:883–895, 2010. 9, 10, 11, 12, 13, 18, 38

[122] N. Mustafa and S. Ray. Improved results on geometric hitting set problems. http://www.
mpi-inf.mpg.de/~saurabh/Papers/Hitting-Sets.pdf, 2009. 10

[123] N. Mustafa and S. Ray. PTAS for geometric hitting set problems via local search. In
Proceedings of the Symposium on Computational Geometry (SoCG), 2009. 12, 15

[124] Y.-S. Myung, C.-H. Lee, and D.-W. Tcha. On the generalized minimum spanning tree
problem. Networks, 26(4):231–241, 1995. 137, 138

[125] S. Narayanappa and P. Vojtěchovský. An improved approximation factor for the unit disk
covering problem. In Proceedings of the Canadian Conference on Computational Geometry
(CCCG), volume 18, pages 15–18, 2006. 9, 10

[126] National Oceanic and Atmospheric Administration. A hull-mounted multibeam sonar
while towing a sidescan sonar (JPEG image). http://oceanexplorer.noaa.gov/

explorations/05fire/background/mapping/media/multi_sonar.html, 2012. 2

[127] Natural Resources Canada, the Geological Survey of Canada, and Her Majesty the Queen
in Right of Canada. Canadian marine multibeam bathymetric data. http://gdr.nrcan.

gc.ca/multibath/index_e.php, 2009. 1

[128] T. Nieberg and J. Hurink. A PTAS for the minimum dominating set problem in unit
disk graphs. In Proceedings of the Workshop on Approximation and Online Algorithms
(WAOA), volume 3879 of Lecture Notes in Computer Science, pages 296–306. Springer
Berlin / Heidelberg, 2006. 16

[129] J. O’Rourke, A. Aggarwal, S. Maddila, and M. Baldwin. An optimal algorithm for finding
minimal enclosing triangles. Journal of Algorithms, 7:258–269, 1986. 73

[130] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. Journal of Computer and System Sciences, 43(3):425 – 440, 1991. 140

[131] J.-C. Perez and E. Vidal. Optimum polygonal approximation of digitized curves. Pattern
Recognition Letters, 15(8):743–750, 1994. 67, 68, 70, 71

[132] T. K. Peucker. A theory of the cartographic line. International Cartographic Yearbook,
16:134–143, 1976. 70

[133] P. C. Pop. The Generalized Minimum Spanning Tree Problem. PhD thesis, University of
Twente, 2002. 138, 147

[134] P. C. Pop, W. Kern, and G. Still. A new relaxation method for the generalized minimum
spanning tree problem. European Journal of Operational Research, 170(3):900 – 908, 2006.
138

[135] E. Pyrga and S. Ray. New existence proofs for epsilon-nets. In Proceedings of the Symposium
on Computational Geometry (SoCG), pages 199–207. ACM, 2008. 10, 14

161

http://www.mpi-inf.mpg.de/~saurabh/Papers/Hitting-Sets.pdf
http://www.mpi-inf.mpg.de/~saurabh/Papers/Hitting-Sets.pdf
http://oceanexplorer.noaa.gov/explorations/05fire/background/mapping/media/multi_sonar.html
http://oceanexplorer.noaa.gov/explorations/05fire/background/mapping/media/multi_sonar.html
http://gdr.nrcan.gc.ca/multibath/index_e.php
http://gdr.nrcan.gc.ca/multibath/index_e.php

[136] U. Ramer. An iterative procedure for the polygonal approximation of plane curves. Com-
puter Graphics and Image Processing, 1:244–256, 1972. 68

[137] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In Proceedings of the ACM Symposium on
Theory of Computing (STOC), pages 475–484, 1997. 8

[138] K. Reumann and A. Witkam. Optimizing curve segmentation in computer graphics. In
Proceedings of the 1973 International Computing Symposium, pages 467–472, 1974. 67, 70

[139] J. Robergé. A data reduction algorithm for planar curves. Computer Vision, Graphics, and
Image Processing, 29:168–195, 1985. 70

[140] D. P. Roselle and R. G. Stanton. Some properties of Davenport-Schinzel sequences. Acta
Arithmetica, 17(4), 1970-1971. 77

[141] G. Rote. The convergence rate of the sandwich algorithm for approximating convex func-
tions. Computing, 48(3-4):337–361, 1992. 71

[142] Y. Sato. Piecewise linear approximation of plane curves by perimeter optimization. Pattern
Recognition, 25(12):1535–1543, 1992. 68

[143] C. Schwarz, J. Teich, A. Vainshtein, E. Welzl, and B. Evans. Minimal enclosing paral-
lelogram with application. In Proceedings of the Symposium on Computational Geometry
(SoCG), pages 434–435. ACM, 1995. 73

[144] J. Sekino. n-ellipses and the minimum distance sum problem. The American Mathematical
Monthly, 106(3):pp. 193–202, 1999. 114

[145] M. Sharir and P. Agarwal. Davenport-Schinzel sequences and their geometric applications.
Cambridge University Press, 1995. 76, 77

[146] M. Sharir and E. Welzl. A combinatorial bound for linear programming and related
problems. In Proceedings of the Symposium on Theoretical Aspects of Computer Science
(STACS), volume 577 of Lecture Notes in Computer Science, pages 567–579. Springer Berlin
/ Heidelberg, 1992. 75

[147] P. Slav́ık. The errand scheduling problem. Computer Science Technical Report 97-2, State
University of New York at Buffalo, 1997. 138

[148] P. Slav́ık. Approximation Algorithms For Set Cover And Related Problems. PhD thesis,
State University of New York at Buffalo, 1998. 138

[149] W. H. Smith and D. T. Sandwell. Global sea floor topography from satellite altimetry and
ship depth soundings. Science, 277(5334):1956–1962, 1997. 1

[150] H. Stone. Approximation of curves by line segments. Mathematics of Computation,
15(73):40–47, 1961. 67

[151] J. Strong, H. Mitchell, and T. Watters (NASA/Goddard Space Flight Center Scientific
Visualization Studio). Hologlobe: Topography and bathymetry on a globe. http://svs.

gsfc.nasa.gov/vis/a000000/a001300/a001305/index.html, 1996. 1

162

http://svs.gsfc.nasa.gov/vis/a000000/a001300/a001305/index.html
http://svs.gsfc.nasa.gov/vis/a000000/a001300/a001305/index.html

[152] K. J. Supowit. Topics in Computational Geometry. PhD thesis, University of Illinois at
Urbana-Champaign, 1981. 17

[153] C. Toregas, R. Swain, C. ReVelle, and L. Bergman. The location of emergency service
facilities. Operations Research, 19(6):pp. 1363–1373, 1971. 7

[154] G. Toussaint. Solving geometric problems with the rotating calipers. In In Proceedings of
IEEE Mediterranean Electrotechnical Conference (MELECON), pages 1–8, 1983. 37

[155] P. Unwin. The Wolf ’s Head: Writing Lake Superior. Viking Canada, 2003. 1

[156] J. E. (user JεffE). Sum-of-square-roots-hard problems? Theoretical Computer Sci-
ence on StackExchange, URL: http://cstheory.stackexchange.com/questions/4053/sum-of-
square-roots-hard-problems, 2011. 110

[157] V. Vazirani. Approximation Algorithms. Springer, 2nd edition, 2004. 12

[158] P.-J. Wan, K. Alzoubi, and O. Frieder. Distributed construction of connected dominating set
in wireless ad hoc networks. In Proceedings of the Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), volume 3, pages 1597 – 1604, 2002. 16

[159] E. White. Assessment of line-generalization algorithms using characteristic points. Cartog-
raphy and Geographic Information Science, 12:17–28(12), April 1985. 68

[160] Wikipedia contributors. Atan2. http://en.wikipedia.org/w/index.php?title=Atan2,
2012. Page Version ID: 480067366. 95

[161] S.-T. Wu and M. R. G. Márquez. A non-self-intersection Douglas-Peucker algorithm. Pro-
ceedings of the Brazilian Symposium on Computer Graphics and Image Processing, 2003.
72

[162] W. Wu, H. Du, X. Jia, Y. Li, and S. C.-H. Huang. Minimum connected dominating sets and
maximal independent sets in unit disk graphs. Theoretical Computer Science, 352(13):1 –
7, 2006. 16

[163] X. Xu and Z. Wang. Wireless coverage via dynamic programming. In Proceedings of Wireless
Algorithms, Systems, and Applications (WASA), volume 6843, pages 108–118. LNCS, 2011.
24

[164] D. Yang, S. Misra, X. Fang, G. Xue, and J. Zhang. Two-tiered constrained relay node
placement in wireless sensor networks: Efficient approximations. In Proceedings of IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and
Networks (SECON), pages 1 –9, 2010. 7

[165] Y. Yang. On several geometric network design problems. PhD thesis, State University of
New York at Buffalo, 2008. 108

[166] Y. Yang, M. Lin, J. Xu, and Y. Xie. Minimum spanning tree with neighborhoods. In
Proceedings of Algorithmic Aspects in Information and Management (AAIM), volume 4508
of Lecture Notes in Computer Science, pages 306–316. Springer Berlin / Heidelberg, 2007.
108, 126, 127

163

http://en.wikipedia.org/w/index.php?title=Atan2

[167] L. Zhang and Z. Tian. Refinement of Douglas-Peucker algorithm to move the segments
toward only one side. In Proceedings of the International Cartographic Conference, pages
831–835, 1997. 72

164

Index

k-separability, 128
1-Centre, 77

Approximation Algorithm, 9
Approximation Factor, 9
Assisted Cover, 21
Assisted Line-Separated Discrete Unit Disk

Cover (A-LSDUDC) Problem, 20

Constrained Euclidean Centre, 77

d-Core Problem, 73
Davenport-Schinzel sequence, 76
Discrete Unit Disk Cover (DUDC) Problem,

7
Approximation Algorithms, 9
PTAS, 12

ε-net, 14
e-wire, 118

Fermat-Weber Problem, 110

Geometric Disk Cover, 16

Hausdorff Core Problem, 66
Decision Version, 79
Hausdorff Core, 66

Hausdorff Distance, 65
Hitting Set, 11

Imprecise Vertex, 137

Line-Separable Discrete Unit Disk Cover
(LSDUDC) Problem, 18

LP-Type Problems, 75

max-2-GMST Problem, 137
max-MSTN Problem, 107
2-GMST Problem, 137
MSTN Problem, 107
max2-sat Problem, 140
Minimum Connecting Tree, 126
Minimum Dominating Set, 15

Outside Strip Discrete Unit Disk Cover, 60

Piercing, 11, 19
Polygon, 66

Convex, 66
Polynomial Time Approximation Scheme

(PTAS), 9
Portion, 88

Range Space, 10

Semi-chain, 21
Set Cover, 11
Shifting Lemma, 17
Shifting Parameter, 17
Spinal Path, 129
Strip-Separable Discrete Unit Disk Cover

(SSDUDC) Problem, 21

Unit Disk Graph, 15

Within-Strip Discrete Unit Disk Cover (WS-
DUDC) Problem, 37

165

	List of Tables
	List of Figures
	Definitions
	Introduction
	Organization of the Thesis

	Discrete Unit Disk Cover Essentials
	Related Work
	General Geometric Set Cover
	Duality for Discrete Unit Disk Cover
	PTAS for Discrete Unit Disk Cover
	-nets
	Minimum Dominating Set on Unit Disk Graphs
	Minimum Geometric (Unit) Disk Cover
	Discrete k-Center
	Other Discrete Geometric Covering Problems

	Specialized Settings
	Line-Separable Discrete Unit Disk Cover
	Assisted Line-Separable Discrete Unit Disk Cover
	Strip-Separable Discrete Unit Disk Cover

	38-Approximate DUDC Algorithm
	The BOX Algorithm

	(Assisted) Line-Separable Discrete Unit Disk Cover
	Greedy Algorithm for LSDUDC
	Correctness of Greedy

	Greedy-Graph
	Correctness of Greedy-Graph

	Assisted LSDUDC
	Conclusions and Future Work

	Within-Strip DUDC
	6-Approximation Algorithm for h12
	3"4264306 1/1-h2"5265307 -Approximation Algorithm for h<1
	Covering PR
	Covering PR
	Combining Solutions for PR and PR

	4-Approximation Algorithm for h22/3
	3-Approximation Algorithm for h4/5
	NP-Completeness of WSDUDC
	Gadgets

	Conclusions and Future Work

	Approximation Algorithms for DUDC
	22-Approximate DUDC Solution
	15-Approximate DUDC Solution
	Outside Strip Discrete Unit Disk Cover
	The Discrete Unit Disk Cover Algorithm

	Conclusions and Future Work

	Constrained Polygonal Vertex Cover and the Hausdorff Core
	Paradigms for Approximating Polygons and Polygonal Chains
	Related Work
	Feature-Based Approximation
	Mathematical Approximation
	Error Tolerance-Based Approximation
	Chain Coding Scheme
	Two-Strip Solution
	Error Metrics
	Constrained Approximation of Polygonal Curves
	Constrained Approximation of Polygons
	LP-type Problems
	Davenport-Schinzel Sequences
	The Constrained Euclidean 1-Centre

	The Hausdorff Core
	Definitions
	Hausdorff Core Properties

	Hausdorff Core of a Single Reflex Vertex Polygon
	Balancing a Line
	Computing the Hausdorff Distance
	Finding the Optimal Solution
	Expressing the Distance to Each Point
	Minimizing the Maximum Distance

	Conclusions and Future Work
	Closed Form Hausdorff Core Solutions
	Both Points Inside the Polygon
	Both Points on the Polygon Boundary
	One Point on the Polygon Boundary

	Approximation Algorithms for Generalized Hausdorff Core
	Algorithmic Challenges of the Hausdorff Core Problem
	Discretization of the Problem
	The Minimization Problem
	Running Time and Space Requirements
	An FPTAS for the Hausdorff Core Decision Problem
	Conclusions and Future Work

	MST with Neighborhoods
	Related Work
	Algebraic Complexity
	Euclidean MST Problems are Sum-of-Square-Roots-Hard

	MAX-MSTN
	1/2-Approximation Algorithm
	(1-2k+4)-Approximation Algorithm
	NP-Hardness of max-MSTN

	MSTN
	3-Approximation Algorithm
	(1+2/k)-Approximation Algorithm
	NP-Hardness of MSTN

	Conclusions and Future Work

	2-Generalized MST
	Related Work
	Minimum Spanning Trees on Intervals
	One-Dimensional 2-GMST and MAX-2-GMST
	2-GMST Solution
	max-2-GMST Solution

	NP-Hardness of 2-GMST
	Gadgets
	Weight of the MST

	Approximation Algorithms for 2-GMST
	Problems with Known Topology
	2-GMST Algorithm

	Conclusions and Future Work

	Conclusions
	Bibliography
	Index

