838 research outputs found

    A greedy approximation algorithm for the group Steiner problem

    Get PDF
    AbstractIn the group Steiner problem we are given an edge-weighted graph G=(V,E,w) and m subsets of vertices {gi}i=1m. Each subset gi is called a group and the vertices in ⋃igi are called terminals. It is required to find a minimum weight tree that contains at least one terminal from every group.We present a poly-logarithmic ratio approximation for this problem when the input graph is a tree. Our algorithm is a recursive greedy algorithm adapted from the greedy algorithm for the directed Steiner tree problem [Approximating the weight of shallow Steiner trees, Discrete Appl. Math. 93 (1999) 265–285, Approximation algorithms for directed Steiner problems, J. Algorithms 33 (1999) 73–91]. This is in contrast to earlier algorithms that are based on rounding a linear programming based relaxation for the problem [A polylogarithmic approximation algorithm for the Group Steiner tree problem, J. Algorithms 37 (2000) 66–84, preliminary version in Proceedings of SODA, 1998 pp. 253–259, On directed Steiner trees, Proceedings of SODA, 2002, pp. 59–63]. We answer in positive a question posed in [A polylogarithmic approximation algorithm for the Group Steiner tree problem, J. Algorithms 37 (2000) 66–84, preliminary version in Proceedings of SODA, 1998 pp. 253–259] on whether there exist good approximation algorithms for the group Steiner problem that are not based on rounding linear programs. For every fixed constant ε>0, our algorithm gives an O((log∑i|gi|)1+ε·logm) approximation in polynomial time. Approximation algorithms for trees can be extended to arbitrary undirected graphs by probabilistically approximating the graph by a tree. This results in an additional multiplicative factor of O(log|V|) in the approximation ratio, where |V| is the number of vertices in the graph. The approximation ratio of our algorithm on trees is slightly worse than the ratio of O(log(maxi|gi|)·logm) provided by the LP based approaches

    Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees

    Get PDF
    In a directed graph GG with non-correlated edge lengths and costs, the \emph{network design problem with bounded distances} asks for a cost-minimal spanning subgraph subject to a length bound for all node pairs. We give a bi-criteria (2+ε,O(n0.5+ε))(2+\varepsilon,O(n^{0.5+\varepsilon}))-approximation for this problem. This improves on the currently best known linear approximation bound, at the cost of violating the distance bound by a factor of at most~2+ε2+\varepsilon. In the course of proving this result, the related problem of \emph{directed shallow-light Steiner trees} arises as a subproblem. In the context of directed graphs, approximations to this problem have been elusive. We present the first non-trivial result by proposing a (1+ε,O(∣R∣ε))(1+\varepsilon,O(|R|^{\varepsilon}))-ap\-proxi\-ma\-tion, where RR are the terminals. Finally, we show how to apply our results to obtain an (α+ε,O(n0.5+ε))(\alpha+\varepsilon,O(n^{0.5+\varepsilon}))-approximation for \emph{light-weight directed α\alpha-spanners}. For this, no non-trivial approximation algorithm has been known before. All running times depends on nn and ε\varepsilon and are polynomial in nn for any fixed ε>0\varepsilon>0

    Bicriteria Network Design Problems

    Full text link
    We study a general class of bicriteria network design problems. A generic problem in this class is as follows: Given an undirected graph and two minimization objectives (under different cost functions), with a budget specified on the first, find a <subgraph \from a given subgraph-class that minimizes the second objective subject to the budget on the first. We consider three different criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we present the first polynomial-time approximation algorithms for a large class of bicriteria network design problems for the above mentioned criteria. The following general types of results are presented. First, we develop a framework for bicriteria problems and their approximations. Second, when the two criteria are the same %(note that the cost functions continue to be different) we present a ``black box'' parametric search technique. This black box takes in as input an (approximation) algorithm for the unicriterion situation and generates an approximation algorithm for the bicriteria case with only a constant factor loss in the performance guarantee. Third, when the two criteria are the diameter and the total edge costs we use a cluster-based approach to devise a approximation algorithms --- the solutions output violate both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic programming. We show how these pseudopolynomial-time algorithms can be converted to fully polynomial-time approximation schemes using a scaling technique.Comment: 24 pages 1 figur

    On Euclidean Steiner (1+?)-Spanners

    Get PDF
    Lightness and sparsity are two natural parameters for Euclidean (1+?)-spanners. Classical results show that, when the dimension d ? ? and ? > 0 are constant, every set S of n points in d-space admits an (1+?)-spanners with O(n) edges and weight proportional to that of the Euclidean MST of S. Tight bounds on the dependence on ? > 0 for constant d ? ? have been established only recently. Le and Solomon (FOCS 2019) showed that Steiner points can substantially improve the lightness and sparsity of a (1+?)-spanner. They gave upper bounds of O?(?^{-(d+1)/2}) for the minimum lightness in dimensions d ? 3, and O?(?^{-(d-1))/2}) for the minimum sparsity in d-space for all d ? 1. They obtained lower bounds only in the plane (d = 2). Le and Solomon (ESA 2020) also constructed Steiner (1+?)-spanners of lightness O(?^{-1}log?) in the plane, where ? ? ?(log n) is the spread of S, defined as the ratio between the maximum and minimum distance between a pair of points. In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner (1+?)-spanners. Using a new geometric analysis, we establish lower bounds of ?(?^{-d/2}) for the lightness and ?(?^{-(d-1)/2}) for the sparsity of such spanners in Euclidean d-space for all d ? 2. We use the geometric insight from our lower bound analysis to construct Steiner (1+?)-spanners of lightness O(?^{-1}log n) for n points in Euclidean plane
    • …
    corecore