960 research outputs found

    Modeling vanet deployment in urban settings

    Full text link
    ... (VANETs) has prompted greater research into simulation models that better reflect urban VANET deployments. Still, we lack a systematic understanding of the required level of simulation details in modeling various real-world urban constraints. In this work, we developed a series of simulation models that account for street layout, traffic rules, multilane roads, acceleration-deceleration, and RF attenuation due to obstacles. Using real and controlled synthetic maps, we evaluated the sensitivity of the simulation results toward these details. Our results indicate that the delivery ratio and packet delays in VANETs are more sensitive to the clustering effect of vehicles at intersections and their accelerationdeceleration. The VANET performance appears to be only marginally affected by the simulation of multiple lanes and careful synchronization at traffic signals. We also found that the performance in dense VANETs improves significantly when routing decisions are limited to a wireless backbone of mesh nodes, whereas in sparse VANETs, performance improves when vehicles also participate in ad hoc routing. Finally, through measurement and analysis of signal strengths around urban city blocks, we show that the effect of signal attenuation due to physical obstacles can potentially be parameterized in simulations. Our work provides a starting point for further understanding and development of more accurate VANET simulation models

    Enhancing Cooperation in MANET Using the Backbone Group Model (An Application of Maximum Coverage Problem)

    Get PDF
    AbstractMANET is a cooperative network in which every node is responsible for routing and forwarding as a result consumes more battery power and bandwidth. In order to save itself in terms of battery power and bandwidth noncooperation is genuine. Cooperation can be enhanced on the basis of reduction in resource consumption by involving a limited number of nodes in routing activities rather than all. To get accurate selection of nodes to define a backbone several works have been proposed in the literature. These works define a backbone with impractical assumptions that is not feasible for MANET. In this paper we have presented the Backbone Group (BG) model, which involve the minimum number of nodes called BG in routing activities instead of all. A BG is a minimal set of nodes that efficiently connects the network. We have divided a MANET in terms of the single hop neighborhood called locality group (LG). In a LG we have a cluster head (CH), a set of regular nodes (RNs) and one or more border nodes (BNs). The CHs are responsible for the creation and management of LG and BG. The CHs use a BG for a threshold time then switches to another BG, to involve all nodes in network participation. The proposed model shows its effectiveness in terms of reduction in routing overhead up to a ratio (n2: n2/k) where k is the number of LGs

    Accuracy improvement of connectivity-based sensor network localization

    Get PDF
    The early results from connectivity-based sensor network localization suffer from disappointing accuracy. The reason is partly due to the limited information of the problem, and also the deficiencies of the algorithms. This paper proposes a two-level range/indication of connectivity between each pair of nodes, which would indicate three levels of connectivity: strong, weak or nil. Theoretically, the two-level connectivity localization problem can be modeled as a non-convex optimization problem in mathematics, which contains the convex constraints and non-convex constraints. Besides using two-level range to enrich the given information, a two-objective evolutionary algorithm is also used for searching a solution. The simulation is carried out using five different topology networks all containing 100 nodes. Simulation results have shown that better solution can be obtained by using two-level range connectivity when compared with the usual one-level range connectivity-based localization.published_or_final_versionThe 25th IEEE Canadian Conference on Electrical & Computer Engineering (CCECE 2012), Montreal, QC., 29 April-2 May 2012. In IEEE Canadian Conference on Electrical and Computer Engineering Proceedings, 2012, p. 1-

    Mobile ad hoc networks for intelligent systems

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. Mobile ad hoc networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. They do not rely on specialized routers for path discovery and traffic routing. Research on ad hoc networks has been extensively investigated in the past few years and related work has focused on many of the layers of the communications architecture. This research intends to investigate applications of MANET for intelligent systems, including intelligent transportation system (ITS), sensor network and mobile intelligent robot network, and propose some approaches to topology management, link layer multiple access and routing algorithms. Their performance is evaluated by theoretical analysis and off-the-shelf simulation tools. Most current research on ad hoc networks assumes the availability of IEEE 802.11. However, the RTS/CTS protocol of 802.11 still leads to packet collision which in turn decreases the network throughput and lifetime. For sensor networks, sensors are mostly battery operated. Hence, resolving packet collision may improve network lifetime by saving valuable power. Using space and network diversity combination, this work proposes a new packet separation approach to packet collision caused by masked nodes. Inter-vehicle communication is a key component of ITS and it is also called vehicular ad hoc network. VANET has many features different from regular MANETs in terms of mobility, network size and connectivity. Given rapid topology changes and network partitioning, this work studies how to organize the numerous vehicular nodes and establish message paths between any pair of vehicular nodes if they are not apart too far away. In urban areas, the inter-vehicle communication has different requirements and constraints than highway environments. The proposed position-based routing strategy for VANETs utilizes the traffic pattern in city environments. Packets are forwarded based on traffic lights timing sequence and the moving direction of relaying vehicles. A multicast protocol is also introduced to visualize the real time road traffic with customized scale. Only vehicles related to a source node\u27s planned trajectory will reply the query packet. The visualized real time traffic information therefore helps the driver make better decision in route planning when traffic congestion happens. Nowadays robots become more and more powerful and intelligent. They can take part in operations in a cooperative manner which makes distributed control necessary. Ad hoc robot communication network is still fresh field for researchers working on networking technology. This work investigates some key issues in robot ad hoc network and evaluate the challenges while establishing robot ad hoc networks

    A comparative study of routing protocols in MANETs

    Get PDF
    Mobile Ad Hoc networks are emerging area of mobile computing. A mobile ad hoc network (MANET) is composed of mobile routers and associated hosts connected by wireless links. The routers are free to move randomly and organize themselves arbitrarily, thus, the network\u27s wireless topology may change rapidly and unpredictably. In fact, it is considered that each node would have some capacity to relay the information thus constrained by computational power, battery life and increasingly complex routing with added functionality of a router. Nodes may keep joining and leaving an ad hoc network. Such a network may operate in a stand alone fashion, or may be connected to the larger Internet. Lack of infrastructure in ad hoc networks sets new challenges for routing algorithms where the network is formed by a collection of wireless mobile nodes dynamically forming a temporary network without the use of any existing network infrastructure or centralized administration. A number of routing protocols like Dynamic Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV), Destination-Sequenced Distance-Vector (DSDV), Zone Routing Protocol (ZRP) and Temporally Ordered Routing Algorithm (TORA) have been implemented. In this thesis an attempt has been made to compare the performance of prominent on-demand reactive routing protocols for mobile ad hoc networks (AODV and TORA), along with the traditional proactive DSDV protocol. Although AODV and TORA share similar on-demand behavior, the differences in the protocol mechanics can lead to significant performance differentials. The performance differentials are analyzed using varying network loads, mobilities, and network sizes. These simulations are carried out using network simulator (ns-2.1b9a) to run mobile ad hoc network simulations

    Theoretical aspects of graph models for MANETs

    Get PDF
    We survey the main theoretical aspects of models for Mobile Ad Hoc Networks (MANETs). We present theoretical characterizations of mobile network structural properties, different dynamic graph models of MANETs, and finally we give detailed summaries of a few selected articles. In particular, we focus on articles dealing with connectivity of mobile networks, and on articles which show that mobility can be used to propagate information between nodes of the network while at the same time maintaining small transmission distances, and thus saving energy

    Theoretical aspects of graph models for MANETS

    Get PDF
    We survey the main theoretical aspects of models for Mobile Ad Hoc Networks (MANETs). We present theoretical characterizations of mobile network structural properties, di erent dynamic graph models of MANETs, and nally we give detailed summaries of a few selected articles. In particular, we focus on articles dealing with connectivity of mobile networks, and on articles which show that mobility can be used to propagate information between nodes of the network while at the same time maintaining small transmission distances, and thus saving energy.Preprin

    MDP-based Vehicular Network Connectivity Model for VCC Management

    Get PDF
    Vehicular Cloud computing is a new paradigm in which vehicles collaboratively exchange data and resources to support services and problem-solving in urban environments. Characteristically, such Clouds undergo severe challenging conditions from the high mobility of vehicles, and by essence, they are rather dynamic and complex. Many works have explored the assembling and management of Vehicular Clouds with designs that heavily focus on mobility. However, a mobility-based strategy relies on vehicles' geographical position, and its feasibility has been questioned in some recent works. Therefore, we present a more relaxed Vehicular Cloud management scheme that relies on connectivity. This work models uncertainty and considers every possible chance a vehicle may be available through accessible communication means, such as vehicle-to-everything (V2X) communications and the vehicle being in the range of road-side units (RSUs) for data transmissions. We propose an markov-decisision process (MDP) model to track vehicles' connection status and estimate their reliability for data transmissions. Also, from analyses, we observed that higher vehicle connectivity presents a trace of repeated connection patterns. We reinforce the connectivity status by validating it through an availability model to distinguish the vehicles which support high availability regardless of their positioning. The availability model thus determines the suitability of the MDP model in a given environment
    • …
    corecore