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Abstract
In a directed graph G with non-correlated edge lengths and costs, the network design problem
with bounded distances asks for a cost-minimal spanning subgraph subject to a length bound for
all node pairs. We give a bi-criteria (2 + ε,O(n0.5+ε))-approximation for this problem. This
improves on the currently best known linear approximation bound, at the cost of violating the
distance bound by a factor of at most 2 + ε.

In the course of proving this result, the related problem of directed shallow-light Steiner trees
arises as a subproblem. In the context of directed graphs, approximations to this problem have
been elusive. We present the first non-trivial result by proposing a (1+ε,O(|R|ε))-approximation,
where R is the set of terminals.

Finally, we show how to apply our results to obtain an (α + ε,O(n0.5+ε))-approximation
for light-weight directed α-spanners. For this, no non-trivial approximation algorithm has been
known before. All running times depends on n and ε and are polynomial in n for any fixed ε > 0.
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1 Introduction

We consider the following network design problem introduced by Dodis and Khanna [6]:

I Definition 1 (Directed Network Design with Bounded Distances). Given a directed graph
G = (V,E), an edge cost function c : E → N, an edge length function ` : E → N, and a length
bound L ∈ N. We ask for a spanning subgraph H of G of minimum cost (with respect to c)
such that for each node pair u, v the distance in H (with respect to `) is at most L.

Generally, for a given graph G = (V,E), we let n := |V | and m := |E|; ¯̀
H(u, v) denotes

the lengths of the shortest u-v path in H ⊆ G with respect to `. For uniform edge costs
and lengths, Dodis and Khanna [6] devise an O(logn logL)-approximation. For non-uniform
edge costs, they show Ω(2log1−ε n)-hardness of approximation, and propose an O(n logL)-
approximation under the restriction that the edge lengths are polynomially bounded. Up to
now, no improved algorithm is known.

In this paper (Section 2), we give an algorithm for this problem, without any of the above
restrictions and without ratio-dependency on L, achieving essentially a performance ratio
O(
√
n) while violating the distance bound L by a factor of at most 2 + ε.
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I Theorem 2. There is a bi-criteria (2 + ε,O(n1/2+ε))-approximation for the above directed
network design problem with bounded distances.

As a starting point, our algorithm uses a two-stage approach originally proposed by
Feldman et al. [8] for directed Steiner forest, which has later been reused for directed spanners
[3, 5, 2]. We divide the considered node pairs into thin and thick pairs. We settle the former
by LP-rounding, as we have to cover certain cuts w.r.t. shortest paths. For the latter, we
sample nodes and construct short in- and out-trees for each of them. This latter part is a
main technical challenge: In contrast to the case of sparse spanners, we cannot simply use
shortest-path trees, as they could have arbitrarily high costs. To solve this issue, we turn our
attention to a second problem, which is also of independent interest:

I Definition 3 (Directed Shallow-Light Steiner Trees). Given a directed graph G = (V,E),
an edge cost function c : E → N, an edge length function ` : E → N, a distinguished root
node r ∈ V , and a set R ⊆ V of terminals with distance bounds d : R→ N. We ask for an
r-rooted subtree T of G of minimum cost (with respect to c) such that for any terminal
v ∈ R the distance ¯̀

T (r, v) in T (with respect to `) is at most d(v).

Kortsarz and Peleg [11] gave an O(|R|ε)-approximation for undirected graphs with uniform
edge lengths and uniform distance bounds. The directed problem with non-uniform edge
costs has formerly been considered in [12], where a bi-criteria (2, O(logn))-approximation for
directed shallow-light spanning trees (that is, R = V ) was proposed. Unfortunately, the proof
has an error1, and there has not been any progress on the problem since. We propose the
first non-trivial result for the general directed problem (cf. Section 3). In fact, at the cost of
violating the length bounds by a factor of at most (1 + ε), we obtain the same approximation
ratio as [11], but for directed graphs and without the restrictions to uniform lengths and
costs:

I Theorem 4. There is a bi-criteria (1 + ε, |R|ε)-approximation for directed shallow-light
Steiner trees.

Finally (Section 4), we give a further application of our shallow-light Steiner tree result:

I Definition 5 (Light-Weight Directed α-Spanners). Given a directed graph G = (V,E), an
edge cost function c : E → N, an edge length function ` : E → N, and a stretch factor α ≥ 1.
We ask for a spanning subgraph H of G of minimum cost (with respect to c) such that for
each node pair u, v the distance ¯̀

H(u, v) in H (with respect to `) is at most α · ¯̀G(u, v), i.e.,
α times their distance in G.

As of now, this problem has only been successfully tackled for undirected graphs [13, 1]. Its
directed variant remained an interesting open problem [5]2. We give the first non-trivial
result:

I Theorem 6. There is a bi-criteria (α+ε,O(n1/2+ε))-approximation for light-weight directed
α-spanners.

1 Verified by personal communication with J. Naor.
2 As mentioned in the corresponding slides, available online.
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240 Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees

2 Network Design with Bounded Pairwise Distance

We build our solution network as the union of subgraphs. We say such a subgraph settles a
node pair (u, v), if it includes a path connecting u to v complying with the distance bound.
As sketched above, the overall scheme of our approximation algorithm is to classify node
pairs into two categories. Let (u, v) ∈ V × V be any node pair, and PLuv the set of all u-v
paths of length at most L. We denote with Vuv :=

⋃
P∈PL

uv
V (P ) and Euv :=

⋃
P∈PL

uv
E(P )

the nodes and edges, respectively, contained in any such path. The node pair (u, v) is called
thin if |Vuv| ≤

√
n and thick otherwise. We settle node pairs based on this classification.

However, we will never explicitly compute any PLuv, Vuv, Euv nor any node-pair classifications.
They are only of interest for the approximation proof. We note that the concept of this
classification is lifted from Feldman et al. [8]. The handling of the thin pairs follows the idea
of anti-spanners by Berman et al. [2], as it can be made to work in our context, see below.
Successfully tackling the thick pairs, however, is a technical challenge and requires our result
on shallow-light trees (see Section 3). Let OPT denote the value of the optimum solution to
the full problem.

2.1 Thin Pairs

2.1.1 Path-based LP
We consider the following path-based LP relaxation of the problem, requiring an exponential
number of variables. Let PL :=

⋃
(u,v)∈V×V PLuv.

min
∑

e∈E
cexe, s.t.∑

P∈PL
u,v

fP ≥ 1 ∀(u, v) ∈ V × V∑
P∈PL

u,v,P3e
fP ≤ xe ∀e ∈ E, (u, v) ∈ V × V

xe ≥ 0, fP ≥ 0 ∀e ∈ E, ∀P ∈ PL

(1)

Its dual can be written as:

max
∑

(u,v)∈V×V
αuv, s.t.∑

e∈P
βeuv ≥ αuv ∀(u, v) ∈ V × V, P ∈ PLuv∑

(u,v)∈V×V

βeuv ≤ ce ∀e ∈ E

βeuv ≥ 0, αuv ≥ 0 ∀e ∈ E, (u, v) ∈ V × V

(2)

LP (1) has an exponential number of variables. Below, we argue that we can get a PTAS
for this LP by an approach analogous to the one proposed in [5]. Let ε > 0. We first consider
the dual LP (2). This LP has a polynomial number of variables but an exponential number
of constraints. We use the ellipsoid method to get an approximate solution to it. The
separation oracle works as follows. (We do not consider the constraints

∑
(u,v)∈V×V β

e
uv ≤ ce

since there are only polynomially many of these.) For each fixed (u, v) ∈ V × V , we consider
variables the βeuv as edge weights. Thus, determining whether a constraint is violated for
some P ∈ PLuv amounts to checking whether αuv is at most the weight of a lightest u–v path
(under weights βeuv) whose length (under edge lengths `) is bounded by L. Already this
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necessary subproblem (length-bounded shortest path) is NP-hard. However, Hassin [9], later
sped up by Ergun et al. [7], describes an FPTAS. Assume we run the ellipsoid algorithm by
using this approximate separation oracle with error parameter ε. Then, we end up with an
optimum solution to the restricted dual LP, which has only constraints for paths P ∈ PL
that we included when running the ellipsoid algorithm. Since we used an FPTAS for the
separation oracle, the constraints that we did not include can be violated by a factor at most
1− ε. That is, we have

∑
e∈P β

e
uv ≥ (1− ε)αuv for all paths P ∈ PL that we did not include.

Hence, if we set α′uv = (1− ε)αuv we obtain a feasible solution to the original dual LP that
is (1 − ε)-approximate with respect to the optimum solution of the restricted dual. Now
suppose that we solve the restricted primal LP where we only include the (polynomially
many) variables that correspond to constraints of the restricted dual. Then the optimum
solution to this LP is at most 1/(1−ε) times larger than the optimum solution to the original
dual (and hence the original primal) since the restricted dual LP is the dual to the restricted
primal LP and since the original dual is (1− ε)-approximate to the restricted dual.

2.1.2 Randomized LP Rounding
We describe an algorithm that computes a subgraph H1 ⊆ G where the distance ¯̀

H1(u, v) is
at most L for every thin pair (u, v). The algorithm first solves the above LP within a ratio
of 1 + ε. Then each edge e is sampled with probability min(γ · xe, 1) where γ :=

√
n · logn.

The cost of H1 is O(γ(1 + ε)OPT). We have to show that this algorithm creates a feasible
solution with high probability.

I Definition 7. Let (u, v) be a thin pair, C ⊆ E a set of edges, and GC := (V,E \ C). We
say C is a u-v-stretching cut if ¯̀

GC′ (u, v) ≤ L for all C ′ ⊂ C but ¯̀
GC

(u, v) > L.

I Lemma 8. Let H = (V,E′) be a subgraph of G and (u, v) a thin pair. H settles (u, v) if
and only if each u-v-stretching cut contains at least one edge of E′.

Proof. If there is a u-v-stretching cut C that contains no edge of E′ then E′ ⊆ E \ C and
hence ¯̀

H(u, v) ≥ `GC
> L. Conversely, if H does not settle (u, v) then ¯̀

H(u, v) > L and
hence E \ E′ would contain a u-v-stretching cut C, which clearly has no edge of E′. J

I Lemma 9. For each thin pair (u, v) the number of u-v-stretching cuts is at most
√
n
√
n.

Proof. Consider some u-v-stretching cut C and let T be a shortest path tree in the graph
HC := (Vuv, Euv \C) rooted at u. Let ¯̀

T (w) denote the distance from u to w in T . If there is
no u-w path inHC then ¯̀

T (w) :=∞. We show that C = {wx ∈ Euv | ¯̀
T (w)+`(wx) < ¯̀

T (x)},
which implies that C is uniquely determined by T .

Consider an edge wx ∈ Euv such that ¯̀
T (w) + `(wx) < ¯̀

T (x). Then wx ∈ C because T
is a shortest path tree in HC .

Now, let wx ∈ C. Because C ′ := C \ {wx} is not a u-v stretching cut there is a u-v path
in HC′ := (Vuv, Euv \ C ′) of length at most L. This path must use the edge wx and has
length ¯̀

T (w) + `(wx) + ¯̀
HC

(x, v). Since HC has no u-v path of length at most L we can
conclude that ¯̀

HC
(u, x) + ¯̀

HC
(x, v) > L and therefore ¯̀

T (w) + `(wx) < ¯̀
HC

(u, x) = ¯̀
T (x).

Hence the u-v-stretching cut C is uniquely determined by the tree T . We now count the
number of rooted trees in HC . For every node in such an out-tree there are

√
n possibilities

to choose its parent node. Hence the total number of rooted trees and therefore the number
of u-v-stretching cuts can be upper bounded by

√
n
√
n. J

I Lemma 10. The above algorithm settles each thin pair with high probability.
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242 Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees

Proof. By Lemma 8, is suffices to show that for every thin pair (u, v) and every u-v stretching
cut C there is an edge from H1 in C with high probability.

For every such cut C the LP value
∑
e∈C xe must be at least 1. This holds because every

u-v path in PLu,v must contain at least one edge of C, since the total flow sent along these
paths is at least 1 and since

∑
e∈C xe is an upper bound on this total flow because of the

constraints
∑
P∈PL

u,v,P3e
fP ≤ xe in the LP. If γ · xe ≥ 1 for some e ∈ C then e ∈ E(H1).

Otherwise, the probability that none of the edges in C is sampled is at most∏
e∈C

(1− γxe) ≤
∏

e∈C
e−γxe = e

−
√
n·logn

∑
e∈C

xe ≤ n−
√
n .

By Lemma 9, the total number of stretching cuts is at most n2√n
√
n. Hence the

probability that at least one stretching cut contains no edge of H1 is at most
√
n
−Ω(
√
n). J

2.2 Thick Pairs and Overall Algorithm
We now describe an algorithm to settle all thick pairs. The algorithm samples a set of
δ = 3

√
n logn many nodes of G. For each node u in this set, the algorithm determines a

u-rooted shallow-light Steiner tree Tu by means of the algorithm described in Section 3 and
summarized in Theorem 4. As input for this algorithm we use the graph G, the edge costs
c and the edge lengths ` as in the instance of the network design problem; the root is the
node u and the set R of terminals are all V \ {u}; we use L as the distance bound for each
node. Similarly, the algorithm computes an in-tree rooted at u such that for each node the
distance to u is at most L. This can be accomplished by computing a shallow-light Steiner
tree T ′ in the graph G′ arising from G by reversing all edges and then reversing the edges of
T ′. The output H2 of the process is the union of all these spanning trees.

Our overall algorithm then returns H1 ∪H2, the union of the solution for the thin and
the thick pairs, respectively. We are now ready to prove the following theorem:

I Theorem 1 (Revisited). The above algorithm is a bi-criteria (2 + ε,O(n1/2+ε))-approxima-
tion algorithm for the directed network design problem with bounded distances (cf. Definition 1).
The running time depends on n and ε and is polynomial in n for any fixed ε > 0.

Proof. We first show that the algorithm outputs a feasible solution with high probability. In
the light of Lemma 10, it remains to show that all thick pairs are settled with high probability.
A thick pair (u, v) is settled if the above algorithm samples a node r from the set Vuv. In this
case, the inclusion of the r-rooted in-tree and the r-rooted out-tree guarantees the existence
of a u-v path of length at most 2(1 + ε)L: we travel from u to r and then from r to v. Since
for any thick pair its set Vuv contains at least

√
n many nodes, the probability that none of

the δ many sampled nodes are from Vuv can be bounded by(
1− 1√

n

)δ
≤ e−3 logn = 1

n3 .

Since there are at most n2 thick pairs the claim follows.
We now analyze the cost of the algorithm. The cost of the procedure for settling thin pairs

is γ(1 + ε)OPT since every edge is sampled with probability at most γ times higher than its
LP value. Now observe that every tree constructed in the procedure for thick pairs has cost at
most O(nε)OPT. This follows from the fact that the optimum solution to the network design
problem ensures the existence of a feasible solution to the problem of finding the rooted
subtrees, and that the algorithm from Section 3 is an O(nε)-approximation algorithm. Since
the number of such trees constructed by the algorithm is O(δ) the ratio of the algorithm is
bounded by O(δnε + γ) = O(n1/2+ε). J
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3 Directed Shallow-Light Steiner Trees

Let T be a rooted out-tree, i.e., its edges are directed from the root towards the leaves. A
branch node is a node with out-degree larger than 1; as a special case, we always consider
the root node to be a branch node. We say T is an i-level tree if no path from the root to
any leaf contains more than i branch nodes.

Let T ⊆ G be any out-tree, subgraph of a complete digraph G, with an arbitrary number
of levels. Clearly, we can find a related out-tree with the same root and leaves requiring
at most i levels, for any given i. If the edges have metric weights, a very general result by
Helvig et al. [10] relates the weights of these two trees:

I Lemma 2 (Helvig et al. [10]). Let T be a rooted subtree of weight c(T ) with k leaves in
a metrically-weighted complete digraph, and Ti the cheapest subtree with the same root and
leaves and at most i levels. We have c(Ti) ≤ 2i(k/2)1/ic(T ).

A typical application of this lemma is the following: Assuming metric edge weights,
any digraph can be considered complete by adding artificial edges corresponding to paths
in G. Consider any optimization problem whose solution is a tree. We can establish an
approximation algorithm for it by first finding an approximation for the best p-level solution,
for some p. We can then apply the lemma to obtain an approximation ratio to the original
non-level-restricted problem. In our application, we have non-correlated edge costs and
lengths. However, in order to apply the lemma, it suffices to observe that if there is a node
pair (u,w) without any edge uw of length at most `(uv) + `(vw), for any node v, we could
(conceptually) insert an edge with this length and cost c(uv) + c(vw) representing this u-v-w
path. Observe that this would, in general, result in multiple edges connecting the same
node pair, with different length/cost combinations. We do not need to explicitly consider
these additional edges. In our algorithm, we will directly identify the corresponding paths
meeting at branch nodes. Furthermore, by adding edges of zero length and cost, we can in
the following always assume that there is an optimum solution where all terminals appear as
leaves.

3.1 Algorithm
As mentioned above, there is an FPTAS [9, 7] to solve the problem of finding the cheapest
(with respect to edge costs c) path from a node u to a node v of length at most D (with
respect to edge length `). We denote the result of this FPTAS by MinCostPath(u, v,D).

Our algorithm employs a recursive greedy strategy, which has been originally invented
by Zelikovsky [14]. It has later been applied by Kortsarz and Peleg [11] to undirected
Shallow-Light Steiner Trees. Specifically, they give an (2 + ε,O(|R|ε))-approximation for
undirected graphs with uniform edge lengths and uniform distance bounds. Charikar et al.
[4] reuse this strategy for directed Steiner trees (without distance bounds) and obtain an
O(|R|ε)-approximation algorithm, devising a particularly elegant analysis of recursive greedy.

Our algorithm uses five parameters, cf. Algorithm 1. The graph G, costs c, and lengths `
remain unchanged over all recursive calls to the procedure and are hence not explicitly
included in these parameters. The algorithm operates in levels given by parameter i ≤ n.
The higher the level, the better the approximation guarantee. Parameters r,R, and d denote
the root, the terminal set, and the vector of distance bounds, respectively. Parameter k ≤ |R|
specifies the minimum number of terminals out of R, the resulting tree has to span (while
meeting the distance bounds). Setting k = |R|, the algorithm outputs a feasible directed
shallow-light Steiner tree.

STACS 2015



244 Network Design Problems with Bounded Distances via Shallow-Light Steiner Trees

Level i = 1 of the algorithm works as follows. For all terminals t ∈ R, the algorithm
computes an r-t path Pt by MinCostPath(r, t, d(t)). Clearly, Pt respects the length
bound d(t). The resulting tree consists of the union of the k cheapest (w.r.t. c) of these
paths.3

For i > 1 we employ a greedy strategy to obtain a feasible solution T . Let the relative cost
of a tree T ′ spanning k′ terminals be defined as %(T ′) := c(T ′)/k′. Starting with empty T ,
we iteratively compute a subtree Tbest of low relative cost %(Tbest), add it to T , remove the
newly spanned terminals from R, and adjust k accordingly.

In order to compute Tbest, the algorithm exhaustively tests all nodes v and all values
k′ ≤ k to compute a cheap tree T ′ rooted at v that spans at least k′ terminals. (Note, that
k is adjusted by the algorithm.) These trees T ′ are computed by applying the algorithm
recursively but for level i − 1. To obtain an r-rooted tree we connect r to v by a path P .
This requires to adjust the distance bounds accordingly in the above mentioned recursive
calls. An issue that arises here is that the necessary properties of path P are not clear a
priori. In general, we may not be able to use the shortest path (w.r.t. `) as this might be too
expensive (w.r.t. c) to give a low relative cost.

To this end, we consider every possible path length up to `(E), where the latter denotes
the total length of all edges. This becomes tractable when we allow for a relative error of
up to (1 + ε): we evaluate a geometrically increasing sequence of length bounds (1 + ε)j ,
for non-negative integrals j, and determine for each of these bounds the cheapest path Pj
respecting it.

3.2 Analysis
Let G := (G, c, `, r, R, d) be a directed shallow-light Steiner tree problem instance as defined
above. For the related problem of a k-terminal directed shallow light Steiner tree (k-DSLST)
we are given an instance (G, k), k ≤ |R|, and ask for the cheapest directed shallow light
Steiner tree subject to any k-element subset of R. We observe that k = |R| gives the original
problem. An f(k)-partial approximation for k-DSLST is a procedure that finds a tree T that
is rooted at r, contains 1 ≤ k′ ≤ k terminals of R, and has relative cost %(T ) ≤ f(k) · c(T ∗)/k.
Here, c(T ∗) is the cost of an optimum solution to k-DSLST.

We will show later (cf. Lemma 4) that the core of our algorithm in fact constitutes such
a partial approximation. This allows us to adapt a lemma by Charikar et al. [4] to obtain
an approximation to the original problem, as summarized in the following lemma. While
their result is dealing with Steiner trees and does hence not consider length restrictions,
their proof is versatile enough to be carried out in an identical fashion for our following
situation: Let P(G, k) be a partial approximation routine. We construct an approximation
algorithm A(G, k) as follows: First, A(G, k) calls P(G, k) which yields a tree T ′ spanning
some terminals R′. If |R′| = k, we are done. Otherwise, A(G, k) returns the union of T ′
and the tree T ′′ resulting from A(G′′, k′′) where G′′ is the problem instance with reduced
terminal set R \R′ and k′′ := k − |R′|.

3 As a side note, observe that one may be tempted to assume that some of these paths may coincide
in the beginning, thus giving rise to a branch node where the paths start to differ. We would hence,
inadvertently, construct a tree with more than one level. We do not need to care about this issue:
Firstly, in our cost computation (of the upper bound) we assume the worst case, i.e., that such common
subpaths do not exist; if they would, the cost would only decrease, thus improving the approximative
solution. Secondly, we can always (implicitly) consider the metric closure of G (with multiedges for
different length-vs.-cost combinations); in this case we always find distinct paths.
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Algorithm 1 Approximation of a directed shallow-light Steiner tree for (G, c, `, r, R, d)
1: procedure ShallowLight(i, r, R, d, k)
2: if no k terminals in R respect the distance bounds from r then
3: return ∅
4: if i = 1 then
5: for each terminal t ∈ R do
6: Pt ←MinCostPath(r, t, d(t))
7: let R′ be the set of k terminals with minimum c(Pt)
8: return

⋃
t∈R′ Pt

9: T ← ∅
10: while k > 0 do
11: Tbest ← ∅
12: for each v ∈ V and each k′, 1 ≤ k′ ≤ k do
13: for j = 0, . . . , dlog1+ε `(E)e do
14: Pj ←MinCostPath(r, v, (1 + ε)j)
15: d′(u)← d(u)− `(Pj)

1+ε for each u ∈ V
16: T ′ ←ShallowLight(i− 1, v, R, d′, k′)∪Pj
17: if %(Tbest) > %(T ′) then Tbest ← T ′

18: T ← T ∪ Tbest
19: k ← k − |R ∩ V (Tbest)|
20: R← R− V (Tbest)
21: return T

I Lemma 3 (Adaptation of Charikar et al. [4]). Given an f(k)-partial approximation P(G, k)
and an algorithm A(G, k) as described above. If f(x)/x is a decreasing function in x, then A
is a g(k)-approximation, with g(k) =

∫ k
0 (f(x)/x)dx.

In the light of P and A, the identification of Tbest in Algorithm 1 corresponds to P while
the outer while loop resembles A. It remains to show that our algorithm meets the criteria
of an f(k)-partial approximation with f(x)/x being a decreasing function. At its core, the
proof strategy is similar to Charikar et al., but we have to carefully consider our length
restrictions and violations within the recursion.

I Lemma 4. Consider ShallowLight(i, r, R, d, k) (Alg. 1), which iteratively computes T .
Let T̄ := Tbest be any tree incorporated in the current solution (line 18). It violates the length
bounds by a factor of at most (1 + ε). For i ≥ 2, T̄ ’s relative cost %(T̄ ) is at most (i − 1)
times the relative cost %∗ := %∗

R̄,k̄
of the optimum solution T ∗ := T ∗

R̄,k̄
to k̄-DSLST with i

levels, where R̄ and k̄ are the values for R and k currently used by the algorithm, respectively.

Proof. Observe that, for i > 1, T̄ consists of an r-v path P̄ and a tree (computed recursively)
with at most i− 1 levels rooted at v. We prove the lemma by induction on i.

First consider the length property of T̄ . For i = 1, it trivially holds by the direct application
of the FPTAS (line 6). For i ≥ 2, we can bound the length of P̄ by (1+ε)j < `(P̄ ) ≤ (1+ε)j+1.
By line 15, the permissible length for a connection from v to some node u in T̄ \ P̄ is
bounded by d′(u) ≤ d(u) − (1 + ε)j . By induction, we will violate this bound by a factor
of at most (1 + ε), i.e., the length of a connection between r and u in T̄ will be at most
(1 + ε)j+1 + (1 + ε)(d(u)− (1 + ε)j) = (1 + ε)d(u).
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Now, consider the cost property. It holds for i = 2. Assume i ≥ 3 and that the claim
holds for all level restrictions less than i. Let v denote a level-child of r with respect to T ∗,
i.e., all inner nodes of the path Pj,v between r and v in T ∗ are of degree 2. The subtree
Tv ⊂ T ∗ rooted at v has (at most) i − 1 levels. (By augmenting G with sufficient 0-cost
0-length edges, we can assume that T ∗v has precisely i− 1 levels.) Let cj,v and `v ≤ (1 + ε)j
denote the cost and length of Pj,v, respectively. Let Cv denote the cost of Tv and kv the
number of terminals in Tv. In the following, consider the node v∗, level-child of r in T ∗, with
minimal %v∗ := (cj,v∗ + Cv∗)/kv∗ < %∗.

At some point at level i, our algorithm will also consider node v∗ and number kv∗ . The
computed r-v∗ path may be up to (1 + ε)`v∗ ≤ (1 + ε)j+1 long. We investigate the behavior
of ShallowLight(i − 1, v∗, R, d′, kv∗). It returns an (i − 1)-level tree S that is, again,
iteratively constructed. Let S′ be the tree incorporated into S by the algorithm such that
the current S now contains at least kv∗/(i− 1) terminals for the first time. Let S0, S1 be the
solution trees before and after adding S′, respectively. Furthermore, let s0, s1 be the number
of R̄-nodes covered by S0, S1, respectively. Observe that s1 ≥ kv∗/(i− 1).

Consider the nodes not covered before S′: |Tv∗∩R̄| ≥ kv∗−s0 = kv∗−kv∗/(i−1) = i−2
i−1kv∗ .

Since we can cover all these nodes at cost at most Cv∗ , we have an upper bound of i−1
i−2Cv∗/kv∗

on the relative cost for the uncovered terminals. By our induction hypothesis, we know
that we will hence find a solution—violating the length restrictions by at most a factor of
(1 + ε)—with relative cost at most (i− 2) i−1

i−2Cv∗/kv∗ for S′. This upper bound naturally
holds for each subtree that is incorporated into S before S′. Consequently, the relative cost
of S1 is also at most (i− 1)Cv∗/kv∗ .

Observe that our algorithm will not only compute ShallowLight(i−1, v∗, R, d′, kv∗) but
also ShallowLight(i− 1, v∗, R, d′, s1). Observe the equally modified length restrictions d′.
In the latter case, the algorithm will stop after adding S′ to S, returning this S as its (i− 1)-
level solution tree of relative cost %(S) ≤ (i−2)Cv∗/kv∗ . On level i, this S will be joined with
the computed path P̄ of cost at most that of Pj,v∗ (with corresponding j) and violating the
length constraints by at most (1 + ε) as discussed above. Together, they form a tree T ′ with
%(T ′) = %(S) + cj,v∗/s1 ≤ (i− 2)Cv∗/kv∗ + cj,v∗/(kv∗/(i− 1)) ≤ (i− 1)(cj,v∗ + Cv∗)/kv∗ =
(i− 1)%v∗ = (i− 1)%∗. J

We are now able to prove the approximation result for directed shallow-light Steiner trees.

I Theorem 5 (Revisited). The above algorithm is a bi-criteria (1 + ε1, O(|R|ε2))-approxima-
tion for directed shallow-light Steiner trees: for arbitrary small ε1, ε2 > 0, it gives a solution at
most O(|R|ε2) times more expensive than the optimum, while violating the length constraints
by a factor of at most (1 + ε1). For fixed ε2, its runtime is polynomial in the input size
and ε1.

Proof. Lemma 4 shows that each chosen Tbest on level i has a relative cost of at most (i− 1)
the relative-cost-optimum i-level tree w.r.t. R̄, k̄. By Lemma 2, the latter approximates the
optimum tree without level restrictions. So, overall, each Tbest is a (i− 1)2i(k̄/2)1/i-partial
approximation for k-DSLST. By Lemma 3, this gives a g(k)-approximation for k-DSLST
with

g(k) =
∫ k

0

(
(i− 1)2i(x̄/2)1/i/x

)
dx = 2i2(i− 1)

21/i k1/i.

We hence have an O(|R|ε2)-approximation for directed shallow-light Steiner trees (=|R|-
DSLST)—w.r.t. violating the length bounds by at most a factor of (1 + ε1)—by choosing a
suitable i inversely correlated to ε2.
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Consider the running time of our algorithm. MinCostPath is an FPTAS with running
time O(mn/ε1) [7]. Consider any call to ShallowLight w.r.t. some i, k. For i = 1, it
requires O(|R|nm/ε1) time. Otherwise, we may add O(k) different trees Tbest and the
block of lines 14–17 is repeated O(nk2 log `(E)) times. Overall, any run of the procedure
(disregarding recursive calls) requiresO(n2mk2 log `(E)/ε1) time. For overall i levels, there are
O(ni−1k2i−2) recursive invocations, inducing an overall runtime of O(ni+1mk2i log `(E)/ε1).
Clearly, log `(E), the logarithm of the sum of all edge lengths, is polynomially bounded by
the input size, and, by choice of i above, i is directly correlated to (and only dependent on)
1/ε2. J

4 Conclusions: Light-Weight Directed Spanners

We conclude with sketching another application of our shallow-light Steiner tree result.
We obtain a bi-criteria approximation algorithm for light-weight directed α-spanners (cf.
Definition 5). To the best of our knowledge no non-trivial result is known for this problem.

We employ a two-stage approach similar to the one used for directed sparse spanners [5, 2]
and for our network design problem in Section 2. Thin and thick pairs are defined analogously
to Section 2. Thin pairs can be settled as in [2] as only the linearity of the objective function
is used there. For settling thick pairs, a set of Θ(

√
n logn) many nodes is sampled. In the

case of sparse spanners [2] it is sufficient to compute a shortest path in-tree and a shortest
path out-tree for each of these sampled nodes, and take the union of these trees. Since
each of these trees has at most n − 1 edges, which is clearly a lower bound on OPT, the
total cost for this stage is Õ(

√
n · OPT). It is shown that this procedure settles all thick

pairs with high probability. In the case of light-weight spanners we compute a directed
shallow-light spanning tree for each sampled node. More precisely, let u be the sampled node.
We compute a shallow-light spanning tree T rooted at u such that for each node v ∈ V its
distance ¯̀

T (u, v) is at most α · ¯̀G(u, v). Since the optimum solution to the spanner problem
ensures the existence of a feasible solution to this problem, we can compute such a tree of
cost at most O(nεOPT) using Theorem 4. Analogously, we can compute an in-tree with root
u and the respective distance bounds. The total cost of the union of all such spanning trees
is O(n1/2+εOPT).

Unfortunately, the resulting solution is not necessarily feasible since the stretch factor α
may be violated. We can still argue that the solution gives a bi-criteria approximation
with bounded stretch factor. To see this, consider a thick pair (u, v) and assume that we
sample a node z such that there is a u-v path visiting z of length at most α · ¯̀G(u, v). Hence
¯̀
G(u, z) + ¯̀

G(z, v) ≤ α¯̀
G(u, v). Using the paths provided by the shallow-light in-tree and

the shallow-light out-tree computed by our algorithm we can find a path of length at most
(α+ ε)α¯̀

G(u, z) + (α+ ε)α¯̀
G(z, v) ≤ (α+ ε)α¯̀

G(u, v) in our output graph. We have:

I Theorem 6 (Revisited). The above algorithm is a bi-criteria (α+ ε,O(n1/2+ε))-approxi-
mation for light-weight directed α-spanners. The running time depends on n and ε and is
polynomial in n for any fixed ε > 0.
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