20,046 research outputs found

    Inner approximation of convex cones via primal-dual ellipsoidal norms

    Get PDF
    We study ellipsoids from the point of view of approximating convex sets. Our focus is on finding largest volume ellipsoids with specified centers which are contained in certain convex cones. After reviewing the related literature and establishing some fundamental mathematical techniques that will be useful, we derive such maximum volume ellipsoids for second order cones and the cones of symmetric positive semidefinite matrices. Then we move to the more challenging problem of finding a largest pair (in the sense of geometric mean of their radii) of primal-dual ellipsoids (in the sense of dual norms) with specified centers that are contained in their respective primal-dual pair of convex cones

    The Offset Filtration of Convex Objects

    No full text
    We consider offsets of a union of convex objects. We aim for a filtration, a sequence of nested simplicial complexes, that captures the topological evolution of the offsets for increasing radii. We describe methods to compute a filtration based on the Voronoi partition with respect to the given convex objects. The size of the filtration and the time complexity for computing it are proportional to the size of the Voronoi diagram and its time complexity, respectively. Our approach is inspired by alpha-complexes for point sets, but requires more involved machinery and analysis primarily since Voronoi regions of general convex objects do not form a good cover. We show by experiments that our approach results in a similarly fast and topologically more stable method for computing a filtration compared to approximating the input by a point sample

    Constant-Factor Approximation for TSP with Disks

    Full text link
    We revisit the traveling salesman problem with neighborhoods (TSPN) and present the first constant-ratio approximation for disks in the plane: Given a set of nn disks in the plane, a TSP tour whose length is at most O(1)O(1) times the optimal can be computed in time that is polynomial in nn. Our result is the first constant-ratio approximation for a class of planar convex bodies of arbitrary size and arbitrary intersections. In order to achieve a O(1)O(1)-approximation, we reduce the traveling salesman problem with disks, up to constant factors, to a minimum weight hitting set problem in a geometric hypergraph. The connection between TSPN and hitting sets in geometric hypergraphs, established here, is likely to have future applications.Comment: 14 pages, 3 figure

    Deconstructing Approximate Offsets

    Full text link
    We consider the offset-deconstruction problem: Given a polygonal shape Q with n vertices, can it be expressed, up to a tolerance \eps in Hausdorff distance, as the Minkowski sum of another polygonal shape P with a disk of fixed radius? If it does, we also seek a preferably simple-looking solution P; then, P's offset constitutes an accurate, vertex-reduced, and smoothened approximation of Q. We give an O(n log n)-time exact decision algorithm that handles any polygonal shape, assuming the real-RAM model of computation. A variant of the algorithm, which we have implemented using CGAL, is based on rational arithmetic and answers the same deconstruction problem up to an uncertainty parameter \delta; its running time additionally depends on \delta. If the input shape is found to be approximable, this algorithm also computes an approximate solution for the problem. It also allows us to solve parameter-optimization problems induced by the offset-deconstruction problem. For convex shapes, the complexity of the exact decision algorithm drops to O(n), which is also the time required to compute a solution P with at most one more vertex than a vertex-minimal one.Comment: 18 pages, 11 figures, previous version accepted at SoCG 2011, submitted to DC

    Radii minimal projections of polytopes and constrained optimization of symmetric polynomials

    Get PDF
    We provide a characterization of the radii minimal projections of polytopes onto jj-dimensional subspaces in Euclidean space \E^n. Applied on simplices this characterization allows to reduce the computation of an outer radius to a computation in the circumscribing case or to the computation of an outer radius of a lower-dimensional simplex. In the second part of the paper, we use this characterization to determine the sequence of outer (n−1)(n-1)-radii of regular simplices (which are the radii of smallest enclosing cylinders). This settles a question which arose from the incidence that a paper by Wei{\ss}bach (1983) on this determination was erroneous. In the proof, we first reduce the problem to a constrained optimization problem of symmetric polynomials and then to an optimization problem in a fixed number of variables with additional integer constraints.Comment: Minor revisions. To appear in Advances in Geometr

    Linear Scaling Density Matrix Real Time TDDFT: Propagator Unitarity \& Matrix Truncation

    Get PDF
    Real time, density matrix based, time dependent density functional theory proceeds through the propagation of the density matrix, as opposed to the Kohn-Sham orbitals. It is possible to reduce the computational workload by imposing spatial cut-off radii on sparse matrices, and the propagation of the density matrix in this manner provides direct access to the optical response of very large systems, which would be otherwise impractical to obtain using the standard formulations of TDDFT. Following a brief summary of our implementation, along with several benchmark tests illustrating the validity of the method, we present an exploration of the factors affecting the accuracy of the approach. In particular we investigate the effect of basis set size and matrix truncation, the key approximation used in achieving linear scaling, on the propagator unitarity and optical spectra. Finally we illustrate that, with an appropriate density matrix truncation range applied, the computational load scales linearly with the system size and discuss the limitations of the approach.Comment: Accepted for publication in J. Chem. Phy

    Approximations of the Wiener sausage and its curvature measures

    Full text link
    A parallel neighborhood of a path of a Brownian motion is sometimes called the Wiener sausage. We consider almost sure approximations of this random set by a sequence of random polyconvex sets and show that the convergence of the corresponding mean curvature measures holds under certain conditions in two and three dimensions. Based on these convergence results, the mean curvature measures of the Wiener sausage are calculated numerically by Monte Carlo simulations in two dimensions. The corresponding approximation formulae are given.Comment: Published in at http://dx.doi.org/10.1214/09-AAP596 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore