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Abstract

We study ellipsoids from the point of view of approximating convex sets. Our focus is
on finding largest volume ellipsoids with specified centers which are contained in certain
convex cones. After reviewing the related literature and establishing some fundamental
mathematical techniques that will be useful, we derive such maximum volume ellipsoids
for second order cones and the cones of symmetric positive semidefinite matrices. Then we
move to the more challenging problem of finding a largest pair (in the sense of geometric
mean of their radii) of primal-dual ellipsoids (in the sense of dual norms) with specified
centers that are contained in their respective primal-dual pair of convex cones.
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3.1 Motivation and Löwner-John theorem . . . . . . . . . . . . . . . . . . . . . 28

3.2 Optimality conditions for an ellipsoid being Löwner-John ellipsoid . . . . . 31
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Chapter 1

Introduction

In this introduction chapter, we will introduce some fundamental concepts, and describe
the problems we studied with their motivation. After that, we will present the overall
structure for the rest of the thesis.

Some subsets of finite dimensional Euclidean spaces have the property that for every pair
of points in the set, the line segment that joins the pair of points is entirely contained in
the set. Such sets are called convex.

A compact convex set with non-empty interior is called a convex body, and a convex hull of
a set C is the smallest (with respect to set inclusion) convex set that contains C, denoted
by conv(C).

Let Rn denote the n-dimensional Euclidean space with the standard inner-product, and
E denote a general Euclidean space of dimension n without a specific inner product. Let
Rn

+ denote the non-negative orthant of Rn, which is the set of vectors whose entries are all
nonnegative. The Euclidean ball centered at x̄ ∈ Rn with radius r is denoted as:

B(x̄, r) := {x ∈ Rn : 〈(x− x̄), I(x− x̄)〉 ≤ r2}.

By the above definition on convexity, we have the empty set, Rn, the non-negative orthant,
and any Euclidean ball are all convex sets.

A closed half space is the set
{x ∈ Rn : 〈a, x〉 ≤ b},

for some a ∈ Rn and b ∈ R. Notice that when a is the zero vector, 〈a, x〉 = 0, if b ≥ 0, the
set is the whole space Rn, and if b < 0, the set is the empty set. Every closed half space is
a closed convex set.
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Figure 1.1: epi(f) = {(x, µ) : x, µ ∈ R, µ ≥ x2}.

The intersection of any collection (finite or infinite) of convex sets is always convex. Hence,
the intersection of any collection of closed half spaces is again closed and convex. A
polyhedron is the intersection of a finite set of closed half spaces, and a polytope is a
polyhedron that is bounded. An equivalent definition for polytope is that it is the convex
hull of finitely many points. This equivalence has connections to Minkowski’s work from
more than 100 years ago. A face of a polyhedron P is the intersection of P and some of
its defining closed half spaces.

We can represent a function using a geometric set, by defining the notion of epigraph. The
epigraph of a function f : E→ [−∞,+∞] is the set of points lying on or above its graph,
i.e.,

epi(f) := {(x, µ) : x ∈ E, µ ∈ R, µ ≥ f(x)}.

Consider the function f : R→ R, f(x) = x2 as illustrated in Figure 1.1. The shaded area
is the epigraph of f .

A convex function is a function whose epigraph is a convex set. For instance, the epigraph
of the function g : R→ R, g(x) := x3, x ∈ R is not convex, so g is not a convex function.

Convex optimization deals with the problem of minimizing convex functions over convex
sets. Any convex optimization problem can be written as:

min : f(x)

x ∈ F ,
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where f : E → R is a convex function, and F ⊆ E is a convex set. This optimization
problem is equivalent to the problem of the following form, with the introduction of a new
variable t:

min : t

f(x) ≤ t

x ∈ F .

The set of feasible solutions for the constraint f(x) ≤ t is precisely the set:

epi(f) =

{(
x
t

)
∈ E⊕ R : f(x) ≤ t

}
.

Since f is a convex function, by definition, its epigraph is a convex set. F is convex to
begin with, so the intersection of F and epi(f) must again be a convex set. Hence, the
feasible region of the new formulation is convex. With this new equivalent formulation,
we see that any convex optimization problem can be reduced to a problem of minimizing
a linear function over a convex feasible region. Thus, redefining E, F and x, we have the
following general form for convex optimization problems:

min : 〈c, x〉
x ∈ F ,

where c ∈ E∗ defines the linear objective function, and F ⊆ E is a convex set.

A local minimum solution of a convex optimization problem is a solution that has the
minimum objective value within a neighboring set of possible solutions, and a global min-
imum solution is a solution that has the minimum objective value among all possible
solutions. Convex optimization problems are in general “easier” to deal with than gen-
eral optimization problems, since any local minimum solution is automatically a global
minimum solution. Moreover, it is actually useful enough a tool even for solving general
optimization problems. The reasons are as follows:

A non-convex optimization problem may be transformed to a convex optimization problem
by taking the “convex hull” of the feasible region. Recall that the convex hull of a set C
is the smallest (with respect to set inclusion) convex set that contains C, denoted by
conv(C). Without loss of generality, we may assume the objective function of the non-
convex optimization problem is linear, since we can use the same technique as before to
push any non-linear objective function into the constraints by adding a new variable and
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constraint. Now, consider the following general non-convex optimization problem:

min : 〈c, x〉
x ∈ U ,

where U is a non-convex set. The convex optimization problem which corresponds to the
above non-convex problem is:

min : 〈c, x〉
x ∈ conv(U)

In principle, we can solve the non-convex problem by solving its convex counterpart after
this transformation. It turns out they have the same optimal objective value. Furthermore,
for “most” problems, the optimal solution for the convex problem is unique and is also an
optimal solution for the original non-convex problem (see Theorem 9.1 in [48]). Of course,
this may not always be the most efficient approach computationally.

Since we can push any objective function and all the complexities into the constraints, the
convex set constraints might be hard to deal with in general. We may try to first reduce
the convex set constraint to some compact convex set constraint, and then use a much
simpler convex set, say an ellipsoid, to approximate the resulting compact convex set and
obtain an approximation for the original problem.

Ellipsoids are generalizations of Euclidean balls, which are very simple objects to work
with. Formally, an ellipsoid centered at x̄ can be defined as the set of x that satisfies the
inequality:

(x− x̄)TH(x− x̄) ≤ 1.

The self-adjoint positive definite matrix H in the above equation defines the shape of the
ellipsoid. Specifically, the eigenvectors and the eigenvalues of H determine the axes and
their lengths of the ellipsoid.

Ellipsoids are simple enough objects that can be used to “approximate” more complex
feasible regions. The minimum volume ellipsoid containing a set and the maximum volume
ellipsoid contained in a set provide global approximations to a (bounded) convex set.
These extremal ellipsoids are called Löwner-John ellipsoids. For a detailed history and
the development of the study on Löwner-John ellipsoids please refer to Henk [23] and the
references therein. Just as we can use ellipsoids to facilitate solving convex optimization
problems, the same idea can be applied to non-convex problems via taking the convex hull
of the feasible regions. In interior-point methods, ellipsoidal approximations to convex sets
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are also used locally to define local variable metrics. Ellipsoids are indeed very useful for
a wide class of optimization problems.

Moreover, ellipsoids have many desirable properties, for instance, they are intrinsically
associated with convex quadratic functions, and any affine transformation of an ellipsoid
is still an ellipsoid. In general, ellipsoids are used extensively in the fields of science,
engineering and mathematics. We list some of their uses here:

1. The ellipsoid method for solving convex optimization problems:

The ellipsoid method was first proposed by Yudin and Nemirovski [26], as well as by
Shor [44] for solving convex minimization problems. The method makes extensive use
of the idea of using an ellipsoid to approximate the underlying feasible region. This
is achieved by finding an ellipsoid that contains the feasible region (or a subset of the
feasible region which contains an optimal solution) at each iteration. In particular,
the method generates a sequence of ellipsoids whose volume decreases proportionally
at every step. Each time the method generates a new ellipsoid, it does so by com-
puting a minimum volume ellipsoid which contains the desired subset of the current
ellipsoid.

In 1979, Khachiyan proved Linear Programing with rational data can be solved ex-
actly, in polynomial-time, using the ellipsoid method. This result is of great theoret-
ical importance. Khachiyan showed that within a polynomial number of iterations of
the ellipsoid method, the objective value of the current iterate will be “close enough”
to the optimal objective value so that every extreme point solution with at least as
good an objective value has to be an optimal solution. Then, the last step of finding
an exact optimal solution can be done in strongly polynomial time. Please refer to
Khachiyan [21] [22] for more details.

2. Trust-region methods in non-linear Programming (NLP):

The trust-region method is a common iterative method for solving non-linear min-
imization problems (typically unconstrained). In each iteration, it uses a local
quadratic function to approximate the non-linear objective function over a small
“trusted region”. If the function is twice continuously differentiable, the Taylor ap-
proximation of degree two can be used. In each iteration of the algorithm, a minimizer
of the quadratic approximation is found over an ellipsoid, which is the current trust
region, and then another local quadratic approximation of the function is constructed
with respect to this new point, with a new ellipsoid “trusted region” centered at that
point. Radii of the ellipsoids defining the trust-region are adjusted throughout the

5



execution of the algorithm based on the amount of progress made with respect to
minimization. Ellipsoids again play an important role in this algorithm. Please see
Conn et al. [10], Pong and Wolkowicz [39] and the references therein for a treatment
of this subject.

3. Determining uncertainty regions in robust optimization:

In robust optimization, the parameters are usually uncertain and stretch over some
ranges. One way to represent the uncertainty set over the data space is to use an
ellipsoid or an intersection of ellipsoids, which is called the ellipsoidal uncertainty set.
Ellipsoid plays an important role in this subject as well. A good comprehensive ref-
erence for robust optimization as of 2002 is Ben-Tal and Nemirovski [4], and another
main reference is the book robust optimization by Ben-Tal et al. [2].

4. Upper and lower bounding for extremal geometric problems:

In extremal geometry, the problem of finding good bounds for a functional over
convex bodies is studied. Good approximations of the convex bodies themselves
will give rise to desired upper and lower bounds of the functional. As ellipsoids are
geometrically simple and easy to evaluate over functionals and quadratic functions,
they are used often in practice to obtain reliable bounds. In particular, the maximum
volume ellipsoid contained in the target geometric objects or the minimum volume
ellipsoid containing the target geometric objects is a reasonable first attempt for the
approximation. Please refer to Henk [23] for more discussion.

5. Describing regions of stability or controllability in system and control theory:

Ellipsoids are also used in the field of engineering. In system and control theory,
ellipsoids are used to describe regions of stability or controllability. Specifically,
invariant ellipsoids are used to interpret quadratic stability. The problem of finding
the smallest invariant ellipsoid containing a polytope and the problem of finding the
largest invariant ellipsoid contained in a polytope are both important, as the polytope
represents the allowable or safe operating region for the system. The largest invariant
ellipsoid contained in a polytope can be interpreted as the region of initial conditions
for which the state always remains in the safe operating region. Boyd et al. [7]
and and the convex optimization book by Boyd and Vandenberghe [8] have good
treatment on this subject.

6. Clustering and classification in data mining and estimation in statistics:

In data mining and statistics, we can use ellipsoids to solve problems in clustering
and classification. In order to find k clusters for a given set of data, we may find k
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minimum volume covering ellipsoids, one for each cluster, which cover all the data
points and minimize the geometric mean of the volumes of each cluster’s covering
ellipsoids. Please refer to Shioda and Tuncel [43] and the references therein for details.
Finding the minimum volume covering ellipsoids (please see Sun and Freund [45]) is
useful in identifying the outliers of the set, as the outliers will correspond to the data
points lying on the boundary of the ellipsoid. Another related problem in statistics is
finding the minimum volume ellipsoid that covers k of the n data points. The center
of the ellipsoid is called the minimum volume ellipsoid location estimator, and the
positive definite form of the ellipsoid is called the minimum scatter estimator (please
see Croux et al. [11]).

7. Optimal experimental design in statistics:

In statistics, the problem of finding the optimal experimental design is related to
the problem of finding the minimum volume circumscribing ellipsoid. The design
problem tries to identify the points at which the experiments will be carried out so
that the estimation of the desired parameter will be “optimal”. The problem is called
the D − optimal design problem, when the criterion is about the determinant of a
matrix related to the inverse of the covariance matrix. In fact the D−optimal design
problem is exactly dual to the problem of finding the minimum volume circumscribing
ellipsoid. Please see Gürtuna [20] for details and derivation.

8. Other applications and usage of the ellipsoids can be found in computational geom-
etry, computer graphics and pattern recognition.

There is also publicly available software for various optimization problems involving ex-
tremal ellipsoids. For example, MVE package of Zhang and Gao [50] is a MATLAB based
package, that given a full dimension polytope P := {x : Ax ≤ b}, computes the maximum
volume ellipsoid contained in P .

Convex cones are of main interests in modern optimization for their nice intrinsic prop-
erties. A cone is a set such that if x is in the set, λx is also in the set, for any λ ≥ 0.
A convex cone is a cone that is convex. In this thesis, we studied the problem of finding
the largest volume ellipsoids with specified centers which are contained in certain convex
cones.

The second order cones SOCn are defined as

SOCn := {(x, y) ∈ Rn+1 : 〈x, x〉
1
2 = ||x||2 ≤ y}.
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By definition, the intersection of any second order cone and a hyperplane orthogonal to
the last axis of Rn+1 is a n dimension ball, which shows the second order cones are highly
symmetric.

A matrix M is positive semidefinite, if xTMx is non-negative for any vector x ∈ Rn, and a
matrix M is positive definite, if xTMx is positive for any vector x ∈ Rn \ {0}. We denote
the space of n-by-n symmetric matrices as Sn. The positive semidefinite cones are defined
as:

Sn+ := {X ∈ Sn : X is positive semidefinite}.
They are of central importance in semidefinite optimization. We use the notation X � 0
to indicate X is a symmetric positive semidefinite matrix, and use X � 0 to denote X is a
symmetric positive definite matrix. For U, V ∈ Sn, we say U � V , if and only if U−V � 0,
and U � V , if and only if U − V � 0. The order defined by � and � as described is
called the Löwner order. In the thesis, when we talk about positive definite or positive
semidefinite matrix, we always assume that the matrix is symmetric or Hermitian.

It is straightforward to verify that the non-negative orthant, second order cones and positive
semidefinite cones are also convex cones.

For any given cone K, we can define the notion of a dual cone associated to it as follows:

Definition 1.0.1. Suppose K is a convex cone in the vector space E. The dual cone K∗
of this convex cone is:

{s ∈ E∗ : 〈x, s〉 ≥ 0,∀x ∈ K}.

Now, let us define the notion of dual norm which will be associated with a dual cone:
Given a dual pairing 〈·, ·〉 : E⊕E∗ → R and a norm ||·|| on E, the dual norm ||·||∗ is defined
by:

||s||∗ := sup{〈s, x〉 : ||x|| ≤ 1},∀s ∈ E∗.
Let H be an arbitrary self-adjoint positive definite operator. For every x ∈ E, the norm
defined by H is:

‖x‖H := 〈x,Hx〉1/2.
By the definition of dual norm, the dual norm for ||·||H is:

‖s‖∗H := sup
||x||H≤1

〈s, x〉,

for every s ∈ E∗.
By the above definitions, we see that the primal-dual norms defined by H have direct
linkage with ellipsoids having shapes defined by H: an ellipsoid centered at x̄ with radius
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one, defined by the self-adjoint positive semidefinite form H corresponds to the set of points
x such that ||x− x̄||H ≤ 1.

The dual norm of a norm defined by the self-adjoint positive definite operator H is actually
a corresponding local norm that is defined by the operator H−1. Before we state and prove
this proposition on dual norms, let us first introduce some definitions and a result in linear
algebra.

Let X ∈ Rn×n be given. The roots λ1, . . . , λn of the polynomial equation det(X − λI) = 0
are the eigenvalues of X. We can write them as a vector λ(X) ∈ Cn. If X is a symmetric
matrix over the reals, i.e., X ∈ Sn, then all the eigenvalues of X are real. Let Diag : Rn →
Sn denote the linear map that maps a real vector (x1, . . . , xn)T to the diagonal matrix:

x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . x2

 .

Theorem 1.0.2 (Spectral Decomposition). For every X ∈ Sn, there exists Q ∈ Rn×n,
orthogonal (QTQ = I) such that

X = QDiag(λ(X))QT .

With the spectral decomposition theorem, for X ∈ Sn++, we define its unique symmetric
positive definite square root as:

X
1
2 := Q[Diag(λ(X))]

1
2QT .

This definition can be extended to Sn+, the set of symmetric positive semidefinite matrices.

Now, we can state and prove our proposition on dual norms (please see for instance Hiriart-
Urruty and Lemaréchal [24]):

Proposition 1.0.3. The dual norm (over E∗) of the norm defined by a self-adjoint positive

definite operator H over E is again defined by its inverse H−1, i.e., ||s||∗H = 〈s,H−1s〉1/2.

Proof. By definition, the dual norm for s ∈ E∗ is

‖s‖∗H = sup
||x||H≤1

〈s, x〉,
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||x||H = 1

||x||H = 2

||x||∗H = 1

||x||∗H = 2

Figure 1.2: Illustration for dual norms in R2.

and it is clearly equal to sup〈x,Hx〉≤1 〈s, x〉. Let us do a change of variable by taking

u := H
1
2x.

We obtain
sup

〈x,Hx〉≤1

〈s, x〉 = sup
||u||2≤1

〈
u,H−

1
2 s
〉
.

Here ||·|| denotes the standard Euclidean norm. For s 6= 0, we know the unique solution

u that achieves the supremum is u = H−
1
2 s∣∣∣∣∣∣H− 1
2 s
∣∣∣∣∣∣ , by Cauchy-Schwarz (see Corollary 2.3.4 in

Chapter 2), and the supremum is 〈s,H−1s〉
1
2 . Hence, the result follows.

Please see a pictorial illustration of pairs of primal-dual norms on R2, in Figure 1.2.

Finding the extremal ellipsoids for a given convex set is clearly a fundamental problem both
in optimization and other fields of science, and in modern convex optimization, cones are
used extensively in the optimization formulation. In this thesis, we studied the problem of
finding the largest volume ellipsoids with specified centers which are contained in certain
convex cones. Specifically, we derive such maximum volume ellipsoids for non-negative
orthant, second order cones and the cones of symmetric positive semidefinite matrices. The
solution of this problem for non-negative orthant is relatively well-known. The solutions
for the second order cones has been solved by Güler and Gürtuna [19], and we will use
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different techniques to derive them in the thesis. We will also derive the solutions for the
positive semidefinite cones in different ways, which are original results of this thesis.

We will then move to the more challenging problem of finding the largest pair (in the sense
of geometric mean of their radii) of primal-dual ellipsoids (in the sense of dual norms) with
specified centers that are contained in their respective primal-dual pair of convex cones.
This problem has been proposed and solved by Todd [46] for all symmetric cones K.

Finding the largest dual ellipsoids inscribed in dual cones has connections to interior point
methods (IPM). In IPM primal-dual symmetric methods, ellipsoidal approximations to
convex sets are used locally to define local variable metrics. Specifically, in the iterations
of many IPM, we want to find the “best” search directions and step sizes in both the primal
and dual spaces, while remaining in the cone. This is guaranteed by the methods as they
restrict the “search area” within a pair of primal-dual ellipsoids centered at the current
iterates and contained in the primal-dual cones respectively, at each iteration. We will
study the primal-dual version of the ellipsoidal approximation problem as described above
in Chapter 5. The main reference is Todd [46]. There are also algorithms by Chua [9],
Litvinchev [34], Renegar and Sondjaja [40] which utilize conic representations of ellipsoids
to approximate the feasible region.

The overall structure of the remainder of this paper is as follows:

Chapter 2 introduces some more concepts related to convex sets, convex functions and
convex cones. An introduction to a special class of convex functions called self-concordant
barriers is also presented in Chapter 2. After that, some convex optimization formulations
and some useful optimality conditions for the formulations are discussed. We will also see
why optimizing a linear function over an ellipsoid is an easy problem.

Chapter 3 introduces the concept of Löwner-John ellipsoid and Löwner’s theorem, which
are of central interest of this thesis. We will derive various optimality conditions for finding
the minimum volume ellipsoid containing and the maximum volume ellipsoid contained in
a convex set. We will also discuss some general observations on maximum volume ellipsoids
in convex cones.

Chapter 4 starts with a discussion on symmetries of ellipsoids and various convex cones. We
derive the maximum volume ellipsoids with specified centers contained in various convex
cones. We will start with the cones of nonnegative orthant, second order cones and then
move to positive semidefinite and homogeneous cones.

Chapter 5 focuses on the problem of finding the largest primal-dual pairs of ellipsoids with
specified centers in a pair of primal-dual convex cones. We start with the work done by
Todd [46] for symmetric cones, then move on to its generalization by Lim [32], and end with
some discussion on generalizing the results to homogeneous and hyperbolic cone settings.
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Chapter 6 summarizes the thesis and concludes with some future research directions.
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Chapter 2

Convex sets, convex cones,
self-concordant barrier functions and
some optimality conditions

In this chapter, we will begin with an introduction to a few more relevant concepts to convex
sets, convex functions and convex cones. We will also introduce a special class of convex
functions called self-concordant barriers. A self-concordant barrier function intrinsically
encodes a convex cone (or in general a convex set) by having real values in the interior of
the cone and when a sequence converging to a point on the boundary, the function value
goes to infinity. We will then introduce some convex optimization formulations and some
useful optimality conditions for them. In the last section, we will optimize a linear function
over an ellipsoid, and see that it is indeed an easy problem.

2.1 Fundamental concepts

In this section, we will continue to introduce fundamental concepts and properties related
to convex sets and cones which will be useful in the rest of the thesis. Let us first fix some
notations. A convention we use in this thesis is that all the vectors are column vectors.

We will refer to {e1, ..., en} as the standard basis for Rn, where:
e1 := (1, 0, ..., 0)T , ..., en := (0, ..., 0, 1)T . We will denote the vector of all ones by e. The
default norm used unless otherwise noted is the 2-norm induced by the standard Euclidean
inner product.
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We consider the matrix representations of symmetric bilinear positive definite forms as
elements of Sn++. The default inner product we use in the symmetric matrix space is the
trace inner product:

〈X, Y 〉 := Tr(XTY ) =
n∑
i=1

n∑
j=1

XijYij,

and the default norm of the symmetric matrix space is the norm associated to the trace
inner product if not otherwise noted. This norm is called the Frobenius norm or the
operator 2-norm. The nuclear norm on Sn or in general, the space of Hermitian matrices
is defined as:

||X||∗ := Tr(
√
X∗X),

where X∗ is the adjoint of X.

Let s2vec : Sn → R
n(n+1)

2 be the isometry between Sn and R
n(n+1)

2 that takes the lower
triangular part of a symmetric matrix column-wise and multiplies the strict lower triangular
part by

√
2. Explicitly,

s2vec(A) := (A11,
√

2A21, . . . ,
√

2An1, A22,
√

2A22, . . . ,
√

2An2, . . . , Ann)T .

The inner product for A,B in Sn exactly corresponds to the standard vector inner product

between s2vec(A) and s2vec(B). We denote sMat : R
n(n+1)

2 → Sn as the inverse of s2vec.

We can also express the matrix representation of certain linear transformations on Sn

(identified with R
n(n+1)

2 ) using the symmetric Kronecker product. For every X ∈ Sn, we
require:

(A
s
⊗B) s2vec(X) := s2vec

(
1

2
(BXAT + AXBT )

)
.

Notice that A
s
⊗B = B

s
⊗ A.

We use ∇f(x) or f ′(x) to denote the derivative of a function for simplicity. f ′′(x) is the
Hessian of f . For higher order derivatives, Dnf(x) is used to denote the n-th derivative of
a function f(x), and D2f(x)[h(1), h(2)] denotes the second derivative of f evaluated along
the directions h(1), h(2) ∈ E. We also use the notation

〈
f ′′(x)h(1), h(2)

〉
to denote the same

quantity. When we need to put emphasis on the set of variables we are differentiating with
respect to, we will use the ∂f

∂x
notation.

The interior of a cone K is denoted as int(K), and the boundary of the cone K is denoted
as bd(K).

Now, let us begin by defining an important notion in convex analysis: the convex conjugate
function.

14



Definition 2.1.1. For a function f : E → R ∪ {+∞}, the convex conjugate (also called
Fenchel conjugate or Legendre-Fenchel conjugate) f∗ : E∗ → R ∪ {+∞} is defined as:

f∗(y) := sup{−〈y, x〉 − f(x) : x ∈ E}.

Some of the literature use instead:

f ∗(y) := sup{〈y, x〉 − f(x) : x ∈ E} (2.1)

to define the convex conjugate of f . As we will see later, the notion of convex conjugacy
is a notion of duality for functions. Convex conjugacy has a natural correspondence with
the notions of duality for cones and polarity for sets as defined in Definition 2.1.5. Duals
of convex cones as defined in Definition 1.0.1 fit nicely with our Definition 2.1.1. Please
see Theorem 2.1.9. If we were to use the definition given by (2.1) instead, we would be
forced to use many awkwardly placed minus signs or polars of cones.

Let us derive the convex conjugates for some important convex functions. We will explicitly
work out the supremum for each given y by using the first order optimality condition of
the derivative being zero.

1. We first consider the function f : R→ R+, where f(x) := 1
2
x2.

For any given real value y, the derivative of the expression −〈y, x〉− f(x) in terms of
x is −y − ∂f(x). To find the x such that the expression achieves the maximum, we
use the first order optimality condition that −y −∇f(x) = 0, which is −y − x = 0.
Solving this equality, we have x = −y. We plug this x value back into −〈y, x〉− f(x)
and obtain

sup{−〈y, x〉 − f(x) : x ∈ R} =
1

2
y2.

Hence, the convex conjugate function f∗(y) = 1
2
y2. We have f = f∗, and such

functions are called self-dual.

2. The second function we consider is f : Rn
++ → R, where f(x) := −

∑n
j=1 ln(xj).

This function is defined on the interior of the nonnegative orthant, and it has the
property that as a sequence converging to a point on the boundary of the nonnegative
orthant, the function value goes to infinity. We will later see that this is a “self-
concordant barrier function” for the nonnegative orthant which encodes relevant
information about the cone.
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For any given point y, the gradient of the expression −〈y, x〉 − f(x) in terms of x is
−y −∇f(x). To find the x such that the expression achieves the maximum, we still
use the first order optimality condition that

−y −∇f(x) = 0,

which is −y+( 1
x1
, ..., 1

xn
)T = 0. Solving this equality, we have xj = 1

yj
for j = 1, ..., n.

We plug this x value back into −〈y, x〉 − f(x) and obtain

sup{−〈y, x〉 − f(x) : x ∈ Rn
++} = −n−

n∑
j=1

ln(yj).

Hence, the convex conjugate function f∗(y) = −
∑n

j=1 ln(yj)− n.

3. The third function we consider is f : Rn
++ → R, where f(x) :=

∑n
j=1 xj ln(xj). This

function is also defined on the interior of the nonnegative orthant. It is called the
entropy function, which is widely used in mathematical sciences and engineering.

For any given point y, the gradient of the expression −〈y, x〉 − f(x) in terms of x is
−y −∇f(x). To find the x such that the expression achieves the maximum, we still
use the first order optimality condition that

−y −∇f(x) = 0,

which is: −y − (ln(x1) + 1, ..., ln(xn) + 1)T = 0. Solving this equality, we have:
xj = e−yj−1 for j = 1, ..., n. We plug this x value back into −〈y, x〉−f(x) and obtain

sup{−〈y, x〉 − f(x) : x ∈ Rn
++} =

n∑
j=1

e−yj−1.

Hence, the convex conjugate function f∗(y) =
∑n

j=1 e
−yj−1.

4. The last function we consider is f : Sn++ → R, where f(X) := − ln det(X). This
function is defined on the interior of the positive semidefinite cone, and it has the
property that as a sequence converging to a point on the boundary of the positive
semidefinite cone, the function value goes to infinity. We will later see that this is a
“self-concordant barrier function” for the positive semidefinite cone.

For any given point Y , the gradient of the expression −〈Y,X〉 − f(X) in terms of X
is −Y −∇f(X). To find the X such that the expression achieves the maximum, we
still use the first order optimality condition:

−Y −∇f(X) = 0,
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which is −Y + X−1 = 0. Solving this equality, we have X = Y −1. We plug this X
value back into −〈Y,X〉 − f(X) and obtain

sup{−〈Y,X〉 − f(X) : X ∈ Sn++} = − ln det(Y )− n.

Hence, the convex conjugate function f∗(Y ) = − ln det(Y )− n.

Note that the functions f(x) = 1
2
x2, f(x) = −

∑n
j=1 ln(xj) and f(X) = − ln det(X) are all

“self-dual” in the sense that the functions and their corresponding conjugates differ only
by a constant.

Let us continue to define some notions and state some results related to convex sets and
convex cones specifically. First, recall Definition 1.0.1 of the dual cone in Chapter 1, and
we have the following proposition:

Proposition 2.1.2. For every K ⊆ E, the dual cone K∗ is a closed convex cone.

Proof. By definition, the dual cone is the intersection of possibly infinitely many closed
half spaces. Since the intersection of any collection of closed sets is still closed, and the
intersection of any collection of convex sets is still convex, the dual cone must be closed
and convex.

If upon identifying E with E∗, there exists an inner product on E under which K = K∗, then
K is called self-dual. Rn

+, Sn+ and SOCn are all self-dual cones under the usual Euclidean
inner product, which in case of Sn+ coincides with the Tr (·) inner product.

A cone is homogeneous if for every pair of points x and u in int(K), there is a linear
bijection f : E→ E with

f(K) = K and f(x) = u.

Cones that are self-dual and homogeneous are called symmetric. Rn
+, Sn+ and SOCn are

all homogeneous, hence are all symmetric cones.

A non-empty cone is pointed if the only linear subspace contained in it is the zero vector.
The nonnegative orthant, second order cones and positive semidefinite cones are all pointed
cones. The following propositions describe the correspondence between pointedness and
the property of having non-empty interior for primal and dual cones (see for instance Boyd
et al. [8]).

Proposition 2.1.3. If the cone K has non-empty interior, then K∗ is pointed.

Proposition 2.1.4. If the closure of the cone K is pointed, then K∗ has non-empty interior.
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The notion of duality of the cones can be extended to general convex sets by “polarity”,
and we will see that the problems of finding the minimum volume ellipsoid containing a
certain geometric object and the maximum volume ellipsoid contained in a certain object
are related to each other via polarity.

Definition 2.1.5. Given a set G ⊆ E, the polar set of G is defined as:

G◦ := {x ∈ E∗ : 〈x, u〉 ≤ 1,∀u ∈ G}.

Another related notion for polarity is gauge function. In fact, the convex conjugate γ∗(G, ·)
of the gauge function γ(G, ·) is the indicator function for G◦.

Definition 2.1.6. Given a set G ⊆ E (typically assume 0 ∈ int(G)) and a point u ∈ E,
the gauge function is defined as: γ(G, u) = inf{λ ≥ 0 : u ∈ λG}.

By the definition of polar set, we can obtain the following proposition:

Proposition 2.1.7. For every pair of closed convex sets G1, G2 ⊆ E, both containing the
origin, we have G1 ⊆ G2 ⇐⇒ G◦2 ⊆ G◦1.

By this proposition, we see that the problem of finding the maximum volume ellipsoid
contained in a convex body can be turned into a problem of finding the minimum volume
ellipsoid containing a convex body and vice versa:

Let convex body G and the minimum volume ellipsoid BH(0, 1) containing G be given.
Without loss of generality we may assume the ellipsoid is centered at the origin, as we can
always translate the sets so that this happens. By the above proposition, the polar set
G◦ must contain BH(0, 1)◦ = BH−1(0, 1), which is also an ellipsoid. By equation (2.4), we
know this ellipsoid must be the maximum volume ellipsoid contained in G◦, otherwise it
will contradict with the fact that BH(0, 1) is the minimum volume ellipsoid containing G.
Also notice that

vol(BH(0, 1)) · vol([BH(0, 1)]◦) = vol(BH(0, 1)) · vol(BH−1(0, 1))

is a constant for any given space E.

There is a special class of convex functions called self-concordant barriers. A self-concordant
barrier function intrinsically encodes a convex cone (or, in general, a convex set) by having
real values in the interior of the cone and when a sequence converging to a point on the
boundary the function value goes to infinity.
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Definition 2.1.8. (Self-concordance) Let F : int(K)→ R be a C3-smooth convex function
such that F is a barrier for K (i.e. for every sequence in the interior of K, converging to
a boundary point of K, the corresponding function values F (x) → +∞) and there exists
ϑ ≥ 1 such that for each t > 0, F (tx) = F (x)− ϑ ln(t), and

|D3F (x)[h, h, h]| ≤ 2
(
D2F (x)[h, h]

)3/2
(2.2)

for all x ∈ int(K) and for all h ∈ E. Then, F is called a ϑ-logarithmically homogeneous
self-concordant barrier for K.

As mentioned before, the notion of convex conjugacy is a notion of duality for functions.
Convex conjugacy has a natural correspondence with the notions of duality for cones (see
Rockafellar [41]). Below is the theorem by Nesterov and Nemirovskii [35], in the context
of logarithmically homogeneous self-concordant barriers.

Theorem 2.1.9. Let K be a closed convex pointed cone with a nonempty interior in E and
let F be a ϑ-logarithmically homogeneous self-concordant barrier for K. Then its Legendre-
Fenchel conjugate

F∗(y) = sup{−〈y, x〉 − F (x) : x ∈ int(K)},

is a ϑ-logarithmically homogeneous self-concordant barrier for the dual cone K∗.

We refer to F∗ simply as the conjugate barrier.

Once we have a ϑ-logarithmically homogeneous self-concordant barrier F for K, at every
point x ∈ int(K), the Hessian of F defines a local metric. For every h ∈ E the local norm
induced by F at x is

‖h‖x := 〈F ′′(x)h, h〉1/2.

It is not hard to see from the definition of logarithmically homogeneous self-concordant
barrier that F ′′(x) : E → E∗ is self adjoint and positive definite, [F ′′(x)]−1 : E∗ → E is
well-defined and is also a self-adjoint positive definite operator. By Proposition 1.0.3, it
makes sense to define

‖u‖∗x :=
〈
u, [F ′′(x)]

−1
u
〉1/2

for every u ∈ E∗.

By CauchySchwarz inequality, we have:

|〈u, h〉| ≤ ‖u‖∗x‖h‖x, ∀u ∈ E∗, h ∈ E.
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Logarithmically homogeneous self-concordant barrier F and its conjugate barrier F∗ in-
teract very nicely because of the elegant and powerful analytic structure imposed by the
convex conjugate function and the primal-dual symmetric conic set-up.

Suppose F is a ϑ-logarithmically homogeneous self-concordant barrier for the cone K, and
it further satisfies

• F ′′(w)(K) ⊆ K∗ for all w ∈ int(K), and

• F∗(F ′′(w)x) = F (x)− 2F (w)− θ for all w, x ∈ int(K),

then we call F a self-scaled barrier (see Nesterov and Todd [36], [37]). A cone that admits
a self-scaled barrier is called self-scaled. It turns out that self-scaled cones are exactly
symmetric cones.

For a symmetric cone K and a self-scaled barrier F , F ′′(w) gives a linear isomorphism
between int(K) and int(K∗), and F ′′(w)K = K∗ for every choice of w ∈ int(K). (see for
instance Nesterov and Todd [36], [37]).

2.2 Convex optimization problem formulations and

optimality conditions

In this section, we will introduce several formulations of convex optimization problems,
and some well-known optimality conditions for them.

The classical convex optimization problem formulation (P1) is of the following form:

(P1) inf : f(x)

s.t. gi(x) ≤ 0, i ∈ {1, ...,m}
hj(x) = 0, j ∈ {1, ..., l}
x ∈ C.

In the formulation, C is a convex set in E, f(x) and gi(x), i ∈ {1, ...,m} are convex functions
on C, and hj(x), j ∈ {1, ..., l} are affine functions on E. We assume all the functions are
continuously differentiable on C.

For this formulation, we may get rid of the affine constraints hj(x) = 0, j ∈ {1, ..., l} by
reformulating the original problem in a smaller dimensional space. We can achieve this
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by eliminating variables using the affine constraints. The dimension of the new space is
the same as that of the null space of the affine functions. Specifically, we can parametrize
the affine space defined by the affine constraints by representing any point in the original
space via the parametrization of the null space together with a translation. Then, we can
reformulate (P1) using this new representation of the space. We end up with a formulation
with only inequality constraints. The transformed formulation will have the form as follows:

(P2) inf : f(x)

s.t. gi(x) ≤ 0, i ∈ {1, ...,m}
x ∈ C.

However, notice as we had a transformation of the space, the functions f and gi all have
different representation in the new space now. The new C is the intersection of the affine
space and the original C, and the space E has a smaller dimension now. For the sake of
brevity, we keep the same notation.

To provide sufficent conditions for optimality for a convex optimization problem, we use
the notion of Slater point (a so-called constraint qualification). A point x ∈ E is a Slater
point for problem (P2) if it is in the interior of C, and gi(x) < 0,∀i ∈ {1, ...,m}.
We can use the following well-known optimality conditions to characterize optimality for
problems in the form of (P2).

Theorem 2.2.1 (Karush, 1939 [27], Kuhn-Tucker, 1951 [29]). Suppose the convex opti-
mization problem (P2) has a Slater point, then x∗ ∈ E is a global minimum if and only if
there exist some s ∈ Rm such that the following constraints are satisfied:

1. Stationarity: −∂f(x) =
∑m

i=1 si∂gi(x),

2. Primal feasibility: gi(x) ≤ 0, i ∈ {1, ...,m}, x ∈ C,

3. Dual feasibility: si ≥ 0, i ∈ {1, ...,m},

4. Complementary slackness: sigi(x) = 0, i ∈ {1, ...,m}.

We will call these conditions Karush-Kuhn-Tucker (KKT) conditions, and the above the-
orem, KKT Theorem.

We may extend the KKT Theorem to handle affine equality constraints directly. The
notion of relative interior is helpful to extend the theorem. The relative interior of a set
C is defined as:

relint(C) := {x ∈ C : ∃ε > 0, B(x, ε) ∩ aff(C) ⊆ C},
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where B(x, ε) is a ball centered at x with radius ε, and aff(C) is the affine hull of C in
Euclidean space E, which is the smallest affine set containing C.

A point x ∈ E is a Slater point for problem (P1) if it is in relint(C ∩ J), where

J := {x : hj(x) = 0, j ∈ {1, ..., l}} and gi(x) < 0,∀i ∈ {1, ...,m}.

With this extended notion of “Slater point”, we obtain the following KKT optimality
conditions for the classical convex formulation (P1).

Theorem 2.2.2. Suppose the convex optimization problem (P1) has a Slater point, then
x∗ is a global minimum if and only if there exist some s such that the following constraints
are satisfied:

1. Stationarity: −∇f(x) =
∑m

i=1 si∇gi(x) +
∑l

j=1 sj∇hj(x),

2. Primal feasibility: gi(x) ≤ 0, i ∈ {1, ...,m}, hj(x) = 0, j ∈ {1, ..., l}, x ∈ C,

3. Dual feasibility: si ≥ 0, i ∈ {1, ...,m},

4. Complementary slackness: sigi(x) = 0, i ∈ {1, ...,m}.

Modern convex optimization also utilizes conic formulations of the problem, which possess
many nice properties. We can formulate any convex optimization problem in the conic
form as (P3) below, under some mild assumptions.

(P3) inf : 〈c, x〉
A(x) = b

x ∈ K

In this form, we are optimizing a linear function over a cone subject to an affine set
constraints. We can transform the optimization problem (P1) to the form of (P3) by
simply pushing the non-linear objective function into the constraints and then push the
non-affine constraints into the cone constraint.

The dual problem (D3) for (P3) is defined as:

(D3) sup : 〈b, y〉D
s := c−A∗(y) ∈ K∗.
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〈·, ·〉D denotes the scalar product for the dual objective function on (Y,Y∗), and A∗ : Y→
E∗ denotes the adjoint of the linear operator A : E→ Y∗. A∗ is defined by the equations:

〈A∗(y), x〉 = 〈A(x), y〉D , ∀ x ∈ E, y ∈ Y.

We may assume without loss of generality that A is surjective, i.e., A(E) = Y∗. b ∈ Y∗, c ∈
E∗ and K ⊂ E is a pointed, closed, convex cone with nonempty interior. In modern theory
interior-point methods, K is described via F : int(K)→ R, a logarithmically homogeneous
self-concordant barrier function for K as defined in Definition 2.1.8. K∗ is the dual of the
primal cone K with respect to 〈·, ·〉.

We have the following optimality conditions for (P3), which are analogous to the classical
KKT conditions:

Theorem 2.2.3. Suppose the convex optimization problem (P3) has a Slater point, then
x∗ ∈ E is a global minimum if and only if there exist some s ∈ E∗ such that the following
constraints are satisfied:

1. Primal feasibility: A(x) = b, x ∈ K,

2. Dual feasibility: c = A∗(y) + s, s ∈ K∗,

3. Complementary slackness: 〈s, x〉 = 0.

Fritz John theorem provides another way to look at optimality conditions:

Theorem 2.2.4 (Fritz John, 1948 [25]). Consider the optimization problem:

(P ) min : f(x)

g(x, y) ≤ 0, ∀y ∈ Y ,

where f(x) is a continuously differentiable function defined on an open set X ⊆ Rn, and
g(x,y) and ∂g

∂x
are continuous functions defined on X ×Y, where Y is a compact set in some

Euclidean space. If x is a local minimizer of the above problem, then there exist at most
n active constraints g(x, y1) = 0, ..., g(x, yk) = 0 and a non-trivial, non-negative multiplier
vector λ ∈ Rk+1

+ \ {0} such that

λ0
∂f(x)

∂x
+

k∑
i=1

λi
∂g(x, yi)

∂x
= 0.
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This theorem is in some sense more general than the KKT conditions, however with a
weaker statement (since λ0 may be zero).

Remark 2.2.5. An upper bound for the number of active constraints g(x, yi) needed in the

equality λ0
∂f(x)
∂x

+
∑k

i=1 λi
∂g(x,yi)
∂x

= 0 is at most the dimension of the variables x in the
optimization problem (P ).

2.3 Optimizing a linear function over an ellipsoid

Balls and ellipsoids are very simple geometric objects, and they are easy to deal with in
general. As discussed in the introduction chapter, it would be helpful if we can approximate
complex geometric objects using ellipsoids well. In the later chapters, we will consider the
problems of approximating cones using ellipsoids centered at given points. Please see
Figure 2.1 and 2.2 for illustration.

Recall the definitions of Euclidean balls and ellipsoids as follows:

Definition 2.3.1. An Euclidean ball in Euclidean space E centered at x̄ with radius r is
B(x̄, r) := {x ∈ E : 〈(x− x̄), I(x− x̄)〉 ≤ r2}.

Definition 2.3.2. An ellipsoid in Euclidean space E, centered at x̄, with radius r and its
shape defined by a self-adjoint positive definite operator H : E→ E∗ is:

BH(x̄, r) := {x ∈ E : 〈(x− x̄), H(x− x̄)〉 ≤ r2}.

In other words, BH(x̄, r) = {x ∈ E : ||x− x̄||H ≤ r}.

We notice that:

BH(x̄, 1) = x̄+H−
1
2B(0, 1). (2.3)

That is, every ellipsoid is an image of the Euclidean unit ball centered at the origin under
an affine isomorphism. It is also easy to check by equation (2.3) that the volume of the
above ellipsoid is:

vol(BH(x̄, 1)) =
√

det(H−1) vol(B(0, 1)). (2.4)

If we assume that the positive definite matrix H defining the ellipsoid has determinant
equal to 1, the r in Definition 2.3.2 behaves just like the radii of Euclidean balls as far as
volumes are concerned.
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EC

C

Figure 2.1: Using ellipsoid EC as outer approximation for a convex set C.

EK

x̄

K

Figure 2.2: Using ellipsoid EK centered at x̄ as a local, inner approximation for cone K.
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We will show it is very easy to optimize a linear function over an ellipsoid. Let us first
show that it is easy to optimize a linear function over the unit Euclidean ball centered at
the origin.

Proposition 2.3.3. For every u ∈ E \ {0}, the optimization problem:

max{〈u, x〉 : x ∈ B(0, 1)}

has a unique maximizer u
||u|| , and the optimal value is ||u||.

Proof. By Cauchy-Schwarz inequality and the fact that u is a non-zero vector, we have for
every x ∈ B(0, 1) :

〈u, x〉 ≤ ||u|| · 1 = ||u|| 6= 0.

Moreover, equality is achieved if and only if x is some positive multiple of u. Thus, x = u
||u||

is the unique maximizer, with objective value equal to ||u||.

We have the following equivalent result for a minimization problem as a Corollary:

Corollary 2.3.4. For every u ∈ E \ {0}, the optimization problem:

min{〈u, x〉 : x ∈ B(0, 1)}

has a unique minimizer − u
||u|| , and the optimal value is − ||u||.

This result can be generalized to any arbitrary ellipsoid BH(x̄, r). The following proposition
provides a formula for minimizing a linear function over an ellipsoid:

Proposition 2.3.5. For every u ∈ E \ {0}, we have:

min{〈u, x〉 : x ∈ BH(x̄, r)} = 〈u, x̄〉 − r · ||u||∗H ,

and the unique minimizer is obtained at x = x̄− (r/ ||u||∗H)H−1u.

Proof. By definition and elementary properties of inner product, we see the following three
optimization problems are equivalent:

(P1) min{〈u, x〉 : x ∈ BH(x̄, r)},
(P2) min{〈u, x〉 : 〈(x− x̄), H(x− x̄)〉 ≤ r2},

(P3) min{〈u, x〉 :

〈
H

1
2

r
(x− x̄),

H
1
2

r
(x− x̄)

〉
≤ 1}.
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Let z := 1
r
H

1
2 (x− x̄). Then, we have equivalently:

x = x̄+ rH−
1
2 z. (2.5)

Note that this is essentially observation (2.3). With this change of variable, the optimiza-

tion problem becomes: min{
〈
u, x̄+ rH−

1
2 z
〉

: 〈z, z〉 ≤ 1}, or equivalently:

(P4) min{〈u, x̄〉+
〈
rH−

1
2u, z

〉
: z ∈ B(0, 1)}.

Notice that 〈u, x̄〉 is a constant, and we may think of rH−
1
2u as our new linear objective

function. Thus, we can apply the previous proposition, and obtain the optimal value:

〈u, x̄〉 −
∣∣∣∣∣∣rH− 1

2u
∣∣∣∣∣∣ = 〈u, x̄〉 − r

∣∣∣∣∣∣H− 1
2u
∣∣∣∣∣∣

= 〈u, x̄〉 − r
〈
u,H−1u

〉 1
2

= 〈u, x̄〉 − r ||u||∗H .

The unique optimizer of this problem is z = − rH−
1
2 u∣∣∣∣∣∣rH− 1
2 u
∣∣∣∣∣∣ .

It is easy to see that z∗ is optimal for (P4) if and only if its corresponding x∗, by equality
(2.5), is optimal for the original problem. Thus, by equation (2.5), we obtain the unique
optimizer x of the original problem:

x̄− rH−
1
2
rH−

1
2u∣∣∣∣∣∣rH− 1
2u
∣∣∣∣∣∣ = x̄− r∣∣∣∣∣∣H− 1

2u
∣∣∣∣∣∣H−1u

= x̄− r

〈u,H−1u〉
1
2

H−1u

= x̄− r

||u||∗H
H−1u.

We see that indeed optimizing a linear function over an ellipsoid is an easy problem.
Proposition 2.3.5 provides a simple formula for its unique solution which is also easy to
evaluate.
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Chapter 3

Ellipsoids approximating convex sets,
Löwner-John ellipsoid and Löwner’s
theorem

In this chapter we will introduce the concept of Löwner-John ellipsoid and Löwner’s theo-
rem, which are of central interest of this thesis. We will derive various optimality conditions
for finding the minimum volume ellipsoid containing and the maximum volume ellipsoid
contained in a convex set. For a detailed history and the development of the study on
Löwner-John ellipsoids, please refer to Henk [23] and the references therein.

3.1 Motivation and Löwner-John theorem

As discussed in Chapter 1, it is useful to approximate complicated convex sets by simple
ones such as ellipsoids. By Proposition 2.3.5 and its derivation, we see ellipsoids are indeed
“simple enough” convex sets to deal with. On the other hand, by Löwner-John Theorem
which will be introduced shortly afterwards, ellipsoids have some very nice properties in
approximating compact convex sets. Hence, it is of general interest to be able to find a
good approximation of a compact convex set using the kind of ellipsoids described in the
Löwner-John Theorem.

Theorem 3.1.1 (Löwner-John Theorem). Every compact convex set C ∈ E with int(C) 6=
∅ has a unique minimum volume ellipsoid “E” (the Löwner-John ellipsoid) containing C.
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Moreover, contracting this ellipsoid by a factor of dim(E) =: n around its center yields an
ellipsoid contained in C. That is, taking the center to be the origin, 1

n
E ⊆ C ⊆ E.

The containment result is from John’s 1948 paper [25], and the uniqueness part is largely
believed to be discovered first by Löwner, but it seems that he never published this result.
We note that for all compact convex C with int(C) 6= ∅, there exists also a unique maximal
volume ellipsoid contained in C.

The bound in the theorem is actually tight. For instance, we can show that any unit
equilateral simplex in Rn must have its Löwner-John ellipsoid being shrunk by a factor of
1
n

to be contained in the original simplex:

Let us first embed the equilateral simplex, say conv({v0, . . . , vn}) into Rn+1 by identifying
each vertex of the simplex with one of the vector ei in the standard basis of the vector
space Rn+1. The equilateral simplex and ellipsoids both possess lots of symmetries. Given
the rich symmetry properties of the simplex around the centroid c := 1

n+1

∑n
i=0 vi and the

symmetries of the ellipsoids around the centers, it turns out that the centers of the minimum
volume ellipsoid containing the simplex and the maximum volume ellipsoid contained in
the simplex coincide with the centroid of the simplex. Again by the rich symmetries of the
simplex, we can obtain that the minimum and maximum volume ellipsoids must take on
the shape of a ball.

To contain the unit simplex, the radius of the ball must be at least the length from the
origin to its farthest vertex. The distances from the origin to all vertices of the simplex
are the same, and we denote it by d. By convexity, the ball containing all the vertices of
the simplex must also contain the convex hull of the vertices, which is the simplex itself.
Thus, the minimum volume ellipsoid containing the unit simplex is the ball centered at
the centroid of the simplex with radius d. By our choice of the embedding of the simplex,
we have the centroid is located at c̄ := ( 1

n+1
, · · · , 1

n+1
)T in Rn+1. Hence,

d = ||e1 − c̄|| =
√

n

n+ 1
.

On the other hand, the minimum distance between the centroid and the boundary of the
simplex is achieved on each facet (the maximal proper faces) of the simplex. Every facet
of the simplex can be represented as the solutions of the following set of constraints for
some l:

xl = 0,
n+1∑
i=1

xi = 1, xi ≥ 0,∀i ∈ {1, · · · , n+ 1}.
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centroid

R
1
2
R

Figure 3.1: The minimum volume ellipsoid containing and the maximum volume ellipsoid
contained in a equilateral simplex in R2.

The problem of finding the minimum distance between c̄ and the facet where xn+1 = 0 can
now be reduced to a convex optimization problem as follows:

min :
n+1∑
i=1

(xi −
1

n+ 1
)2

s.t. xn+1 = 0
n+1∑
i=1

xi = 1

xi ≥ 0,∀i ∈ {1, · · · , n+ 1}.

Using the KKT optimality conditions, we obtain the optimal solution of this optimization
problem is achieved at x∗ := ( 1

n
, · · · , 1

n
, 0)T . It is straightforward to check that the distance

between c̄ and x∗ is
√

1
n(n+1)

. As a result, we need to shrink the ball containing the simplex

by a factor of 1
n

to have it completely contained in the unit simplex.

For n = 2, please see Figure 3.1 for illustration. We see that the centers of both ellipsoids
are located at the centroid of the simplex, and the radius of the maximum volume ellipsoid
B1 contained in the simplex is indeed 1

2
of the radius of the minimum volume ellipsoid B2

containing the simplex. We need to shrink B2 by at least a factor of 1
2

for it to be contained
in the simplex.
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The following propositions are straightforward to verify by the definitions, properties and
the uniqueness of the Löwner-John ellipsoids of C.

Proposition 3.1.2. If A ⊆ B in Rn, B ⊆ BH(x̄, r), and the ellipsoid BH(x̄, r) is the
minimum volume ellipsoid containing A, then BH(x̄, r) is the minimum volume ellipsoid
containing B.

Proposition 3.1.3. If A,B are convex sets in Rn, A ⊆ B, BH(x̄, r) ⊆ A, and the ellipsoid
BH(x̄, r) is the maximum volume ellipsoid contained in B, then BH(x̄, r) is the maximum
volume ellipsoid contained A.

3.2 Optimality conditions for an ellipsoid being Löwner-

John ellipsoid

In this section, we introduce some optimality conditions for proving an ellipsoid is indeed
the Löwner-John ellipsoid for a certain set. First, we start with the problem of charac-
terizing when the Euclidean ball centered at the origin is the minimum volume ellipsoid
containing a finite set of points. Since ellipsoids are convex sets, an ellipsoid contains a
finite set of points if and only if the ellipsoid contains the convex hull of these points.
Therefore, the next characterization also applies to polytopes. Let us first state a lemma
in matrix theory which will be of use later.

Lemma 3.2.1 (Schur Complement). Let X ∈ Sn and T ∈ Sn++. Then

M :=

(
T UT

U X

)
� 0 ⇐⇒ X − UT−1UT � 0.

Moreover, M � 0 if and only if X − UT−1UT � 0.

For details and the proof of the lemma please see for instance [48].

Proposition 3.2.2. Let p1, ..., pr ∈ E all have unit norm. If there exists y ∈ Rr
++, such

that
r∑
i=1

yipip
T
i = I and

r∑
i=1

yipi = 0,

then the unit Euclidean ball centered at the origin is the minimum volume ellipsoid con-
taining conv{pi : i ∈ {1, ..., r}}.
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Let G := conv{pi : i ∈ {1, ..., r}}. Consider the following problem:

min{− ln det(H) : 〈(pi − x), H(pi − x)〉 ≤ 1, i ∈ {1, . . . , r}, H ∈ Sn++, x ∈ Rn}. (3.1)

Optimization problem (3.1) is a non-convex problem with variables H and x. However,
consider the following convex optimization problem:

min{− ln det(A) :
(
1 pTi

)(α aT

a A

)(
1
pi

)
≤ 1, i ∈ {1, ..., r},

(
α aT

a A

)
∈ Sn+1

+ }. (3.2)

It is not hard to see (3.2) is equivalent to (3.1): if we expand the inequality constraint for
the point pi in (3.1) and (3.2) respectively, we obtain:

pTi Hpi − 2pTi Hx+ xTHx ≤ 1, and

pTi Api + 2pTi a+ α ≤ 1.

For a feasible solution pair (H, x) of (3.1), we see(
xTHx −(Hx)T

−Hx H

)
is a feasible solution for (3.2) with the same objective value. On the other hand, given any
feasible solution (

α aT

a A

)
of (3.2), we can get a feasible pair (A,−A−1a) for (3.1) with the same objective value. Note
that feasibility of (A,−A−1a) comes from the Schur Complement Lemma 3.2.1, which is
for every A ∈ Sn++, (

α aT

a A

)
∈ Sn+1

+ ⇐⇒ α ≥ aTA−1a.

This implies pTi Api + 2pTi a + aTA−1a ≤ pTi Api + 2pTi a + α, where the right hand side is
known to be less than or equal to one. Thus, (3.2) and (3.1) are essentially equivalent
problems.

Moreover, by a property of the trace function: for compatible matrices U and V ,
Tr(UV ) = Tr(V U), (3.2) can be rewritten as the following optimization problem:

min

{
− ln det(A) : Tr

((
1 pTi
pi pip

T
i

)(
α aT

a A

))
≤ 1, i ∈ {1, ..., r},

(
α aT

a A

)
∈ Sn+1

+

}
.(3.3)

Now, we may prove Proposition 3.2.2.
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Proof. (of Proposition 3.2.2) By Löwner-John theorem, there exists a unique minimum
volume ellipsoid containing G = conv{pi : i ∈ {1, ..., r}}. To find the minimum volume
ellipsoid, we formulate the optimization problem as follows:

min{− ln det(H) : 〈(pi − x), H(pi − x)〉 ≤ 1, ∀i ∈ {1, ..., r}}.

By the above discussion, we formulate the equivalent minimization problem as:

(P ′) : min

{
− ln det(A) : Tr

((
1 pTi
pi pip

T
i

)(
α aT

a A

))
≤ 1,∀i ∈ {1, ..., r},

(
α aT

a A

)
∈ Sn+1

+

}
.

We notice the objective function is a convex function on (α, a, A) in R⊕Rn⊕Sn++, expressed

as

(
α aT

a A

)
. The constraints are linear inequalities.

This formulation is SDP representable, as it is easy to see this problem is equivalent to the
problem of:

min

{
det(A)−1 : Tr

((
1 pTi
pi pip

T
i

)(
α aT

a A

))
≤ 1, ∀i ∈ {1, ..., r},

(
α aT

a A

)
∈ Sn+1

+

}
,

and this latter problem is SDP representable. For details please see for instance Ben-Tal
and Nemirovski [3], Proposition 4.2.1 and the examples after it. Thus, in principle, we can
solve for the minimum volume ellipsoid by any algorithm that solves SDP problems.

Now, we consider a relaxation (P ′′) of (P ′):

min

{
− ln det(A) : Tr

((
1 pTi
pi pip

T
i

)(
α aT

a A

))
≤ 1,∀i ∈ {1, ..., r},

(
α aT

a A

)
∈ Sn+1

+

}
.

Clearly, if we can prove

(
0 0
0 I

)
is a minimizer of (P ′′),

(
0 0
0 I

)
must be a minimizer of

(P ′). We can apply KKT Theorem to prove

(
0 0
0 I

)
satisfies the KKT conditions and

hence is a minimizer of (P ′′).

Firstly, we check the stationary condition and dual feasibility of the KKT conditions, which
is: (

0 0
0 I

)
=

r∑
i=1

λi

(
1 pTi
pi pip

T
i

)
− S, for λi ≥ 0, i ∈ {1, ..., r} and S ∈ Sn+1

+ .
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By the assumptions that
∑r

i=1 yipip
T
i = I and

∑r
i=1 yipi = 0, taking

λi = yi, i ∈ {1, ..., r}, and S :=

(∑r
i=1 yi 0
0 0

)
,

we have the conditions satisfied. Secondly, since all the pi’s have unit length, and

(
0 0
0 I

)
∈

Sn+1
+ , we obtain primal feasibility. Lastly, we check the complementary slackness condition:

since all the pi have unit length implies the linear inequalities are all tight, together with
the fact that

ST
(

0 0
0 I

)
=

(
0 0
0 0

)
,

complementary slackness conditions are satisfied.

Hence,

(
0 0
0 I

)
is a minimizer of (P ′′) and (P ′). By the discussion before the proof, we

have that the minimal ellipsoid containing G has the origin as its center and is defined by
the identity matrix, which is exactly the Euclidean ball centered at the origin.

Instead of using a semidefinite programming algorithm to solve the above given convex
problem to find the minimum volume ellipsoid containing a polytope which is given as
a convex hull of a set of points, in Kumar and Yildirim [30], a (1 + ε) approximation is
proposed. The algorithm also produces a “core set” which acts as an approximation to
the set of points given as input. This is very useful when the number of points involved is
very large, and hence computationally costly. Later, Yildirim [49] extend this first order
method to compute a (1+ε) approximation on the problem of finding the minimum volume
ellipsoid containing a set of ellipsoids.

Another very efficient computational method for solving the minimum volume ellipsoid
containing a given set of points in Rn is proposed in Sun and Freund [45]. This method is
based on interior-point methods. Please refer to the paper and the references therein for
more detailed treatment on this subject.

Proposition 3.2.2 can be generalized to cater to an arbitrary ellipsoid:

Proposition 3.2.3. Given p1, ..., pr ∈ E, if all the pi satisfy pTi Hpi = 1 for some positive
definite matrix H, and if there exists y ∈ Rr

++, such that

r∑
i=1

yipip
T
i = H−1 and

r∑
i=1

yipi = 0,
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then the ellipsoid BH(0, 1) is the minimum volume ellipsoid containing conv{pi : i ∈
{1, ..., r}}.

We can obtain this result by using the KKT Theorem as in the proof of the above propo-
sition, but we can also prove it by applying a linear transformation H

1
2 to the whole space

and reducing the problem to the Euclidean ball case:

The original space The space after applying H
1
2

Figure 3.2: Illustration of the affine transformation.

Proof. (of Proposition 3.2.3) Let G := conv{pi : i ∈ {1, ..., r}}. We apply a linear trans-

formation H
1
2 to the whole space. Notice BH(0, 1) becomes BI(0, 1). Let p′i := H

1
2pi for

each i ∈ {1, ..., r}. By the assumption of pTi Hpi = 1 for all i ∈ {1, ..., r}, we have p′Ti p
′
i = 1

for all i ∈ {1, ..., r}. Moreover, by the assumptions that

r∑
i=1

yipip
T
i = H−1 and

r∑
i=1

yipi = 0,

we have
r∑
i=1

yip
′
ip
′T
i = I, and

r∑
i=1

yip
′
i = 0.

With the same set of yi’s, we apply the previous proposition, and get that the Euclidean
ball BI(0, 1) is the minimum volume ellipsoid containing G = conv{p′i : i ∈ {1, ..., r}}.
Notice that:

conv{p′i : i ∈ {1, ..., r}} = conv{H
1
2pi : i ∈ {1, ..., r}}

= H
1
2 (conv{pi : i ∈ {1, ..., r}}) = H

1
2 (G).
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The original space After translation by x̄ After transformation of H
1
2

Figure 3.3: Illustration of the translation and affine transformation.

Hence, BI(0, 1) is the minimum volume ellipsoid containing H
1
2 (G). After applying the

inverse transformation H−
1
2 to the whole space and getting back to the original space, we

have BH(0, 1) is the minimum volume ellipsoid containing G.

We can future generalize this result by allowing the center of the minimum volume ellipsoid
to be at any arbitrary point:

Proposition 3.2.4. Given p1, ..., pr ∈ E, if all the pi satisfy 〈pi − x̄, H(pi − x̄)〉 = 1 for
some x̄ ∈ E, H is a positive definite matrix, and if there exists y ∈ Rr

++, such that

H−1 =
r∑
i=1

yi(pi − x̄)(pi − x̄)T and
r∑
i=1

yi(pi − x̄) = 0,

then the ellipsoid BH(x̄, 1) is the minimum volume ellipsoid containing conv{pi : i ∈
{1, ..., r}}.

Notice that the ellipsoid BH(x̄, 1) is obtained by first applying a linear transformation H−
1
2

to BI(0, 1), and then applying a translation of x̄ to it. Thus, we can do two steps of affine
transformations to reduce the problem to the case of an Euclidean ball centered at the
origin.

Proof. (of Proposition 3.2.4) Let G := conv{pi : i ∈ {1, ..., r}}, and p′i := pi − x̄.
Step one: we will first show that all the p′i satisfy the conditions as in the previous propo-
sition, i.e.,

r∑
i=1

yip
′
ip
′T
i = H−1, and

r∑
i=1

yip
′
i = 0.
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These are straightforward by the assumptions of:

H−1 =
r∑
i=1

yi(pi − x̄)(pi − x̄)T and
r∑
i=1

yi(pi − x̄) = 0.

Thus, by Proposition 3.2.3, we have BH(0, 1) is the minimum volume ellipsoid containing
G′ = conv{p′i : i ∈ {1, ..., r}}.

Step two: since p′i = pi − x̄, ∀i ∈ {1, ..., r}, G = G′ + x̄. As BH(0, 1) is the minimum
volume ellipsoid containing G′, BH(x̄, 1) is the minimum volume ellipsoid containing G =
conv{pi : i ∈ {1, ..., r}}.

This result can be extended to general convex bodies by utilizing Fritz John theorem as in
Chapter 2. The following characterization of the minimum volume ellipsoids is available in
John [25]. To provide a certificate for an ellipsoid to be the maximum or minimum volume
ellipsoid for a set, we may use the notion of “contact points”. A contact point of two sets
is a point that belongs to the boundaries of both sets.

Theorem 3.2.5 (Fritz John, 1948 [25]). Let C ⊂ Rn be a convex body and C ⊆ BH(x̄, 1).
Then the following statements are equivalent:

1. BH(x̄, 1) is the minimum volume ellipsoid containing C.

2. There exist some r ∈
{
n, n+ 1, . . . , n(n+3)

2

}
, contact points p1, ..., pr ∈ bd(C) ∩

bd(BH(x̄, 1)) and y ∈ Rr
++ such that:

H−1 =
r∑
i=1

yi(pi − x̄)(pi − x̄)T and
r∑
i=1

yi(pi − x̄) = 0.

By Remark 2.2.5, the upper bound for the number of contact points needed is the dimension
of the variable space, which is n(n+1)

2
+ n = n(n+3)

2
here. Moreover, it was shown in Gruber

[16] that for “most” convex bodies in Rn, the numbers of contact points between the convex

body and their Löwner-John ellipsoids are exactly n(n+3)
2

.

Proof. (of Theorem 3.2.5) Applying the Fritz John Theorem 2.2.4 to the optimization
problem (3.1), with the indexing set being the boundary points of C, we know there exists
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a non-zero vector (y0, ..., yr) ≥ 0, where r ≤ n(n+3)
2

, yi > 0 for i > 0, and p1, ..., pr are in
bd(C) ∩ bd(BH(x̄, 1)), such that

H
r∑
i=1

yi(pi − x̄) = 0 and y0H
−1 =

r∑
i=1

yi(pi − x̄)(pi − x̄)T

hold. Since H is positive definite, the first equality implies

r∑
i=1

yi(pi − x̄) = 0.

Now, suppose y0 = 0, then 0 = Tr(
∑r

i=1 yi(pi − x̄)(pi − x̄)T ) =
∑r

i=1 yi ||pi − x̄||
2, which

implies yi = 0 for all i. This is a contradiction. Hence, without loss of generality, we may
assume y0 = 1. This gives the other equality in (2). We showed (1) implies (2).

The proof of (2) implies (1) can be done by reducing the problem to the polytope case.
Notice conv(p1, ..., pr) ⊆ C, so if an ellipsoid contains C, it contains conv(p1, ..., pr), and
by Proposition 3.1.2, the minimum volume ellipsoid containing conv(p1, ..., pr) while also
containing C must be the minimum volume ellipsoid containing C.

Please see for instance Güler and Gürtuna [18] for more details.

Here is a similar theorem for the maximum volume ellipsoids:

Theorem 3.2.6. Let C ⊂ Rn be a convex body and BH(x̄, 1) ⊆ C. Then the following
statements are equivalent:

1. BH(x̄, 1) is the maximum volume ellipsoid contained in C.

2. There exist some r ∈
{
n, n+ 1, . . . , n(n+3)

2

}
, contact points p1, ..., pr ∈ bd(C) ∩

bd(BH(x̄, 1)) and y ∈ Rr
++ such that:

H−1 =
r∑
i=1

yi(pi − x̄)(pi − x̄)T and
r∑
i=1

yi(pi − x̄) = 0.

This characterization can be extended to non-convex sets by taking the convex hulls of
the original sets. Recall that the convex hull of a set G is the smallest convex set (in
terms of set inclusion) that contains G. In other words, any other convex set containing G
must also contain the convex hull of G. Since all ellipsoids are convex sets, if an ellipsoid
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contains G, it must contain the convex hull of G. In this way, we reduce the problem back
to the convex setting. Here is the corollary in this more general setting for the minimum
volume ellipsoid problem. There is an equivalent version for the maximum volume ellipsoid
problem as well.

Corollary 3.2.7. Let G ⊂ Rn be a compact set with aff(G) = Rn, and G ⊆ BH(x̄, 1).
Then the following statements are equivalent:

1. BH(x̄, 1) is the minimum volume ellipsoid containing G.

2. There exist some r ∈
{
n, n+ 1, . . . , n(n+3)

2

}
, contact points p1, ..., pr ∈ conv(G) ∩

bd(BH(x̄, 1)) and y ∈ Rr
++ such that:

H−1 =
r∑
i=1

yi(pi − x̄)(pi − x̄)T and
r∑
i=1

yi(pi − x̄) = 0.

Here are some related problems and generalizations that have been studied for finding the
extremal ellipsoids for compact sets:

In Gürtuna [20], an analysis on the dual optimization problem for finding the minimum
volume ellipsoid containing a general compact set is provided. It turns out that a class
of design problems in statistics can be precisely formulated as the dual of the minimum
volume ellipsoid problem.

A numerical method is proposed in Kojima and Yamashita [28] based on finding “small”
ellipsoids or elliptic cylinders (where the determinant of the martix defining the ellipsoid is
0) containing a semi-algebraic set (defined by a set of polynomial inequalities) in Rn with
a prefixed ellipsoidal shape. It also has implications in polynomial optimization. Please
refer to the paper for details.

A further non-convex generalization of the problem is discussed In Lasserre [31]. Instead
of using an ellipsoid which corresponds to using a homogeneous degree 2 polynomial to
approximate the given set, Lasserre considered using a homogeneous polynomial of even
degree d to approximate a compact set. In this generalization, both the underlying set and
the approximating set defined by the polynomial need not to be convex. This is clearly
a non-convex generalization. It turns out this generalized problem also has an optimal
solution, and there exists a characterization in terms of contact points similar to what was
derived in this section.

Another generalization of this problem is using some other convex body G instead of just
ellipsoids to approximate a given convex body C. In Gruber [17] the local extremum
properties of the volume on the space of all affine images of G in C is discussed.
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3.3 Some general observations on the maximum vol-

ume ellipsoids in convex cones

In this section, we introduce some general observations for the problem of finding the
maximum volume ellipsoid centered at a specified point, and inscribed in a convex cone.
We will discuss the usage of the idea of “line search” in this problem, and also show that
this problem can be reduced to the problem of finding the maximum volume ellipsoid
contained in a compact convex set.

Intuitively, we can think of the process of finding the maximum radius for an ellipsoid
centered at a specified point, with a given ellipsoidal shape H and inscribed in a convex
cone as the process of “exploring” the cone from a given center in all directions until we
touch the boundaries of the cone. Specifically, we start from the specified center x̄, and do a
line search for every possible direction d, where ||d||H = 1, until one of the search directions
first hits the boundary of the cone. Hence, we have the following trivial proposition:

Proposition 3.3.1. Given an interior point x̄ in a cone K, and a symmetric positive
definite matrix H ∈ Sn++, with det(H) = 1, the largest radius r of an ellipsoid centered at
x̄ with shape defined by H and is contained in the cone K is

r := min
d:||d||H=1

{λd : x̄+ λd · d ∈ bd(K)}.

We notice by the above proposition, any ellipsoid BH(x̄, r) is symmetric around its center
x̄. Specifically, given any point in the ellipsoid, if we take the point symmetric to it with
respect to its center, the resulting point is still in the ellipsoid. Please see Figure 3.4 for
illustration. Thus, if the given cone K is a pointed closed convex cone with int(K) 6= ∅,
for the above problem, we may restrict our attention to a compact convex subset G of K,
where G := K ∩K ′ and K ′ is the reflection of the cone K around the point x̄. Please see
Figure 3.5 for illustration.

It is not hard to see that for the same reason, the problem of finding the maximum volume
ellipsoid centered at a specified point, and inscribed in a convex cone K can be reduced to
the problem of finding the maximum volume ellipsoid contained in a compact convex set
G. The proposition is as follows:

Proposition 3.3.2. Let K ⊂ Rn be a pointed closed convex cone with int(K) 6= ∅. Let
x̄ ∈ int(K). Then, the maximum volume ellipsoid centered at x̄ contained in K is exactly
the maximum volume ellipsoid centered at x̄ contained in G := K ∩ K ′, where K ′ is the
reflection of the cone K around point x̄.
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Figure 3.4: Illustration of Proposition 3.3.2 pointwise on an ellipsoid.

x̄

K

K ′

Figure 3.5: Illustration of Proposition 3.3.2.
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Proof. First, we notice that the maximum volume ellipsoid contained in G must be centered
at x̄, since by construction, G is centrally symmetric about x̄. Furthermore, by definition,
we have G ⊆ K, and if we can show the maximum volume ellipsoid BK centered at x̄,
contained in K is also contained in G, then by Proposition 3.1.3, we must have the ellipsoid
BK is the maximum volume ellipsoid contained in G. By the symmetric property of the
ellipsoid around x̄ and by construction of G, we must have that BK is also contained in G.
Hence, by Proposition 3.1.3 the result follows.

With this “compactification” method in mind, we can reduce the problem of finding the
maximum volume ellipsoid centered at a particular point and inscribed in a convex cone
to the problem of finding the maximum volume ellipsoid contained in a compact convex
set. For the later problem, we are well equipped with theorems (on contact points and
dual certificates as discussed in the previous section of this chapter) for proving optimality.
Moreover, we will see in later chapters, the contact points we obtain between an ellipsoid
and the compact set generated this way exactly correspond to the contact points of the
ellipsoid and the cone together with its reflection.
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Chapter 4

Maximum volume ellipsoids with
specified centers contained in convex
cones

In this chapter, we derive the maximum volume ellipsoids with specified centers contained
in various convex cones. We will start from the cones of nonnegative orthant, second order
cones and then move to positive semidefinite and homogeneous cones.

Our discussion will start with symmetries of ellipsoids and various convex cones. As we
observed at the end of the last chapter: consider a given ellipsoid with center x̄, if a line
segment with an endpoint x̄ is contained in the ellipsoid, then so is the reflection of the
line segment around x̄. Indeed, this kind of symmetry is expected, since we observed in
the first chapter that every ellipsoid is linearly isomorphic to the Euclidean unit ball.

4.1 Background

In mathematics and mathematical sciences, symmetry plays many important roles. For
example, characterization of symmetric structures in the problem at hand can help reduce
the number of variables and parameters drastically and can lead to a deeper understanding
of underlying key structures. Conversely, understanding of a core structure in low dimen-
sions may sometimes be lifted to arbitrarily high dimensions by use of those characterized
symmetries. Automorphisms provide a way of formalizing some symmetries in mathemati-
cal objects. An automorphism is an isomorphism that maps a mathematical object to itself
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while preserving all the structures. If an object has rich symmetry, we can take advantage
of it via its automorphism group.

Definition 4.1.1. An automorphism g of a convex cone K, is a invertible linear map, such
that g(K) = K.

The collection of all the automorphisms of a convex cone forms a group. It is easy to check:

• Identity exists: the group element that maps every point in the cone to itself acts as
the identity element.

• Inverses exist: if A1(K) = K, since A1 is an invertible linear map, so is A−1
1 and

A−1
1 (K) = K.

• Closed under composition: if A1(K) = K, A2(K) = K and A1, A2 are invertible linear
maps, then A1A2(K) = K, A1A2(·) is linear and invertible (with inverse A−1

2 A−1
1 (·)).

• Associativity: compositions of linear maps are associative.

We denote the automorphism group of a cone K as Aut(K).

For instance,
S := {G ·GT : G is an invertible matrix in Rn×n}

is the automorphism group of the cone Sn+. Please see Gowda et al. [15] and the references
therein for more details and related results. The linear function G ·GT acts on any given
matrix X ∈ Sn+ by mapping X to GXGT .

Note that for every invertible linear operator A, we have that the inverse operation and
the adjoint operation commute. Therefore, we are justified in using the notation:

A−∗ := ((A−1)∗ = (A∗)−1.

It is clear that any G ·GT ∈ S is an automorphism of Sn+:

1. G ·GT is clearly invertible with the inverse being G−1 ·G−T .

2. Given any X ∈ Sn+, we have GXGT ∈ Sn+, and for any U ∈ Sn+, G−1UG−T will be
mapped to U under G ·GT . Hence, G(Sn+)GT = Sn+.
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Hence, we have S ⊆ Aut(Sn+).

Instead of working with the whole set of points a group is acting on, the complexity of a
problem might be greatly reduced if we can reduce the problem to one single element of
the set, with the other points being somehow “equivalent” to it. This can be achieved if
the group acting on a set is “transitive”.

The group orbit of an element x can be defined as G(x) := {gx ∈ X : g ∈ G}, which
intuitively is all the places the element x can be moved to by the group G. A group G is
transitive, if the group orbit is equal to the entire set X the group is acting on. Intuitively
we may think of the transitive property as the group being able to move any given point in
the set to any other point in the set. For instance, the group of all diagonal positive definite
maps is transitive on the interior of the non-negative orthant, as given any arbitrary point
(x1, . . . , xn)T in the interior of the cone, it can be “moved to” (1, . . . , 1)T by the map
Diag(x−1

1 , . . . , x−1
n ).

A subset of Aut(Sn+) above is
{G ·G : G ∈ Sn++},

and this subset is transitive on the interior of the cone, i.e., it is transitive on Sn++.

Proposition 4.1.2. {G · G : G ∈ Sn++} is a transitive subset of the automorphism group
of Sn++.

Proof. Given any two interior points X and Y in the cone of Sn+, we know X, Y ∈ Sn++.

Thus, X−
1
2 and Y

1
2 exist and both are also in Sn++. Let G1 := X−

1
2 , clearly G1XG1 = I.

Let G2 := Y
1
2 , clearly G2IG2 = Y . Hence, for any given X and Y in Sn++, there exists a

group element (G2G1 ·G1G2) as constructed above that will map X to Y . It follows that
the orbit of any element X ∈ Sn++ is Sn++. By definition, this group is transitive.

This set is a subset of the automorphism group for Sn++ and Sn+ as for any matrix X in
Sn++ or Sn+, the matrix GXG is still in Sn++ or Sn+ for G ∈ Sn++. On the other hand, for any
point Y ∈ Sn++ or Sn+, the point G−1Y G−1 in the cone will be mapped to Y under G · G.
Hence, G(Sn++)G = Sn++, and G(Sn+)G = Sn+.

The above proposition shows that the automorphism group of the positive semidefinite
cone is rich. This implies that the cone possesses lots of symmetry. Later, we will take
advantage of this symmetry and the rich automorphism group of homogeneous cones in
general to reduce the complexity of our problem and to work on the problem of a very
simple form. Specifically, we can reduce a problem of finding the maximum volume ellipsoid
centered at an arbitrary point into the simple problem of finding the maximum volume

45



ellipsoid centered at identity. In this chapter, we will also see some powerful theorems
making use of automorphism groups of various geometric objects to explore their intrinsic
symmetries.

Proposition 4.1.3. Let K be a homogeneous convex cone, and x̄, v̄ be a pair of interior
points in K. An ellipsoid BH(x̄, r) is the largest volume ellipsoid centered at x̄ inscribed
in K if and only if

A(BH(x̄, r)) = BA−∗HA−1(A(x̄), r)

is the largest volume ellipsoid centered at v̄ inscribed in K, where A ∈ Aut(K), and
A(x̄) = v̄.

Proof. Firstly, since K is a homogeneous cone, for any pair of interior points x̄, v̄ in K,
there must exist some A ∈ Aut(K), such that A(x̄) = v̄.

We also notice that applying an automorphism A ∈ Aut(K) to any ellipsoid BH(x̄, r) in
K will result in another ellipsoid BA−∗HA−1(A(x̄), r) in K.

Since A(x̄) = v̄, the resulting ellipsoid is actually BA−∗HA−1(v̄, r). Moreover,

vol(BA−∗HA−1(v̄, r)) = det(A) · vol(BH(x̄, r)). (4.1)

BA−∗HA−1(v̄, r) is the largest volume ellipsoid centered at v̄ inscribed in K. Suppose to the
contrary that there exists another ellipsoid E having a larger volume, then by equation
(4.1), A(E) has a larger volume than BH(x̄, r), which is a contradiction. The result follows.

Proposition 4.1.4. For every convex cone K and A ∈ Aut(K), An ellipsoid BH(x̄, r) is
the largest volume ellipsoid centered at x̄ inscribed in K if and only if A(BH(x̄, r)) is the
largest volume ellipsoid centered at A(x̄) inscribed in K.

Proof. See the proof of Proposition 4.1.3.

4.2 Maximum volume ellipsoids in the nonnegative

orthant

First, we state some propositions which will be helpful for approximating the cone Rn
+

locally by large ellipsoids.
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Proposition 4.2.1. Given an interior point x̄ ∈ Rn
+, and a matrix H ∈ Sn++ with

det(H) = 1, let

r̄ := min
i∈{1,...,n}

{
x̄i√

〈ei, H−1ei〉

}
,

then BH(x̄, r̄) is the largest radius ellipsoid that has shape H and center x̄ contained in the
non-negative orthant.

Proof. We can find the largest radius r as described in the proposition by starting with a
small enough value for the radius so that the ellipsoid is in Rn

+, then “grow” the ellipsoid
until it touches one of the faces of the non-negative orthant.

Figure 4.1: Growing the radius given a fixed center and ellipsoidal shape until it hits one
of the boundaries of Rn

+.

Notice the n maximal proper faces of the non-negative orthant are exactly:

{x ≥ 0 : 〈ei, x〉 = 0}, i ∈ {1, ..., n}.

Moreover,
Rn

+ = {x ∈ Rn : min{〈ei, x〉 , i ∈ {1, ..., n}} ≥ 0},

and a point p is on the boundary of Rn
+ if and only if:

min{〈ei, p〉 , i ∈ {1, ..., n}} ≥ 0,∀i ∈ {1, ..., n}, and ∃i ∈ {1, ..., n} such that 〈ei, p〉 = 0.

Thus, the problem becomes how much can we grow the radius r of the ellipsoid centered
at x̄ with shape H such that the minimization problems:

min{〈ei, x〉 : 〈(x− x̄), H(x− x̄)〉 ≤ r2},
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for each ei, have non-negative optimal values and at least one of the optimal values is 0.

We may find such r by taking the minimum of all {r1, ..., rn}, where each ri is precisely
the radius that makes the optimal value of min{〈ei, x〉 : 〈(x− x̄), H(x− x̄)〉 ≤ r2} be 0.

We can find such ri’s easily by applying the previous proposition, and obtain

ri = x̄i/
√
〈ei, H−1ei〉,

or ri = x̄i/
√
〈qi, D−1qi〉, where QDQT = H is the spectral decomposition of H, and qi’s

are the rows of matrix Q.

We notice that there are connections to the idea of “line search” and the notion of gauge,
implicitly in the above proof.

Now, we derive the maximum volume ellipsoid contained in the non-negative orthant with a
specified center. Let us first state a lemma that will be used in the proof of the proposition.

Lemma 4.2.2. For every matrix M ∈ Sn+, 1
n

Tr(M) ≥ det(M)
1
n . Moreover, if M ∈ Sn++,

equality holds if and only if all eigenvalues of M are the same.

Proof. Notice that for any n-by-n positive semidefinite matrix M , its determinant is the
product of all its eigenvalues, and its trace equals to the sum of all its eigenvalues. Thus,
the geometric mean of the eigenvalues equals to det(M)

1
n , and the arithmetic mean of the

eigenvalues equals to 1
n

Tr(M). Since the geometric mean of a set of non-negative numbers
is smaller or equal to the arithmetic mean of them, and equality holds if and only if all the
numbers are the same, the result follows.

Proposition 4.2.3. Given an interior point x̄ in the non-negative orthant of Rn, the
maximum volume ellipsoid centered at x̄ such that the ellipsoid is contained in the non-
negative orthant is

{x ∈ Rn :
∣∣∣∣X̄−1(x− x̄)

∣∣∣∣ ≤ 1}, where X̄ = Diag(x̄),

or {
x ∈ Rn : 〈(x− x̄), X ′(x− x̄)〉 ≤ 1

det(X̄−1)2

}
, where X ′ :=

X̄−2

det(X̄−1)2
.

Proof. Applying Proposition 4.2.1, we see that all the ri values are the same if we fix the
center to be x̄ and ellipsoidal shape to be as in the proposition statement. Hence, in this
case, r = ri for all i. In order to have an ellipsoidal shape A (det(A) = 1), with an even
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bigger radius, we would require all the corresponding diagonal entries of A−1 to be smaller
than the diagonal entries of X ′−1, by Proposition 4.2.1. This is impossible given that the
determinants of X ′−1 and A−1 are both one.

Suppose to the contrary, there exist some A ∈ Sn++ such that det(A−1) = 1 and all the

corresponding diagonal entries of A−1 are smaller than that of X ′−1. If we apply X ′
1
2 ·X ′ 12

to both X ′−1 and A−1, they become I and M := X ′
1
2A−1X ′

1
2 respectively. Clearly, I has

the diagonal entries all equal to one, and easily followed by the assumption, all the diagonal
entries of M are strictly smaller than one. This implies

1

n
Tr(M) < 1.

Since A−1, X ′−1 are positive definite matrices, so are I and M . By Lemma 4.2.2, together
with the fact that 1

n
Tr(M) < 1, we must have det(M)

1
n is strictly smaller than one. Hence,

the determinant of M is smaller than one. This is a contradiction. The result follows.

We know that F (x) = −
∑n

j=1 ln(xj) is a self-concordant barrier function for the non-
negative orthant. The maximum volume ellipsoid derived in the above proposition, cen-
tered at x̄ can also be represented as:

Br2F ′′(x̄)(x̄, r), where r :=
1√

det(F ′′(x̄))
.

4.3 Maximum volume ellipsoids in the 2-by-2 positive

semidefinite cone

In this section, we focus on the cone

S2
+ =

{(
x1 x2

x2 x3

)
: x1, x3 ≥ 0, x1x3 ≥ x2

2

}
.

Consider the linear isomorphism on R3:

A :=

 1√
2

0 1√
2

0 1 0
− 1√

2
0 1√

2

 .
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It is straightforward to check that A · s2vec(S2
+) = SOC3. We see that S2

+ is a special case
of positive semidefinite cones and also a special case of second order cones. We will see the
proofs for these generalizations in the later sections.

It was claimed in some papers in the literature that the largest ellipsoids contained in the
positive semidefinite cones centering at identity have shape I. We will see in the later
Section 4.5, Proposition 4.5.1 that this is true when we restrict the set of self-adjoint
positive definite operators to be a subset of automorphisms of the cones: operators of the
form “X · X” for X ∈ Sn+ . We will first show that this is indeed a misconception, and
then find the maximum volume ellipsoid for S2

+ over all the self-adjoint positive definite
operators.

Remark 4.3.1. The largest volume ellipsoid contained in the positive semidefinite cone S2
+

centered at identity is not the unit ball centered at I.

Proof. First, recall that S2 can be embedded in R3 by the mapping s2vec isometrically.
We may reduce the problem of finding the largest ellipsoid centered at identity in S2

+ to
finding the largest ellipsoid centered at (1, 0, 1)T in s2vec(S2

+).

By Proposition 3.3.2, we can reduce the problem to finding the largest ellipsoid centered
at (1, 0, 1)T in the convex body s2vec(S2

+) ∩ s2vec(S2
+)′, where s2vec(S2

+)′ is the reflection
of s2vec(S2

+) about (1, 0, 1)T . Moreover, as translations do not affect the optimal shape or
the volume of the maximum volume ellipsoid, we may apply a translation of (−1, 0,−1)T

to the whole space. Hence, the problem becomes finding the largest ellipsoid centered at
the origin in the convex body

C := (−1, 0,−1)T + s2vec(S2
+) ∩ s2vec(S2

+)′.

By Proposition 3.2.6, B(0, 1) is the maximum volume ellipsoid contained in C if and only
if BI(0, 1) ⊆ C, and there exist contact points p1, ..., pr ∈ bd(C) ∩ bd(B(0, 1)), r ≥ n, and
y ∈ Rr

++, such that
∑r

i=1 yipip
T
i = In and

∑r
i=1 yipi = 0. We will show it is impossible to

obtain pi’s such that
∑r

i=1 yipip
T
i = In.

In the cone of S2
+ before translation, the contact points between the unit ball centered

at I and S2
+ should be the matrices on the boundary of S2

+, i.e., rank one matrices. The
contact points should also be on the boundary of the unit ball centered at I, and this
implies ||P − I|| = 1, where P is a contact point of S2

+ and the unit ball centered at I. Let
P =: QTDQ be the spectral decomposition of P , then

||P − I|| =
∣∣∣∣QTDQ− I

∣∣∣∣ =
∣∣∣∣QT (D − I)Q

∣∣∣∣ = ||D − I|| = 1.
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Since D is a rank one diagonal 2-by-2 matrix, we must have the diagonal entries of D being
0 and 1. After the translation of the whole space by −I, the eigenvalues of the contact
points are 0 and −1. Taking the reflection about the origin, we get the other half of the
contact points of the unit ball centered at the origin and (S2

+− I)∩ (I −S2
+). Hence, every

point on the boundary of C corresponds to a rank one, trace 1 or −1 matrix.

All rank one, trace 1 or −1 matrices in S2 can be represented as qqT or −qqT where
q = (a,±

√
1− a2)T ,−1 ≤ a ≤ 1. Hence, the corresponding contact points p’s in C are

(a2,±
√

2a
√

1− a2, 1− a2)T , (−a2,∓
√

2a
√

1− a2, a2 − 1)T ,−1 ≤ a ≤ 1.

Now consider the tensors formed by those p’s: a4 ±
√

2a3
√

1− a2 a2(1− a2)

±
√

2a3
√

1− a2 2a2(1− a2) ±
√

2a(1− a2)
3
2

a2(1− a2) ±
√

2a(1− a2)
3
2 (a2 − 1)2

 ,−1 ≤ a ≤ 1.

Clearly, the (1, 3) entry of the tensors must be non-negative. In order for any positive sum
of the tensors to equal to identity, the (1, 3) entries of all the tensors in the positive sum
must be 0. This implies a can only be 0, 1 or −1. And this leaves only two possible tensors
in the sum: e1e

T
1 and e3e

T
3 . Clearly any positive sum of these two tensors cannot add up

to I3. Hence by Proposition 3.2.6, the unit ball centered at the origin is not the maximal
volume ellipsoid contained in C.

By construction, C is centrally symmetric around 0, and thus the maximum volume ellip-
soid contained in C is centered at 0. It follows that there must be another ellipsoid centered
at 0 having a larger volume than the unit ball. Since we can not increase the radius of the
unit ball, we know the maximum volume ellipsoid must have a different ellipsoidal shape.
The result follows.

4.3.1 The maximum volume ellipsoid over all self-adjoint positive
definite operators

In this sectiom, we derive the optimal ellipsoid centered at identity contained in S2
+ over

all self-adjoint positive definite operators. We will find the largest ellipsoid in two different
ways: the first proof uses geometric and algebraic arguments, and the second proof uses
duality theory, contact points arguments and the underlying theory from Chapter 3.

It is tempting to use the exact same techniques as in the proof for the non-negative orthant
case. However, by the following proposition, we know a direct analogue may not work in
the case of positive semidefinite cones.
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Proposition 4.3.2. There does not exist an orthonormal set in Sn+ that spans Sn, for

n ≥ 2. The maximum size of an orthonormal set in Sn+ is n instead of n(n+1)
2

.

Proof. Notice that the set of elements in Sn+ orthogonal to an element of rank r in Sn+ is
isomorphic to Sn−r+ . Thus, by assumption, if there is an element of rank r in the orthonormal
set, the size of the set is at most 1 + n− r. We see that to maximize the cardinality of the
set, all the elements in the set must be rank one matrices. Hence, the maximum cardinality
of an orthonormal set in Sn+ is n.

Now, let us develop some new techniques and derive the first proof which is geometric in
nature. We will first prove that one of the axes of the optimal ellipsoid is along the ray
from the origin through the identity.

Danzer et al. [12] has the following well-known theorem on automorphism groups of convex
bodies. For more discussion on automorphism groups of convex bodies please see Güler
and Gürtuna [19] [18].

Theorem 4.3.3 (Danzer et al. [12]). Let C be a convex body in Rn. For the maximum
volume ellipsoid Ei inscribed in C and the minimum volume ellipsoid Ec containing C, we
have their affine automorphism groups satisfy the following properties: Aut(C) ⊆ Aut(Ei),
Aut(C) ⊆ Aut(Ec) and every element in Aut(C) fixes the centers of Ei and Ec.

Using the above theorem, we obtain the following proposition:

Proposition 4.3.4. The maximum volume ellipsoid centered at I inscribed in the cone S2
+

has one of its axes on the line going through the origin and I, and the other axes all have
the same length.

Proof. Let the convex body C := C̄ ∩ C̄ ′, where

C̄ := {X ∈ S2
+ : 〈I,X〉 ≤ 2},

and C̄ ′ being the reflection of C̄ about I. Clearly, all Q ·QT must be in the automorphism
group of C, with Q being any orthogonal matrix. We call this group of elements S. The
geometric interpretation of these elements acting on C is the action of spinning around
the line l from the origin to I. By the above automorphism group theorem, we know that
every Q ·QT fixes the center of the ellipsoid. The only matrices that satisfy this condition
are λI, where λ ∈ R, which is exactly the line l.
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By the above theorem, the group of Aut(Ei), where Ei is the maximum volume ellipsoid
contained in C, contains all elements in S as well. Consider any set that is non empty of
the following form:

Ck := {X ∈ Ei : 〈I,X〉 = k}, k ∈ R.

Since the operation Q · QT preserves the inner product 〈I,X〉 for any X ∈ S2
+, together

with the fact that S ⊆ Aut(Ei), we must have Q(Ck)Q
T = Ck for any orthogonal Q.

Hence, Ck is a ball or a point whenever it is not empty.

Let H be the matrix defining the shape of the ellipsoid Ei. The above statement implies
that there are two eigenvectors of the matrix H defining the two axes of the ellipsoid on
the hyperplane of h := {X ∈ S2

+ : 〈I,X〉 = 0}, and their eigenvalues are the same. Clearly,
the line of {λI, λ ∈ R} = l is orthogonal to h. Hence, the third eigenvector orthogonal to
both of the other two eigenvectors can only be located on the line l.

Moreover, by construction of C,we know C is centrally symmetric about I, so the maximum
volume ellipsoid contained in C is centered at I. By similar arguments as before, we must
have the maximum volume ellipsoid in C centered at I being the largest volume ellipsoid
in S2

+ centered at I. The result follows.

Now, we can derive the maximum volume ellipsoid centered at I in the cone S2
+.

Proposition 4.3.5. The maximum volume ellipsoid centered at I inscribed in the cone
S2

+ is BH(I, 1), where H is a self-adjoint positive definite linear operator on S2 where
H(I) = 3

2
I, and H(M) = 3

4
M for any matrix M orthogonal to I.

Notice that vol(BH(I, 1)) =
√

25

33
vol(B), where vol(B) is the volume of the unit ball

centered at I. Clearly, this ellipsoid has a larger volume than the one described in Remark
4.3.1.

Proof. By Proposition 4.3.4, we know one of the axes of the maximum volume ellipsoid
centered at I and contained in S2

+ is along the line going through the origin and I.

Let us coordinate the space of S2 by the orthonormal basis {id, b2, b3}, where id := I
||I|| .

Let H :=

h1 h4 h5

h4 h2 h6

h5 h6 h3

 , det(H) = 1. E := {X ∈ S2 : 〈X − I,H(X − I)〉 ≤ r2}. We

want to maximize r, such that E ⊆ S2
+.
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Since one of the axes of E is on the line going through the origin and I, we have H(I) = λ1I.

Using the above coordination, H becomes

λ1 0 0
0 h2 h6

0 h6 h3

.

The other two axes of E must be in the subspace of span{b2, b3}. By Proposition 4.3.4,
we know their eigenvalues are equal to each other. Hence, we may let the other two axes

be b2 and b3. We get H(b2) = λ2b2 and H(b3) = λ2b3. Thus, H =

λ1 0 0
0 λ2 0
0 0 λ2

 .

Let λ1 =: λ > 0, and λ2 =: λ−
1
2 . Clearly, det(H) = λ1λ

2
2 = 1, and

H =

λ 0 0

0 λ−
1
2 0

0 0 λ−
1
2

 .

A point X = (x1, x2, x3)T , by this coordinate system is in E with the above H if and only
if:

λ(x1 −
√

2)2 + λ−
1
2 (x2

2 + x2
3) ≤ r2. (4.2)

We want a pair of λ and r with the largest r value (corresponding to the radius of E) such
that any point X that satisfy the inequality above, i.e., every point in E, corresponds to
a matrix in the cone of S2

+. We achieve this by finding a pair of λ and r such that every
point X that satisfies (4.2) corresponds to a positive semidefinite matrix. Explicitly, we
want to verify that every point in the Ellipsoid satisfies

√
x2

2 + x2
3 ≤ x1 or

x2
2 + x2

3 ≤ x2
1 and x1 ≥ 0. (4.3)

We see that the above inequalities (4.3) is satisfied given X is in E if and only if

λ(x1 −
√

2)2 + λ−
1
2x2

1 ≥ r2 and x1 ≥ 0. (4.4)

Now, we focus on finding the best λ such that

λ(x1 −
√

2)2 + λ−
1
2x2

1 ≥ r2 (4.5)

holds with the largest r.

Expanding this inequality, we get: (λ+ λ−
1
2 )x2

1− 2
√

2λx1 + 2λ ≥ r2. The minimum of the

left hand side is obtained at x1 =
√

2λ
3
2

1+λ
3
2

.
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Plugging in x1 =
√

2λ
3
2

1+λ
3
2

to the inequality, we get:

(λ+ λ−
1
2 )

( √
2λ

3
2

1 + λ
3
2

)2

− 2
√

2λ

( √
2λ

3
2

1 + λ
3
2

)
+ 2λ ≥ r2.

After expanding and simplifying the inequality, we obtain:

2√
λ+ 1

λ

≥ r2.

The left hand side is a function with a unique maximum obtained at λ = 4
1
3 . Hence, the

largest possible r2 is 2
5
3

3
.

We modify our H by multiplying H by a factor of 3

2
5
3

so that the radius of the ellipsoid is

1. It is straightforward to check that the second condition x1 ≥ 0 in (4.4) is satisfied for

this resulting ellipsoid. This ellipsoid has raduis r = 2
5
6√
3

Thus, this ellipsoid is indeed the

largest volume ellipsoid centered at I contained in S2
+.

Now we provide a second proof of this result by utilizing duality theory using contact points.
We will use the same embedding of S2 in R3 by the isometry s2vec, as before. Hence, we
can reduce the problem of finding the largest volume ellipsoid centered at identity in S2

+

to the problem of finding the largest volume ellipsoid centered at (1, 0, 1)T in R3.

Proposition 4.3.6. After embedding the cone S2
+ in R3 by s2vec, the maximum volume

ellipsoid centered at x̄ := (1, 0, 1)T , the point in R3 corresponding to I ∈ S2
+, and inscribed

in the cone s2vec(S2
+) is BH(x̄, 1), where

H =
3

8

3 0 1
0 2 0
1 0 3

 .

Before presenting the proof of the proposition, let us first verify that this ellipsoid is indeed
contained in s2vec(S2

+).

Proposition 4.3.7. Given any point x := (x1, x2, x3)T in BH(x̄, 1) ⊆ R3, where x̄ :=
(1, 0, 1)T , and

H =
3

8

3 0 1
0 2 0
1 0 3

 ,

x must also be contained in s2vec(S2
+), i.e., x1 ≥ 0, x3 ≥ 0 and x1x3 ≥ x22

2
.

55



Proof. Expanding the inequality 〈(x− x̄), H(x− x̄)〉 ≤ 1, corresponding to x ∈ BH(x̄, 1),
we have the polynomial inequality:

3(x1 − 1)2 + 2(x1 − 1)(x3 − 1) + 2x2
2 + 3(x3 − 1)2 ≤ 8

3
. (4.6)

Let us do a change of variable by letting A := x1 − 1, B := x3 − 1 and C = x2. The
inequality (4.6) becomes:

3A2 + 2AB + 2C2 + 3B2 ≤ 8

3
, or (A+B)2 + 2A2 + 2B2 + 2C2 ≤ 8

3
. (4.7)

We will first show x1, x3 ≥ 0, when x ∈ BH(x̄, 1). Consider the optimization problem of
minimizing the left hand side of the equation (4.7), with the constraint A ≤ −1. This is
clearly a convex optimization problem, and applying the KKT Theorem 2.2.1, we verify
that the minimum of the problem is achieved when A = −1 and B = 1

3
. The minimum

value is 8
3
. When A < −1, the minimum value of the left hand side of the equation (4.7)

is strictly larger than 8
3
, hence violating inequality (4.7). Thus, for x ∈ BH(x̄, 1), we must

have A ≥ −1, i.e., x1 ≥ 0. Similarly, we can get x3 ≥ 0 when x ∈ BH(x̄, 1).

Now, we will show x1x3 ≥ x22
2

, when x ∈ BH(x̄, 1). Suppose to the contrary that x1x3 <
x22
2

,
or 2(A+ 1)(B + 1) < C2, then together with the inequality (4.7), we have

(A+B)2 + 2A2 + 2B2 + 4(A+ 1)(B + 1) <
8

3
.

If we denote A+B =: M , this inequality becomes:

3M2 + 4M + 4 <
8

3
.

However, the minimum value of 3M2 + 4M + 4 for M ∈ R is 8
3
. This is a contradiction.

Hence, we must have x1x3 ≥ x22
2

, when x ∈ BH(x̄, 1). The result follows.

Notice this proposition and the proof show the ellipsoid E as in Proposition 4.3.5 is con-
tained in S2

+ directly. Now, we present the proof for Proposition 4.3.6:

Proof. (of Proposition 4.3.6) Let C := s2vec(S2
+ ∩ (S2

+)′), where (S2
+)′ is the reflection of

S2
+ around I. Let us try to find the possible contact points between C and the ellipsoid.

Since any contact point X ∈ S2
+ between the ellipsoid and S2

+ must be on the boundary of
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the cone, it must correspond to rank one matrix. Thus, the embedding x := (x1, x2, x3)T

of X :=

(
x1

x2√
2

x2√
2

x3

)
in R3 must satisfy x1x3 =

x22
2

. Furthermore, we need the contact points

to be on the boundary of the ellipsoid, i.e., it satisfies the equality:

〈(x− x̄), H(x− x̄)〉 = 1. (4.8)

By a similar derivation as before, this implies x1 + x3 − 2 = −2
3
, or x1 + x3 = 4

3
.

Using these two equalities, we can characterize all the possible contact points between
s2vec(S2

+) and the ellipsoid as:(
x1,±

√
8

3
x1 − 2x2

1,
4

3
− x1

)T

, where 0 ≤ x1 ≤
4

3
. (4.9)

Now, we pick a set of contact points between C and the ellipsoid. We choose those with
x1 = 0, 4

3
, 2

3
as in (4.9), and their reflection points around x̄. We have the following

p1, . . . , p8: 0
0
4
3

 ,

4
3

0
0

 ,

 2
3

2
√

2
3
2
3

 ,

 2
3

−2
√

2
3

2
3

 ,

2
0
2
3

 ,

2
3

0
2

 ,

 4
3

−2
√

2
3

4
3

 ,

 4
3

2
√

2
3
4
3

 .

The corresponding tensor products are:0 0 0
0 0 0
0 0 16

9

 ,

16
9

0 0
0 0 0
0 0 0

 ,

 4
9

4
√

2
9

4
9

4
√

2
9

8
9

4
√

2
9

4
9

4
√

2
9

4
9

 ,

 4
9

−4
√

2
9

4
9

−4
√

2
9

8
9

−4
√

2
9

4
9

−4
√

2
9

4
9

 ,

4 0 4
3

0 0 0
4
3

0 4
9

 ,

4
9

0 4
3

0 0 0
4
3

0 4

 ,

 16
9

−8
√

2
9

16
9

−8
√

2
9

8
9

−8
√

2
9

16
9

−8
√

2
9

16
9

 ,

 16
9

8
√

2
9

16
9

8
√

2
9

8
9

8
√

2
9

16
9

8
√

2
9

16
9

 .

Now, let us take all the dual variables y1, ..., y8 to be 3
8
, and it is easy to check that the

two equalities

H−1 =
1

3

 3 0 −1
0 4 0
−1 0 3

 =
r∑
i=1

yi(pi − x̄)(pi − x̄)T and
r∑
i=1

yi(pi − x̄) = 0
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are satisfied.

Hence, applying the Theorem 3.2.6, together with Proposition 4.3.7, we conclude that
this ellipsoid is the maximum volume ellipsoid centered at x̄ contained in C. By similar
arguments as before, this ellipsoid is the largest volume ellipsoid in s2vec(S2

+) centered at
x̄. The result follows.

Note that in the proof of Proposition 4.3.6, eight contact points (which is less than
n(n+3)

2
= 9) were sufficient.

By Proposition 4.1.3, and the fact that S2
+ is a homogeneous cone, we may reduce the

problem of finding the largest volume ellipsoid centered at an arbitrary point to the problem
of finding the largest volume ellipsoid centered at I inscribed in S2

+. We obtain this general
result as a corollary.

Corollary 4.3.8. The maximum volume ellipsoid centered at an interior point X̄ inscribed
in the cone S2

+ is B
(X̄−

1
2
s
⊗X̄−

1
2 )H(X̄−

1
2
s
⊗X̄−

1
2 )

(X̄, 1), where H is a self-adjoint positive definite

operator on S2 where H(I) = 3
2
I, and H(M) = 3

4
M for every matrix M orthogonal to I.

Proof. By Proposition 4.3.5, 4.1.3 and Proposition 4.1.2 and its proof, the result follows
immediately.

We know the positive semidefinite cone S2
+ is isometric to the second order cone in R3.

Using similar techniques, we obtain the following results for second order cones in general.

4.4 Maximum volume ellipsoids in second order cones

In this section, we derive the maximum volume ellipsoid centered at a given point contained
in general second order cone. This problem for the second order cones has been solved by
Güler and Gürtuna [19]. In this section, we will use different techniques to derive the
solutions. We will still do that in two ways: the first proof is geometric and algebraic in
nature, and the second proof uses John’s theorem based on duality theory and contact
point technique. We will first present the geometric proof.
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Proposition 4.4.1. The maximum volume ellipsoid centered at x̄ := e1 contained in second

order cone K :=

{(
t
x

)
∈ R⊕ Rn : t ≥ ||x||2

}
is BH(x̄, 1), where

H =


n+ 1 0 · · · 0

0 n+1
n
· · · 0

...
...

. . .
...

0 0 · · · n+1
n

 .

Proof. Using similar techniques as in Proposition 4.3.4 for the cone of S2
+, we can derive

that one of the axes of the maximum volume ellipsoid centered at e1 is on the line l going
through the origin and e1 for second order cones.

This is due to again the rich symmetries of the second order cones about the line l, and
it is captured mathematically by the automorphism group of the cones. Specifically, in
this case, we may prove the statement analogously as in Proposition 4.3.4 by using the
set of matrices acting on Rn+1 who maps e1 to itself and when restricted to the subspace
of span{e2, ..., en}, it is an orthogonal matrix. It is easy to check this set of matrices is a
subset of the automorphism group of the cones. Again by similar techniques as before, we
can prove that the other axes are on the lines of {αe2 : α ∈ R} , . . . , and {αen+1 : α ∈ R}
with the same length.

Note that any ellipsoid centered at x̄ can be represented as:

BH(x̄, r) =

{(
t
x

)
∈ Rn :

〈(
t− 1
x

)
, H

(
t− 1
x

)〉
≤ r2

}
.

If we fix det(H) = 1, the problem becomes finding an ellipsoid with the greatest r and
contained in the cone K.

By information on the axes and their lengths as described above, we obtain the following
equalities for H: He1 = 1

λn
e1, He2 = λe2,..., and Hen+1 = λen+1, with λ > 0. Thus,

H =


1
λn

0 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ

 .

The inequality

〈(
t− 1
x

)
, H

(
t− 1
x

)〉
≤ r2 simply becomes (t−1)2

λn
+ λ ||x||22 ≤ r2, or

λn+1 ||x||22 ≤ λnr2 − (t− 1)2. (4.10)
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Hence, our question becomes finding a best λ such that the above inequality (4.10) implies

||x||2 ≤ t (4.11)

with the largest r. We notice that (4.10) implies (4.11) if and only if

λnr2 − (t− 1)2 ≤ λn+1t2 and t ≥ 0. (4.12)

Now, we focus on finding the best λ and r pair such that

λnr2 − (t− 1)2 ≤ λn+1t2 (4.13)

holds with the largest r. We rewrite (4.13) as:

r2 ≤ (λn+1 + 1)t2 − 2t+ 1

λn
.

The minimum of the right hand side is obtained at t = 1
λn+1+1

. Hence,

r2 ≤ λ

λn+1 + 1
.

It is easy to check that the right hand side achieves its maximum at λ = n+1

√
1
n
, and we

get the maximum of r2 being n
n
n+1

n+1
.

Plugging in the value of λ and r2, and multiplying both sides by n+1

n
n
n+1

, we obtain our

ellipsoid in the form as in the proposition above: BH(x̄, 1), where

H =


n+ 1 0 · · · 0

0 n+1
n
· · · 0

...
...

. . .
...

0 0 · · · n+1
n

 .

It is straightforward to check that the second condition t ≥ 0 in (4.12) is satisfied as well.
Thus, this is indeed the maximum volume ellipsoid centered at x̄ contained in the second
order cone.

Now, let us use duality theory and contact points technique to provide a second proof for
this result.
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Proposition 4.4.2. The maximum volume ellipsoid centered at x̄ := e1 contained in second

order cone K :=

{(
t
x

)
∈ R⊕ Rn : t ≥ ||x||2

}
is BH(x̄, 1), where

H =


n+ 1 0 · · · 0

0 n+1
n
· · · 0

...
...

. . .
...

0 0 · · · n+1
n

 .

Proof. Firstly, using similar arguments as in Proposition 4.4.1, we have that this ellipsoid
is contained in the cone K. Let C := K ∩K ′− x̄, where K ′ is the reflection of K around x̄.
We can again reduce the problem to the problem of finding the maximum volume ellipsoid
centered at the origin contained in C. By reducing the problem to the convex compact
and centrally symmetric (around the origin) setting, we can apply John’s theorem as in
Theorem 3.2.6 to show optimality.

The contact points of the ellipsoid and the cone K are those points that satisfy (4.10)
and (4.13) with equality. After some derivation, we get all contact points should satisfy
t = n

n+1
, and ||x||2 = n

n+1
. Hence, the contact points of the ellipsoid and the cone K are in

the form of: (
n

n+ 1
, x1, . . . , xn−1,±

√
n2

(n+ 1)2
− x2

1 − ...− x2
n−1

)T

, (4.14)

where − n
n+1
≤ xi ≤ n

n+1
, i ∈ {1, ..., n− 1}.

With the contact points of the ellipsoid and the cone K as above, we can pick the contact
points of the ellipsoid and C by first picking the points as in (4.14) where exactly one
xi = − n

n+1
or n

n+1
, for i ∈ {1, ..., n}, and all the other entries are 0, then preform a

translation of −e1. We also include their reflected counterparts around the origin.

Now, if we write out all the 4n contact points p1, ..., p4n, and their corresponding tensor
products p1p

T
1 , ..., p4np

T
4n, it is not hard to see that by taking all

yi =
n+ 1

4n
> 0,

the two equality conditions

r∑
i=1

yipip
T
i = H−1 and

r∑
i=1

yipi = 0
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as in Theorem 3.2.6 hold. Thus, going back to the original cone setting using the same
arguments as before, we conclude that the ellipsoid is indeed the maximum volume ellipsoid
contained in the cone K centered at x̄.

Corollary 4.4.3. The volume of the maximum volume ellipsoid centered at x̄ := e1 con-

tained in second order cone K :=

{(
t
x

)
∈ R⊕ Rn : t ≥ ||x||2

}
is

vol(Bn+1)√
(n+ 1)(1 + 1

n
)n
,

with Bn+1 being the unit Euclidean ball in Rn+1. In particular, when n gets very large, the
volume approaches vol(Bn+1)√

(n+1)e
.

Proof. The maximum volume ellipsoid BH(x̄, 1) as in the last proposition has volume:

det(H−
1
2 ) vol(Bn+1) =

vol(Bn+1)√
(n+ 1)(1 + 1

n
)n
.

Moreover, as n approaches infinity, we notice that (1 + 1
n
)n goes to e.

Since the second order cones are homogeneous as well, by Proposition 4.1.3, we obtain
the general result of finding the largest volume ellipsoid inscribed in a second order cone
centered at an arbitrary point as a corollary.

Corollary 4.4.4. The maximum volume ellipsoid centered at an interior point x contained

in second order cone K :=

{(
t
x

)
∈ R⊕ Rn : t ≥ ||x||2

}
is BA−∗HA−1(x, 1), where

A : Rn+1 → Rn+1, A ∈ Aut(SOCn) such that A(e1) = x and

H =


n+ 1 0 · · · 0

0 n+1
n
· · · 0

...
...

. . .
...

0 0 · · · n+1
n

 .

Proof. By Proposition 4.4.2 and 4.1.3, the result follows immediately.
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This result can be easily adapted to find the maximum volume ellipsoid contained in any
general second order cones K̂ that are not canonical as K in Corollary 4.4.4, centered at
an arbitrary point x. To achieve this, we can first find an invertible linear map L for which
L(K) = K̂, and then we find the maximum volume ellipsoid B contained in K centered at
K−1(x). Clearly, E := L(B) is the maximum volume ellipsoid contained in K̂ and centered
at x. Moreover, the contact points of B and K correspond to that of E and K̂ by the
linear map L.

A “dual version” of this problem: finding the minimum volume ellipsoid containing a
truncated affine image of the second order cone:

C := {(x, y) ∈ Rn+1 : ||B(x− c)|| ≤ y, a ≤ y ≤ b},

where B is an invertible matrix in Rn×n, c ∈ Rn and 0 ≤ a < b are constants, is discussed
in Güler and Gürtuna [19]. An explicit expression of the center and the positive definite
form of the minimum volume ellipsoid is given as well. Thus, we can obtain yet another
proof for the second order cone cases using their result:

First, we let a = 0 and pick b > 0 such that the center of the minimum volume ellipsoid
containing the truncated second order cone with 0 ≤ y ≤ b is e1. Using the formulas as
in [19], we can find b that satisfy this requirement explicitly. We then apply a translation
of −e1 to the whole space so that e1 is mapped to the origin. We can now find the the
minimum volume ellipsoid E of the translated truncated cone C by the formulas in [19].
By construction, E is centered at the origin.

We take the polars of C and the ellipsoid E. Notice that the polar of a truncated second
order cone (containing the origin) is still a truncated second order cone. By the discussion
after Proposition 2.1.7, we know the polar of the ellipsoid E is the maximum volume
ellipsoid contained in C◦. Since E is centered at the origin by construction, so is E◦. By
Proposition 3.1.2, the symmetry properties of ellipsoids and the fact that E is the minimum
volume ellipsoid containing C, E must also be the minimum volume ellipsoid containing
conv(C ∪ C ′), where C ′ is the reflection of C around the origin. Hence, E◦ is also the
maximum volume ellipsoid contained in C̄ := C◦ ∩ C ′◦, which is the intersection of two
truncated second order cones.

We can apply an affine transformation A to make A(C̄) the intersection of the canonical
second order cone and its reflection around a certain point p. By similar arguments as
before, we know A(E◦) is the maximum volume ellipsoid centered at p and contained in
the second order cone. The result for an arbitrary center can be obtained with an additional
automorphism as before.
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4.5 Maximum volume ellipsoids in positive semidefi-

nite cones

In this section, we will find the maximum volume ellipsoid in general positive semidefinite
cones over the set of automorphism operators and also over all the self-adjoint positive
definite operators. We will provide two proofs for the later problem. First proof is geometric
and the second proof uses contact points and duality theory as in Chapter 3. These are
original results of the thesis.

4.5.1 The maximum volume ellipsoids over the set of automor-
phism operators

Proposition 4.5.1. Given an interior point X̄ in the cone Sn+, the unique largest volume
ellipsoid centered at X̄ and with its shape defined by an operator in

S = {T ∈ L(Sn,Sn) : T � 0, T (·) = U · U for some U ∈ Sn++}, (4.15)

and being contained in Sn+ is:

{X ∈ Sn :
∣∣∣∣X̄−1/2(X − X̄)X̄−1/2

∣∣∣∣ ≤ 1} or {X ∈ Sn :
〈
(X − X̄), X̄−1(X − X̄)X̄−1

〉
≤ 1}.

Proof. By Proposition 4.1.3, we know we can reduce the problem of finding the maximum
volume ellipsoid centered at any interior point X̄ contained in Sn+ to finding such an ellipsoid
centered at I, as the cone Sn+ is homogeneous. The automorphism in S that will map X̄

to I is X̄−
1
2 · X̄− 1

2 . An ellipsoid BH(X̄, r) is the largest volume ellipsoid centered at X̄

inscribed in Sn+ if and only if X̄−
1
2 (BH(X̄, r))X̄−

1
2 is the largest volume ellipsoid centered

at I inscribed in Sn+.

Now, we only need to prove that the largest volume ellipsoid centered at I inscribed in Sn+
with the self-adjoint positive definite operator being in S is

B(I, 1) := {X ∈ Sn : ||X − I|| ≤ 1}.

It is straightforward to verify that if X ∈ Sn has a negative eigenvalue, ||X − I|| will be
strictly larger than 1. Hence, B(I, 1) is contained in Sn+.

We are left to show B(I, 1) is the largest ellipsoid inscribed in Sn+ centered at I under the
assumption. Suppose to the contrary,

BV ·V (I, r) = {X ∈ Sn :
∣∣∣∣V −1/2(X − X̄)V −1/2

∣∣∣∣ ≤ r},

64



where V ∈ Sn++ \ {I}, det(H) = 1, and r ≥ 1 is also inscribed in Sn+. Since det(V ) = 1,
det(V −1) = 1. Since V 6= I, V −1 6= I. Thus, V −1 must have some positive eigenvalue λ
that is smaller than 1. Let X be in Sn such that V −1/2XV −1/2 has the same eigenvectors
as V −1 and all the eigenvalues are the same as well except that we replace the eigenvalue
of λ by λ − r. Since λ < 1 and r ≥ 1, λ − r < 0. Clearly, this X is in the ellipsoid by
construction, but it is not in Sn++. This is a contradiction.

Hence, the unique maximum volume ellipsoid centered at I inscribed in Sn+ with the self-
adjoint positive definite operator being in S is

{X ∈ Sn :
∣∣∣∣X̄−1/2(X − X̄)X̄−1/2

∣∣∣∣ ≤ 1} or {X ∈ Sn :
〈
(X − X̄), X̄−1(X − X̄)X̄−1

〉
≤ 1}.

Later, in Section 5.4, we will see a similar result from Lim [32]. It shows that the minimum
distance from an interior point A in a positive semidefinite cone to its boundary under the

local norm defined by the positive definite matrix X, i.e., ||Y ||X =
∣∣∣∣∣∣X− 1

2Y X−
1
2

∣∣∣∣∣∣ is equal

to the minimum eigenvalue of X−1A.

This result exactly coincides with our observation above. When A = I, the minimum
eigenvalue of X−1A is the minimum eigenvalue of X−1. Since we assume X has determinant
equal to 1, the determinant of X−1 is also equal to 1. Hence, the minimum eigenvalue of
X−1 is 1, obtained only when X is the identity matrix.

4.5.2 The maximum volume ellipsoids over all self-adjoint posi-
tive definite operators by geometry

Now, we want to consider all the possible ellipsoidal shapes, that is, we will consider all
the self-adjoint positive definite forms.

Let us first consider the problem of finding the largest radius with a given center and
ellipsoidal shape so that the ellipsoid is contained in the cone.

Proposition 4.5.2. Given an interior point X̄ ∈ Sn++, and a self-adjoint positive definite
linear operator H : Sn → Sn, with det(H) = 1, the largest radius r of an ellipsoid centered
at X̄ with shape defined by H and is contained in Sn+ is:

min

{ 〈
S, X̄

〉√
〈S,H−1(S)〉

: ∀S ∈ Sn+, rank(S) = 1,Tr(S) = 1

}
. (4.16)
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Proof. We use similar techniques as in the non-negative orthant case. Notice now for
positive semidefinite cone Sn+ we have infinitely many proper faces. We focus on the
maximal proper faces defined by rank one matrices, i.e., the extreme rays of its dual cone.

We may think of Sn+ as defined by the extreme rays of its dual cone as follows:

Sn+ = {X ∈ Sn : 〈X,S〉 ≥ 0, ∀S ∈ Sn+, rank(S) = 1,Tr(S) = 1}.

Moreover, a point P is on the boundary of Sn+ if and only if it satisfy the above condition
and there exist some S ∈ Sn+ so that:

rank(S) = 1, Tr(S) = 1 and 〈S, P 〉 = 0.

Thus, the problem now becomes how much can we grow the radius r of BH(X̄, r) such
that the minimization problems:

min{〈X,S〉 :
〈
(X − X̄), H(X − X̄)

〉
≤ r2}

for each S ∈ Sn+ with rank(S) = 1 and Tr(S) = 1 have non-negative optimal values and at
least one of the optimal values is 0.

Such r can be found by taking the minimum of all rS’s, for each S as above, where each
rS is the radius that makes the optimal value of the following optimization problem 0:

min{〈S,X〉 : 〈(X − I), H(X − I)〉 ≤ r2}.

After embedding Sn in R
n(n+1)

2 by the isometry s2vec, we can use Proposition 2.3.5 to
obtain the above result.

For ellipsoidal shapes from the set (4.15), we can find the largest radius explicitly in terms
of the minimum eigenvalue of an expression of the point X̄ and the matrix U defining the
ellipsoidal shape. We will see this result by Lim [32] in Section 5.4. Explicitly, given an
interior point X̄ ∈ Sn++, and a self adjoint positive definite linear operator of the form
U ·U for some U ∈ Sn++, the largest radius r of the ellipsoid centered at X̄ with the above
shape and is contained in Sn+ is the minimum eigenvalue of UX̄.

As discussed before, we know by Proposition 4.1.3, the problem of finding the maximum
volume ellipsoid centered at an arbitrary interior point in the positive semidefinite cone can
be reduced to the single case where the point is the identity. This is because any positive
semidefinite cone is homogeneous. We now focus on the problem of finding the maximal
volume ellipsoid centered at identity inscribed in the cone of Sn+ over all the self-adjoint
positive definite forms.

Before presenting the first proof, we state a proposition exposing the geometric properties
of the positive semidefinite cones:
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Proposition 4.5.3. The distance between I and any positive semidefinite matrix on the
boundary of Sn+ with rank less than or equal to k and on the affine subspace of

{H ∈ Sn : 〈I,H〉 = n}

is less than or equal to
√
n(n− 1) and greater than or equal to

√
n(n−k)

k
. Moreover, they

are obtained by rank one matrices and rank k matrices respectively.

Proof. For the matrix H as described above, we must have Tr(H) = n, as it is in the affine
subspace. The square of the norm in terms of the trace inner product between I and H is:

||I −H||2 = 〈I −H, I −H〉 = Tr(I) + Tr(H2)−2 Tr(H) = n−2n+ Tr(H2) = Tr(H2)−n.

Suppose λ1, ..., λn are the eigenvalues of H, then Tr(H2)− n = (
∑n

i=1 λ
2
i )− n.

To find the minimum and the maximum distance between identity and any positive semidef-
inite matrix with rank less or equal to k on the above affine subspace, we consider the
following optimization problems:

min{(
k∑
i=1

λ2
i )− n :

k∑
i=1

λi = n, λi ≥ 0,∀{1, ..., k}},

max{(
k∑
i=1

λ2
i )− n :

k∑
i=1

λi = n, λi ≥ 0, ∀{1, ..., k}}.

For the first minimization problem, we apply the KKT Theorem, and get the minimal
value is obtained when λ1 = ... = λk = n

k
. This implies the minimum value is obtained at

any matrix with k of the eigenvalues being n
k
, and the rest being 0. It is straightforward

to check the minimum distance in this case is
√

n(n−k)
k

.

The second optimization problem is maximizing a convex function over a convex set. We
know by the property of convex functions, the optimal value is achieved at an extreme
point. In this case, clearly all the extreme points correspond to rank one matrices, so
the maximum is achieved at some rank one matrices. However, all the rank one matrices
clearly have the same objective value. Thus, any rank one matrix is optimal, and the
maximum distance is

√
n(n− 1).

In particular, the distance between I and any positive semidefinite matrix on the boundary
of Sn+ and on the affine subspace of {H ∈ Sn : 〈I,H〉 = n} is less than or equal to
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√
n(n− 1), and greater than or equal to

√
n
n−1

. They are obtained by rank one matrices
and rank n− 1 matrices respectively.

With this observation, we can now derive the maximum volume ellipsoid contained in
the general positive semidefinite cone centered at I. We will first compute the maximum
volume ellipsoid in a suitable second order cone, which will be used later in the proof for
the positive semidefinite cone. In fact, we will prove that this ellipsoid is also the maximum
volume ellipsoid contained in Sn+ centered at I.

Proposition 4.5.4. The maximum volume ellipsoid centered at x̄ := (
√
n, 0, ..., 0)T con-

tained in the scaled second order cone K :=

{(
t
x

)
∈ R⊕ RN−1 : t ≥

√
n− 1 ||x||2

}
is

BH(x̄, 1), where

H =


n+1

2
0 · · · 0

0 n+1
n+2

· · · 0
...

...
. . .

...
0 0 · · · n+1

n+2

 .

Proof. Using similar techniques as in Proposition 4.3.4 for the cone of S2
+, we can derive

that one of the axes of the maximum volume ellipsoid centered at x̄ is on the line l going
through the origin and x̄ for the scaled second order cone.

This is due to again the rich symmetries of the second order cones about the line l, and
it is captured mathematically by the automorphism group of the cones. Specifically, in
this case, we may prove the statement analogously as in Proposition 4.3.4 by using the
set of matrices acting on Rn+1 who maps x̄ to itself and when restricted to the subspace
of span{e2, ..., en}, it is an orthogonal matrix. It is easy to check this set of matrices is a
subset of the automorphism group of the cones. Again by similar techniques as before, we
can prove that the other axes are on the lines of {αe2 : α ∈ R} , . . . , and {αen+1 : α ∈ R}
with the same length.

Note that any ellipsoid centered at x̄ can be represented as:

BH(x̄, r) =

{(
t
x

)
∈ RN :

〈(
t−
√
n

x

)
, H

(
t−
√
n

x

)〉
≤ r2

}
,

where N := n(n+1)
2

. If we fix det(H) = 1, the problem becomes finding an ellipsoid with
the greatest r and contained in the cone K.
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By information on the axes and their lengths as described above, we obtain the following
equalities for H: He1 = 1

λN−1 e1, He2 = λe2,..., and HeN = λeN , with λ > 0. Thus,

H =


1

λN−1 0 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ

 .

The inequality

〈(
t−
√
n

x

)
, H

(
t−
√
n

x

)〉
≤ r2 simply becomes (t−

√
n)2

λN−1 + λ ||x||22 ≤ r2, or

λN ||x||22 ≤ λN−1r2 − (t−
√
n)2. (4.17)

Hence, our question becomes finding the best λ such that the above inequality (4.17)
implies

√
n− 1 ||x||2 ≤ t. (4.18)

We notice that (4.17) implies (4.18) if and only if

λN−1r2 − (t−
√
n)2 ≤ λN t2

n− 1
and t ≥ 0. (4.19)

Now, we focus on finding the best λ and r pair such that

λN−1r2 − (t−
√
n)2 ≤ λN t2

n− 1
(4.20)

holds with the largest r.

We rewrite (4.20) as:

r2 ≤
( λN

n−1
+ 1)t2 − 2

√
nt+ n

λN−1
.

The minimum of the right hand side is obtained at t =
√
n

λN

n−1
+1

. Hence,

r2 ≤ nλ

λN + n− 1
.

It is easy to check that the right hand side achieves its maximum at λ = N

√
n−1
N−1

, and we

get the maximum of r2 being n(N−1)
N−1
N (n−1)

1−N
N

N
=
(

2
n+2

) 1
N
(
n+2
n+1

)
.
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Plugging in the value of λ and r2, and multiplying both sides by
(
n+2

2

) 1
N
(
n+1
n+2

)
we obtain

our ellipsoid in the form as in the proposition above: BH(x̄, 1), where

H =


n+1

2
0 · · · 0

0 n+1
n+2

· · · 0
...

...
. . .

...
0 0 · · · n+1

n+2

 .

It is straightforward to check that the second condition t ≥ 0 in (4.19) is satisfied as well.
Thus, this is indeed the maximum volume ellipsoid centered at x̄ contained in the scaled
second order cone.

Now, let us present the first proof for finding the maximum volume ellipsoids contained in
general positive semidefinite cones with the center being I.

Theorem 4.5.5. The maximum volume ellipsoid centered at I inscribed in the cone Sn+
is BH(I, 1), where H is a self-adjoint positive definite operator on Sn where H(I) = n+1

2
I,

and H(A) = n+1
n+2

A for any matrix A orthogonal to I.

Proof. First we embed the space Sn+ in RN by another isometry s2vec′, where s2vec′ is
the composition of first applying the map s2vec, and then applying a permutation matrix
to the resulting vector so that the new vector has its first n entries correspond to the n
diagonal entries in the original matrix. Recall that N = n(n+1)

2
.

Then, we apply a linear map M to the whole space so that the identity gets mapped
to (
√
n, 0, ..., 0)T . The linear map can be simply a rotation map on the subspace of

span{(1, ..., 1, 0, ..., 0)T , (1, 0, ..., 0)T}, and identity map when restricted to the subspace
orthogonal to it. We call the resulting cone KS.

Given Proposition 4.5.3, we try to find the maximum volume ellipsoid centered at x̄ =
(
√
n, 0, ..., 0)T in the transformed second order cone:

K :=

{(
t
x

)
∈ R⊕ RN−1 : t ≥

√
n− 1 ||x||2

}
.

By construction, K is contained in KS.

By Proposition 4.5.4, we have the maximum volume ellipsoid in K centered at x̄ is BH̄(x̄, 1),
with

H̄ =


n+1

2
0 · · · 0

0 n+1
n+2

· · · 0
...

...
. . .

...
0 0 · · · n+1

n+2

 .
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Since this ellipsoid is contained in K, we must have it is contained in KS as well.

Now, let us prove its optimality by utilizing Prop 4.3.3.

Let the optimal ellipsoid of the positive semidefinite cone be E. Consider the slice of the
cone:

C := {X ∈ Sn+ : 〈I,X〉 = n},

and the slice of the optimal ellipsoid:

B := {X ∈ E : 〈I,X〉 = n}.

By Prop 4.3.3, any linear map Q·QT with Q ∈ On, where On represents the set of orthognal
n-by-n matrices, is in the automorphism group of the optimal ellipsoid and the compact
set P := Sn+ ∩ (Sn+)′, where (Sn+)′ is the reflection of the cone around I. We see that this
implies all the Q ·QT are also in the automorphism group of C and B.

Since B is a slice of the ellipsoid, it must be an ellipsoid of one smaller dimension. Suppose
U is one of the farthest points to I in B. Then, all of QUQT must be in the set B as well.
Moreover, they are all at the same distance to I. Since Q ·QT will generate an infinite full
dimensional set of points in C, B must be a Euclidean ball.

By previous discussion, we know K ⊆ KS. This implies B ⊆ C. Moreover, let K̄ be the
image of cone K when we apply a rotation back. Since B is a Euclidean ball centered at
I, and by construction of the cone K, B ⊆ {X ∈ K̄ : 〈I,X〉 = n}. This argument works
for all non-empty slices of the ellipsoid E. Hence, we know the optimal ellipsoid must be
contained in K̄ which is contained in the positive semidefinite cone.

As a result the problem of finding the maximum volume ellipsoid centered at I in the
positive semidefinite cone can be reduced to the problem of finding the maximum volume
ellipsoid centered at I in the scaled second order cone. This shows the ellipsoid obtained
above is indeed the maximum volume ellipsoid in Sn+ centered at I. The result follows.

4.5.3 The maximum volume ellipsoids over all self-adjoint posi-
tive definite operators by contact points and duality

We can also prove the optimality of the maximum volume ellipsoid in Sn+ using duality the-
ory by finding a proper set of contact points. We use the same notations as in Proposition
4.5.5.
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The contact points of the ellipsoid and the cone K are(√
n(N − 1)

N
, x1, . . . , xN−2,±

√
n(N − 1)2

(n− 1)N2
− x2

1 − ...− x2
N−2

)T

,

where

−
√
n(N − 1)√
n− 1N

≤ xi ≤
√
n(N − 1)√
n− 1N

, i ∈ {1, ..., N − 2}.

We know these contact points correspond to rank (n− 1) matrices in Sn+. The reflection of

these contact points around
√

2e1 correspond to the full rank matrices in Sn+ which are the
reflections of those rank (n− 1) matrices around identity. They also correspond to contact
points of the ellipsoid and the compact set P . We want to select a set of contact points
that corresponds to those rank (n− 1) matrices.

Proposition 4.5.6. The contact points of Sn+ and BH(I, 1): the maximum volume ellipsoid
contained in Sn+ with center I is:X : X = Q


n(N−1)
(n−1)N

0 . . . 0

0
. . .

...
... n(N−1)

(n−1)N

...

0 . . . . . . 0

QT , Q ∈ On

 . (4.21)

Proof. By the characterization and formula of the contact points of BH̄(x̄, 1) and K given
above, we know the contact points of BH(I, 1) (corresponding to M−1(K)) and the cone
K ′ := sMat(M−1(K)) (corresponding to M−1(BH̄(x̄, 1))) are all on the hyperplane of trace
equal to some constant C. By this formula, we know N−1

N
I is in the hyperplane. Thus,

C = n(N−1)
N

. Hence, the contact points of BH(I, 1) and K ′ are exactly those located on the

boundary of the cone K ′ and on the hyperplane of trace equal to n(N−1)
N

.

By construction of K ′, we enforced that on any hyperplane of trace equal to some constant
C, the only contact points of K ′ and Sn+ are the ones described in Proposition 4.5.3, i.e.,
the set of matrices with rank n− 1, and every eigenvalue equal to C

n−1
. Hence, the contact

points of K ′ and Sn+ on the hyperplane of trace equal to n(N−1)
N

are exactly the set (4.21).

Putting these two arguments together, we conclude that the contact points of Sn+ and
BH(I, 1) are the set (4.21).
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With the above characterization of the contact points of the cone Sn+ and the maximum
volume ellipsoid, we provide a second proof for finding the maximum volume ellipsoids in
Sn+ centered at I using duality theory.

By similar arguments as before, we know the maximum volume ellipsoid in Sn+ centered at
I must be contained in the intersection of Sn+ and its reflection (Sn+)′ around I. We denote
this resulting convex compact set by S ′. We see the original problem is now reduced to
finding the maximum volume ellipsoid contained in S ′ ⊆ Sn.

Theorem 4.5.7. The maximum volume ellipsoid centered at identity contained in S ′ is
BH(I, 1), where H is a self-adjoint positive definite operator on Sn where H(I) = n+1

2
I,

and H(M) = n+1
n+2

M for any matrix M orthogonal to I in Sn.

Proof. To prove this, we will use the Corollary 4.1.3. We will verify that all the conditions
are satisfied for the Euclidean embedding of BH(I, 1) and S ′.

We first check that BH(I, 1) ⊆ S ′. This can be proven in a similar fashion as in Proposition
4.5.5, i.e., we can verify the containment for any given hyperplane with a constant trace.

We take matrices described below as the contact points of S ′ and BH(I, 1) using Proposition
4.5.6, by choosing a “balanced” set of orthogonal matrices in On:

We take the subset of matrices described in Proposition 4.5.6, where the 0 eigenvectors of
the matrices correspond to vectors in Rn of the form:

(0, . . . ,±1, . . . , 0)T or
1√
n

(±1, . . . ,±1)T .

As taking the 0 eigenvector to be v or −v corresponds to the same matrix, we will only
take one of the them. As proved in Proposition 4.5.6, these matrices are indeed contact
points of S ′ and BH(I, 1). For each contact point M , we will also include 2I −M , the
reflection around identity, as the corresponding contact point.

There are n+n contact points generated from the first type, and 2n−1 + 2n−1 = 2n contact
points generated from the second type. These 2 sets of contact points when embedded in
Euclidean space RN (N = n(n+1)

2
), are of the following forms:

Contact points pi’s of the first type are of the form
(
n(N−1)
N(n−1)

, . . . , 0, . . . , n(N−1)
N(n−1)

, 0, . . . , 0
)T

and
(

2− n(N−1)
N(n−1)

, . . . , 2, . . . , 2− n(N−1)
N(n−1)

, 0, . . . , 0
)T

. After simplification, they are of the

form: (
n+ 2

n+ 1
, . . . , 0, . . . ,

n+ 2

n+ 1
, 0, . . . , 0

)T
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and (
n

n+ 1
, . . . , 2, . . . ,

n

n+ 1
, 0, . . . , 0

)T
.

Only the first n entries of these vectors may be non-zero, corresponding to the diagonal
entries of the matrices. The rest of the entries are 0, corresponding to the off-diagonal
entries of the matrices. The number 0 appears once in each of the first n entries of the n
vectors, and The number 2 also appears once in each of the first n entries of the other n
vectors.

Let pi be a vector whose i’s entry is either 0 or 2, and let s2vec′(I) be the embedding of

I in RN . The N -by-N tensor (pi − s2vec′(I))(pi − s2vec′(I))T is of the form

(
A B
C D

)
.

A ∈ Sn, B ∈ Rn×(N−n), C ∈ R(N−n)×n, D ∈ SN−n. B,C and D are zero matrices, and

A =
1

(n+ 1)2
{eeT + [(n+ 1)2 + 2(n+ 1)]eie

T
i − (n+ 1)(eie

T + eeTi )}

=



1
(n+1)2

. . . − 1
n+1

. . . 1
(n+1)2

...
. . .

...
− 1
n+1

. . . 1 . . . − 1
n+1

...
...

. . .
1

(n+1)2
. . . − 1

n+1
. . . 1

(n+1)2

 .

All entries of A are equal to 1
(n+1)2

, except the i-th row and column. A is a rank two
matrix.

Summing the 2× n tensors of the first type, we obtain a matrix of the form 2×
(
A B
C D

)
.

A ∈ Sn, B ∈ Rn×(N−n), C ∈ R(N−n)×n, D ∈ SN−n. B,C and D are zero matrices, and

A =

1 + n−1
(n+1)2

. . . − n+4
(n+1)2

...
. . .

...
− n+4

(n+1)2
. . . 1 + n−1

(n+1)2

 =


n(n+3)
(n+1)2

. . . − n+4
(n+1)2

...
. . .

...

− n+4
(n+1)2

. . . n(n+3)
(n+1)2


=

1

(n+ 1)2
[(n+ 2)2I − (n+ 4)eeT ].

Entries of A have only two values. One value for diagonal entries, and another for off-
diagonal entries.
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Contact points pj’s of the second type are of the form(
N − 1

N
, . . . ,

N − 1

N
,±(N − 1)

√
2

N(n− 1)
, . . . ,±(N − 1)

√
2

N(n− 1)

)T

(4.22)

and (
2− N − 1

N
, . . . , 2− N − 1

N
,±(N − 1)

√
2

N(n− 1)
, . . . ,±(N − 1)

√
2

N(n− 1)

)T

. (4.23)

The first n entries of these vectors are all equal to N−1
N

or 2 − N−1
N

, and the rest of the

entries are all equal to ± (N−1)
√

2
N(n−1)

, corresponding to the off-diagonal entries of the matrices.

The sign pattern of the last n(n−1)
2

entries for each vector in (4.22) is dependent on the
sign pattern of the corresponding 0 eigenvector v. Specifically, the signs of these vectors
correspond to the signs of the column entries in the strict lower triangular part of the
corresponding matrix, and the signs of these column entries are as follows:
For the i-th column c, if vi is 1, then the signs of ci+1, . . . , cn will be the same as that
of −vi+1, . . . ,−vn. If vi is −1, then the signs of ci+1, . . . , cn will be the same as that of
vi+1, . . . , vn.
The vectors in (4.23) are the reflections of the vectors in (4.22) around s2vec′(I), hence

the signs of the last n(n−1)
2

entries of these vectors are the opposite of their counterparts in
(4.22).

For any such contact point pj, the N -by-N tensor (pj− s2vec′(I))(pj− s2vec′(I))T is of the

form

(
A B
C D

)
, where A ∈ Sn, B ∈ Rn×(N−n), C ∈ R(N−n)×n, D ∈ SN−n. Every entry of

matrix A has value 1
N2 , every entry of matrix B and C has value ± (N−1)

√
2

N2(n−1)
, and

D =


2(N−1)2

N2(n−1)2
. . . ± 2(N−1)2

N2(n−1)2

...
. . .

...

± 2(N−1)2

N2(n−1)2
. . . 2(N−1)2

N2(n−1)2

 .

Entries of D take one of two values: one value for diagonal entries and another for off-
diagonal entries.

Summing the 2 × 2n−1 tensors of the second type, we obtain a matrix of the form 2 ×(
A B
C D

)
, where A ∈ Sn, B ∈ Rn×(N−n), C ∈ R(N−n)×n, D ∈ SN−n. Every entry of matrix
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A has value 2n−1

N2 , and B and C are zero matrices. This is because the 0 eigenvectors we
generated of the second type include all the possible combinations of +1 and −1. Hence, for

any given entry of matrix B and C, there are an equal number of + (N−1)
√

2
N2(n−1)

and − (N−1)
√

2
N2(n−1)

in the sum.

D = Diag(
2n(n+ 2)2

n2(n+ 1)2
, . . . ,

2n(n+ 2)2

n2(n+ 1)2
).

The off-diagonal entries sum to be 0 for the same reason as B and C being zero matrices.

Notice H−1 =

(
A B
C D

)
, where A ∈ Sn, B ∈ Rn×(N−n), C ∈ R(N−n)×n, D ∈ SN−n. B and

C are zero matrices,

A =

 1 . . . − 1
n+1

...
. . .

...
− 1
n+1

. . . 1

 =
1

n+ 1

(
(n+ 2)I − eeT

)
,

and

D = Diag(
n+ 2

n+ 1
, . . . ,

n+ 2

n+ 1
).

Let the dual variables of the first type to be:

y1 = · · · = y2n =
n+ 1

2(n+ 2)
,

and the dual variables of the second type to be:

y2n+1 = · · · = y2n+2n =
n2(n+ 1)

2n+1(n+ 2)
.

It is straightforward to check that

H−1 =
2n+2n∑
i=1

yi(pi − s2vec′(I))(pi − s2vec′(I))T

and
2n+2n∑
i=1

yi(pi − s2vec′(I)) = s2vec′(I).

By Corollary 4.1.3, and similar arguments as before, the result follows.
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Since the positive semidefinite cones are homogeneous, by Proposition 4.1.3, we obtain the
general result of finding the largest volume ellipsoid inscribed in a positive semidefinite
cone centered at an arbitrary point as a corollary.

Corollary 4.5.8. The maximum volume ellipsoid centered at at an interior point X̄ con-
tained in Sn+ is

B
(X̄−

1
2
s
⊗X̄−

1
2 )H(X̄−

1
2
s
⊗X̄−

1
2 )

(X̄, 1),

where H is a positive operator on Sn where H(I) = n+1
2
I, and H(M) = n+1

n+2
M for any

matrix M orthogonal to I in Sn.

Proof. By Proposition 4.5.7, 4.1.3 and Proposition 4.1.2 and its proof, the result follows
immediately.

4.6 Maximum volume ellipsoids in special homoge-

neous cones

We now consider a further generalization of the positive semidefinite cone. Consider the
following cone K obtained from intersecting a positive semidefinite cone with a linear
subspace:

K :=

{
(t, U,X) ∈ R⊕ Rm×k ⊕ Sm :

(
tI UT

U X

)
� 0

}
.

It is clear that K = Sm+k
+ ∩ L, where

L :=

{
M ∈ Sm+k : M =

(
M11 M12

M21 M22

)
,M11 = tI, for some t ∈ R

}
.

It is easy to check that this cone is a homogeneous cone, since it is the Siegel cone con-
structed from Sm+ (Please refer to Truong and Tunçel [47] and the references therein). We
can also easily find an automorphism that maps a given point in the cone K to another
point in the cone.

Let us consider some geometric structures of this cone K:

Proposition 4.6.1 (Truong and Tunçel [47]). The extreme rays of cone K are either of
the form: {

r

(
tI UT

U 1
t
UUT

)
, r ≥ 0, t > 0

}
,
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or of the form: {
r

(
0 0
0 X

)
, r ≥ 0, X on the extreme ray of Sm+

}
.

Proof. For any matrix M =

(
tI UT

U X

)
in K, we want to write it as a non-negative sum

of the matrices in the proposition.

First, we consider the case of t = 0. Since M is positive semidefinite, we know in this case

U = 0 as well. Hence, M =

(
0 0
0 X

)
. The problem reduces to finding the extreme rays of

Sm+ , which we know already. Thus, we get the extreme rays of the second form.

Now, we consider the case when t > 0. Since M is positive semidefinite, by the Schur
complement lemma, we know X − 1

t
UUT � 0. Hence, M can be written as a sum of two

other matrices in the cone:(
tI UT

U 1
t
UUT

)
+

(
0 0
0 X − 1

t
UUT

)
.

We already know how to decompose the second matrix, and the first matrix corresponds
to the first form in the proposition.

Hence, we are able to write any M as a non-negative sum of the matrices in the proposition.

It is clear that matrices of neither form can be represented by a positive sum of other
matrices in the cone K. Thus, the result follows.

By Truong and Tunçel [47], We also know that any face of the cone K is of one of the two
forms below: {(

0 0
0 X

)
: X ∈ P, P is a face of Sm+

}
,

or{
r

(
tI UT

U X

)
: r, t ≥ 0, tX − UUT � 0, for some specific X ∈ relint(P ), P is a face of Sm+

}
.

We see that every face in the lower order cone uniquely defines or relates to an infinite set
of faces in the higher order cone.

Following a similar line of thought, as in the positive semidefinite cone case, we consider
the distances from the identity, which corresponds to (1, 0, I)T in cone K, to the faces of
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the cone on the slice S := {M ∈ K : Tr(M) = m + k}. We know the minimum distance
from (1, 0, I)T , corresponding to Im+k ∈ Sm+k

+ , to all the proper face of Sm+k
+ with the trace

being m+ k is obtained by

D =


m+k
m+k−1

. . .
m+k
m+k−1

0

 ,

by Prop 4.5.3. Cone K is defined as Sm+k
+ ∩ L, hence S is a subset of the points on Sm+k

+

with the trace being m+k. Hence, the minimum distance between (1, 0, I)T and any proper
face of the cone on S is at least the distance from (1, 0, I)T to D. It is straightforward
to verify that D is also in K. Thus, the minimum distance between (1, 0, I)T and all the
proper face of the cone on S is obtained by D.

By Proposition 4.3.3, we know for any g ∈ Aut(K), g(D) is also in the cone K. In
particular, since D is on the boundary of the cone, g(D) will be on the boundary of the
cone as well. It is easy to see that any Q ·Q, where

Q ∈ Om+k, with Qm+k,1 = · · · = Qm+k,k = 0

are all valid automorphisms for K. Moreover, all such QDQT are of the same distance to
(1, 0, I)T . These matrices span a subspace of R⊕Rm×k ⊕ Sm. We denote this subspace as
J . When restricting our attention to this subspace, the optimal ellipsoid is a ball of fixed
radius. However, J 6= R⊕ Rm×k ⊕ Sm in this case. Hence, the intersection of the optimal
ellipsoid and S may not be a unit ball any more. We need to consider the geometry of the
optimal ellipsoid “outside” this subspace.

Since the optimal ellipsoid may not be a ball anymore, it will be very useful if we can
characterize the distances from the identity (1, 0, I)T to the proper faces of the cone on S.
Using the characterization of the face structures as above, we know the distances to the
faces where t = 0 can be easily calculated using similar arguments as in Proposition 4.5.3,
as any face of the first form is isometric to a face in the cone Sm+ . For faces of the second
type, we can again separate them in two sub-cases: P is a proper face of Sm+ , or P is a face
of full dimension in Sm+ .

To find even more points of minimum distance from the identity to the boundaries of the
cone on S and in general to explore the boundary structures of the cone K, the following
proposition due to Truong and Tunçel [47] can be of great help. The proposition provides
a description of a transitive subset of the automorphism group of the cone K.
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Proposition 4.6.2 (Truong and Tunçel [47]). A transitive subgroup of the automor-
phism group of K can be generated from the following linear maps for each (t, u, x) ∈
interior of K:

1. T1(t, u, x) := (αt,
√
αu, x), α > 0,

2. T2(t, u, x) := (t, u+ tv, x+ 2B(u, v) + tB(v, v)), B(u, v) := 1
2
(uvT + vuT ),

3. T3(t, u, x) := (t, Pu, PxP T ), where P is any (symmetric) non-singular matrix.

This is a direct application of Lemma 1 in the paper and the fact that:
{G · GT : G is invertible} is the automorphism group of Sm+ , and {G · GT : G ∈ Sm++} is a
transitive subset of it.

We can use this theorem to find all the points of minimum distance from the identity to the
boundaries of the cone on S and hence obtain the subspace spanned by them. Moreover,
the boundary structures of the cone K can be explored if we map some boundary points
of interest by the maps in this transitive group.

Specifically, it may be worthwhile to look at boundary points with high rank, as it is
likely that the contact points between the maximum volume ellipsoid and the cone are
still obtained by matrices that correspond to a sum of extreme points as in the positive
semidefinite cone case. We can also try to characterize the generators and the subset of
transitive automorphisms of the cone as in the above proposition in matrix form. With the
characterization, we can get a more concrete idea of where the automorphisms will map
a matrix on the boundary of the cone to. Knowing the boundary structures of the cone
will help to determine the possible axes and lengths of the maximum volume ellipsoid, and
hence is the fundamental building block of finding the maximum volume ellipsoid in cone
K.

With Proposition 4.6.2, we can also determine whether one of the axes of the maximum
volume ellipsoid lies on the line going through the origin and (1, 0, I)T as in the positive
semidefinite cone case.

Furthermore, we can consider coordinating this space differently so that the representation
of the optimal ellipsoid is in a “nice” form. For instance, we may coordinate the space so
that the matrix defining the ellipsoidal shape of the maximum volume ellipsoid is in the
diagonal form. The most natural coordination of the space of R ⊕ Rm×k ⊕ Sm may not
reflect the geometric structure of the ellipsoid.

80



Chapter 5

Largest primal-dual pairs of ellipsoids
with specified centers in convex cones

In this chapter, we consider the primal-dual version of the maximum ellipsoid problem.
Given a pair of primal-dual cones and a pair of interior points in the cones respectively,
we would like to maximize the product of the volumes of the pair of primal-dual ellipsoids
centered at the given points inscribed in the cones over all possible ellipsoidal shapes.

Recall that given a self-adjoint positive definite operator H, we have the (local) norm

being defined as ||x||H := 〈x,Hx〉
1
2 , and its dual norm defined as ||x||∗H := 〈x,H−1x〉

1
2 .

The problem of finding the largest primal-dual pairs of ellipsoids is related to dual norms
as well, as the positive definite forms of the primal and dual ellipsoids induces a pair of
norms dual to each other. In particular, the largest radii r1, r2 of a pair of ellipsoids dual
to each other with positive form H and H−1 centered and inscribed in a pair of primal-dual
cones is exactly the smallest distances in local norms defined by H and H−1 from the two
centers to the boundaries of the cones.

5.1 Largest primal-dual pairs of ellipsoids in positive

semidefinite cones

We first consider the special symmetric cone of Sn+ with its dual cone also equal to Sn+.
We know for any X̄ ∈ int(Sn+) and S̄ ∈ int(Sn+), there exist an automorphism “W ·W”,
W ∈ Sn++, such that X̄ is mapped to S̄, int(Sn+) is mapped to int(Sn+) and bd(Sn+) is mapped
to bd(Sn+) under the automorphism.
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It is proved in Todd [46] that this automorphism induces a pair of ellipsoidal shapes W ·W
and W−1 ·W−1 that maximizes the product of the volumes of the ellipsoids D and D∗,
where D and D∗ are ellipsoids centered at X̄ and S̄ with ellipsoidal shapes H and H−1

for any given self-adjoint and positive definite H and inscribed in the primal cone Sn+ and
dual cone Sn+.

Given a pair of points X̄ in the interior of the positive definite cone Sn+ and S̄ in the interior
of Sn+, the corresponding dual cone, we define:

αX̄(H) := max{αX̄ : BH(X̄;αX̄) ⊆ Sn+},

αS̄(H−1) := max{αS̄ : BH−1(S̄;αS̄) ⊆ Sn+}.

The main theorem for the positive semidefinite cone setting is as follows:

Theorem 5.1.1 (Todd [46]). Let X̄ be in the interior of the positive definite cone Sn+ and
S̄ be in the interior of the dual cone Sn+. Then,

max
H�0

αX̄(H)αS̄(H−1) = αX̄(W ·W )αS̄(W−1 ·W−1),

where W ∈ Sn++ is the unique matrix that satisfies the equality WX̄W = S̄.

Proof. It is easy to check that W ·W , where

W = X̄−
1
2 (X̄

1
2 S̄X̄

1
2 )

1
2 X̄−

1
2

is an automorphism of Sn+, and WX̄W = S̄. There must exist a Z̄ ∈ bd(Sn+), such that∣∣∣∣Z̄ − X̄∣∣∣∣
W ·W = αX̄(W ·W ),

i.e., the distance between Z̄ and X̄ is exactly αX̄(W ·W ) with respect to the local norm.
We can also find a non-zero Ū ∈ bd(Sn+) such that Ū Z̄ = 0 by eigenvalue decomposition of
Z̄. Thus,

〈
Ū , Z̄

〉
= 0 (we can obtain the same result by supporting hyperplane theorem).

Since Ū ∈ bd(Sn+) (in the dual cone), and BW ·W (X̄;αX̄(W ·W )) ⊆ Sn+ (ellipsoid contained
entirely in the primal cone) we have:

min{
〈
Ū , P

〉
: P ∈ BW ·W (X̄;αX̄(W ·W ))} = 0 =

〈
Ū , Z̄

〉
.

W ·W is an automorphism that maps X̄ to S̄, int(Sn+) to int(Sn+), and bd(Sn+) to bd(Sn+).
Moreover, by simple algebra we can show W · W maps an ellipsoid of shape W · W to
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an ellipsoid of shape W−1 ·W−1. Hence, we have W ·W maps BW ·W (X̄;αX̄(W ·W )) to
BW−1·W−1(S̄;αS̄(W−1 ·W−1)), i.e., W ·W maps the corresponding maximal primal ellipsoid
to its maximal dual ellipsoid.

Since W ·W maps the boundary of Sn+ to the boundary of Sn+, we can take WZ̄W (the
image of the boundary point Z̄ in the dual cone, which is on the boundary of the dual Sn+)
to be T̄ , and let V̄ to be W−1ŪW−1. This image is in primal Sn+, since W−1 ·W−1 is an
automorphism as well. In this way,〈

V̄ , T̄
〉

=
〈
W−1ŪW−1,WZ̄W

〉
=
〈
Ū , Z̄

〉
= 0.

Similarly, with T̄ ∈ bd(Sn+) we get
∣∣∣∣T̄ − S̄∣∣∣∣∗

W ·W = αS̄(W−1 ·W−1), and for V̄ ∈ Sn+ \ {0},

min{
〈
V̄ , Q

〉
: Q ∈ BW−1·W−1(S̄;αS̄(W−1 ·W−1))} = 0 =

〈
V̄ , T̄

〉
.

The following results where Ū and V̄ are nonzero can be proven in a similar way as in
Proposition 2.3.5:

min{
〈
Ū , P

〉
: P ∈ BH(X̄;αX̄)} =

〈
Ū , X̄

〉
− αX̄

∣∣∣∣Ū ∣∣∣∣∗
H
,

and the minimum value is attained by P := X̄ − (αX̄/
∣∣∣∣Ū ∣∣∣∣∗

H
)H−1Ū .

min{
〈
V̄ , Q

〉
: Q ∈ BH−1(S̄;αS̄)} =

〈
V̄ , S̄

〉
− αS̄

∣∣∣∣V̄ ∣∣∣∣
H
,

and the minimum value is attained by Q := S̄ − (αS̄/
∣∣∣∣V̄ ∣∣∣∣

H
)HV̄ .

Moreover, we may suppose
∣∣∣∣Ū ∣∣∣∣∗

W ·W = 1. Since V̄ = W−1ŪW−1, we have
∣∣∣∣V̄ ∣∣∣∣

W ·W = 1
as well.

Hence, 〈
Ū , X̄

〉
= αX̄(W ·W )

∣∣∣∣Ū ∣∣∣∣∗
W ·W = αX̄(W ·W ), (5.1)

and 〈
V̄ , S̄

〉
= αS̄(W−1 ·W−1)

∣∣∣∣V̄ ∣∣∣∣
W ·W = αS̄(W−1 ·W−1). (5.2)

Here we use the inner product as a measure of the radius, and will use it as an intermediate
step to compare the radius of the optimal shape with that of the other shapes.
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By BH(X̄;αX̄(H)) ⊆ Sn+, and the argument above, we have:

min{
〈
Ū , P

〉
: P ∈ BH(X̄;αX̄)} =

〈
Ū , X̄

〉
− αX̄

∣∣∣∣Ū ∣∣∣∣∗
H
≥ 0

for any arbitrary self-adjoint and positive-definite H from Sn to Sn. Thus,〈
Ū , X̄

〉
≥ αX̄(H)

∣∣∣∣Ū ∣∣∣∣∗
H
. (5.3)

Similarly, we can obtain 〈
V̄ , S̄

〉
≥ αS̄(H−1)

∣∣∣∣V̄ ∣∣∣∣
H
. (5.4)

Now, we are going to use them as an intermediate step to compare the radius of the optimal
shape with that of the other shapes:

αX̄(W ·W )αS̄(W−1 ·W−1) =
〈
Ū , X̄

〉 〈
V̄ , S̄

〉
≥ αX̄(H)αS̄(H−1)

∣∣∣∣Ū ∣∣∣∣∗
H

∣∣∣∣V̄ ∣∣∣∣
H

≥ αX̄(H)αS̄(H−1)
〈
Ū , V̄

〉
= αX̄(H)αS̄(H−1).

In the above, the first equality follows by equalities (5.1) and (5.2), the first inequality
follows from inequalities (5.3) and (5.4), the second inequality uses Cauchy-Schwarz in-
equality, and the last equation follows from the fact that〈

Ū , V̄
〉

=
〈
Ū ,W−1ŪW−1

〉
= (
∣∣∣∣Ū ∣∣∣∣∗

W ·W )2 = 1.

This concludes the proof.

It follows that the largest ellipsoid pair centered at identity for a pair of primal-dual
semidefinite cones is a pair of unit Euclidean balls. The product of the radii of the ellipsoids
is 1.

However, we know the radii of the largest inscribed ellipsoid centered at identity in a single
semidefinite cone is greater than 1. In particular,

r =

(
2

n+ 2

) 1
N
(
n+ 2

n+ 1

)
.

If both of the semidefinite cones take their largest ellipsoids centered at identity separately,

the product of the radii of the ellipsoids will be
(

2
n+2

) 2
N
(
n+2
n+1

)2
, which is greater than 1.
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Nevertheless, we must note that as n approaches infinity, this value gets close to one. For
example, for n = 2, 10, 100 and 1000, this product of the radii is less than 1.059, 1.056,
1.01 and 1.002, respectively.

However, this pair of ellipsoids are not dual to each other. To make them a primal-dual
pair, we need to change the ellipsoidal shape of one of the ellipsoids. Geometrically, we
will change the ellipsoid by stretching the axis along identity of the ellipsoid. The same
arguments as in Proposition 4.5.4 can be used to obtain the largest radius of the new
ellipsoid so that it is still contained in the cone. Its radius is:√√√√(n N

√
N − 1

n− 1

)
/

(
N − 1

n− 1
+ n− 1

)
=

√
2

3

(
n+ 2

2

) 1
N

.

Now, if we calculate the product of the radii of the primal-dual pair of ellipsoids obtained
this way, we get: √

2

3

(
n+ 2

n+ 1

)
.

Clearly, this product is smaller than 1 for all n ≥ 2, and tends to
√

2
3

as n goes to infinity.

Geometrically speaking, taking a unit ball and squeezing it on the axis along identity
potentially allows the inscribed ellipsoid to be larger, and stretching it along the same axis
makes it smaller. There is some trade-off between them. It turns out, in this way, no
matter how much larger we can make one of the ellipsoids, the other ellipsoid will become
even smaller according to the measure of the product of the radii. Hence, to maximize the
product of the radii, we shall choose a pair of unit balls.

Proposition 5.1.2. For an arbitrary pair of interior points X̄ and S̄ in Sn+, the prod-
uct of the radius of the largest volume ellipsoid centered at X̄ contained in the posi-
tive semidefinite cone and the radius of its dual ellipsoid centered at S̄ contained in the

dual cone is det(X̄)−
2
n

√(
2

n+2

) 1
N
(
n+2
n+1

)
·min

{
〈S,S̄〉√
〈S,ĤS〉

: ∀S ∈ Sn+, rank(S) = 1,Tr(S) = 1

}
,

where Ĥ := (X̄−
1
2
s
⊗X̄−

1
2 )H(X̄−

1
2
s
⊗X̄−

1
2 )∣∣∣∣∣∣∣∣(X̄− 1

2
s
⊗X̄−

1
2 )H(X̄−

1
2
s
⊗X̄−

1
2 )

∣∣∣∣∣∣∣∣ .

Proof. According to the automorphism theorem 4.1.3 and Theorem 4.5.7, the largest el-
lipsoid centered at X̄ and contained in the positive semidefinite cone has radius

det(X̄)−
2
n

√(
2

n+ 2

) 1
N
(
n+ 2

n+ 1

)
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with shape Ĥ := (X̄−
1
2
s
⊗X̄−

1
2 )H(X̄−

1
2
s
⊗X̄−

1
2 )∣∣∣∣∣∣∣∣(X̄− 1

2
s
⊗X̄−

1
2 )H(X̄−

1
2
s
⊗X̄−

1
2 )

∣∣∣∣∣∣∣∣ . H is the same positive definite form as in

Theorem 4.5.7.

The largest radius of the ellipsoid centered at S̄ with the dual ellipsoidal shape inscribed
in the dual cone (which is also a positive semidefinite cone) can be expressed in a similar
way as in (4.16) of Proposition 4.5.2, which is:

min


〈
S, S̄

〉√〈
S, ĤS

〉 : ∀S ∈ Sn+, rank(S) = 1,Tr(S) = 1

 .

The result follows.

5.2 Largest primal-dual pairs of ellipsoids in self-scaled

(symmetric) cones

Let K be a symmetric cone, and F be a self-scaled barrier for K. Pick any x̄ ∈ int(K)
and s̄ ∈ int(K∗). It is proved in Todd (2009) that the unique w ∈ int(K) such that
F ′′(w)(K) = K∗ and F ′′(w)x̄ = s̄ induces a pair of ellipsoid shapes F ′′(w) and [F ′′(w)]−1

that maximizes the product of the volumes of the ellipsoids D and D∗. D and D∗ are
ellipsoids inscribed in K and K∗ respectively with centers x̄ and s̄, and the shapes are
defined by H and H−1 for some self-adjoint and positive definite H.

We denote
αx̄(H) := max{αx̄ : BH(x̄;αx̄) ⊆ K},

and
αs̄(H

−1) := max{αs̄ : BH−1(s̄;αs̄) ⊆ K∗}.
We will abbreviate the notation of the positive definite form F ′′(v) by v in subscript, and
denote BH−1(s̄;αs̄) := B∗H(s̄;αs̄).

The theorem by Todd [46] for general symmetric cones is as follows.

Theorem 5.2.1 (Todd [46]). Let K be a symmetric cone, F be a self-scaled barrier for
K, x̄ ∈ int(K) and s̄ ∈ int(K∗). Then,

max
H�0

αx̄(H)αs̄(H
−1) = αx̄(F

′′(w))αs̄([F
′′(w)]−1),

where w ∈ int(K) is the unique scaling point so that F ′′(w)(K) = K∗ and F ′′(w)x̄ = s̄.
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Proof. Given x̄, s̄ and their scaling point w as above, and by the above notations, there
must exist a z̄ ∈ bd(K), such that ||z̄ − x̄||w = αx̄(F

′′(w)). By supporting hyperplane
theorem, there must exist a non-zero ū ∈ K∗ such that 〈ū, z̄〉 = 0.

Since Bw(x̄;αx̄(F
′′(w))) ⊆ K, we have:

0 = 〈ū, z̄〉 = min{〈ū, p〉 : p ∈ Bw(x̄;αx̄(F
′′(w)))}.

We can also prove that F ′′(w) maps Bw(x̄;αx̄(F
′′(w))) to B∗w(s̄;αs̄([F

′′(w)]−1)). And since
F ′′(w) maps K to K∗, int(K) to int(K∗), it must map bd(K) to bd(K∗).

We can take F ′′(w)z̄ (on the boundary of K∗ by above argument) to be t̄, and let v̄ to be
[F ′′(w)]−1ū ∈ K. Thus,

〈v̄, t̄〉 =
〈
[F ′′(w)]−1ū, F ′′(w)z̄

〉
= 〈ū, z̄〉 = 0.

Similarly, with t̄ ∈ bd(K∗) we get ||t− s||∗w = αs(w), and for v̄ ∈ K \ {0},

0 = 〈v̄, t̄〉 = min{〈v̄, q〉 : q ∈ B∗w(s̄;αs̄([F
′′(w)]−1))}.

The following results where ū and v̄ are nonzero can be proven in a similar way as in
Proposition 2.3.5:

min{〈ū, p〉 : p ∈ BH(x̄;αx̄)}= 〈ū, x̄〉 − αx̄ ||ū||∗H , attained by p = x̄− (αx̄/ ||ū||∗H)H−1ū.

min{〈v̄, q〉 : q ∈ B∗H(s̄;αs̄)}= 〈v̄, s̄〉 − αs̄ ||v̄||H , attained by q = s̄− (αs̄/ ||v̄||H)Hv̄.

We may suppose ||ū||∗w = 1. Since v̄ = [F ′′(w)]−1ū, we have ||v̄||w = 1 as well.

Together with the above arguments, we get:

〈ū, x̄〉 = αx̄(F
′′(w)) ||ū||∗w = αx̄(F

′′(w)), (5.5)

and

〈v̄, s̄〉 = αs̄([F
′′(w)]−1) ||v̄||w = αs̄([F

′′(w)]−1). (5.6)

Since BH(x̄;αx̄(H)) ⊆ K, so for an arbitrary self-adjoint and positive-definite H from E
to E∗, we have

〈ū, x̄〉 ≥ αx̄(H) ||ū||∗H , (5.7)
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and similarly

〈v̄, s̄〉 ≥ αs̄(H
−1) ||v̄||H . (5.8)

Thus, we have:

αx̄(F
′′(w))αs̄([F

′′(w)]−1) = 〈ū, x̄〉 〈v̄, s̄〉
≥ αx̄(H)αs̄(H

−1) ||ū||∗H ||v̄||H
≥ αx̄(H)αs̄(H

−1) 〈ū, v̄〉
= αx̄(H)αs̄(H

−1).

In the above, the first equality follows by equalities (5.5) and (5.6), the first inequality
follows from inequalities (5.7) and (5.8), the second inequality uses Cauchy-Schwarz in-
equality, and the last equation follows from the fact that

〈ū, v̄〉 =
〈
ū, [F ′′(w)]−1ū

〉
= (||ū||∗w)2 = 1

This concludes the proof.

Notice that in the above proof, we heavily rely on the fact that barrier function F maps
boundary points in the primal cone to boundary points in the dual cone, which comes
automatically for any symmetric cone K and its self-scaled barrier. This proof uses 〈ū, x̄〉
and 〈v̄, s̄〉 as a “bridge” to compare the largest possible radii of ellipsoids defined by F ′′(w)
and ones defined by other H.

The problem of finding the largest pair of primal-dual ellipsoid for symmetric cones using
Jordan Algebra (for more detailed treatment on Jordan Algebra, please refer to Faraut
and Korányi [14]) is considered by Lim [33]. An explicit formula in terms of the minimum
eigenvalues of the centers are given.

5.3 Largest primal-dual pairs of ellipsoids for homo-

geneous and hyperbolicity cones

In this section, we try to explore on the largest primal-dual pairs of ellipsoids in a pair
of homogeneous or hyperbolicity primal-dual cones. We would like to see how the result
of the largest pair of primal-dual ellipsoids in symmetric cones may change in these more
general setting.
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Definition 5.3.1. A homogeneous polynomial p(x) ∈ R[x1, ..., xn] is hyperbolic with re-
spect to a vector d ∈ Rn if p(d) 6= 0, and if for all x ∈ Rn the univariate polynomial
t→ p(x− λd) has only real roots.

Definition 5.3.2. Suppose polynomial p(x) is hyperbolic with respect to d. The hyperbol-
icity cone is the set: {x ∈ Rn : all the roots of p(x− λd) is nonnegative}.

We notice that all the cones we defined so far are special cases of hyperbolicity cones:

1. The nonnegative orthant is a hyperbolicity cone with hyperbolic function x1×· · ·×xn
and the directional vector (1, ..., 1)T , the vector of all ones. We may check that the
roots of the polynomial p(t) = (x1− t) . . . (xn− t) are all nonnegative indeed happens
when all the xi ≥ 0. This is exactly the nonnegative orthant.

2. The second order cone is also a hyperbolicity cone with hyperbolic function y2−||x||22
and the directional vector (0, ..., 0, 1)T , which is all xi = 0, and y = 1. We may check
that the roots of the polynomial p(t) = (y − t)2 − ||x||22 are all nonnegative indeed
happens when y2 ≥ ||x||22. This is exactly the second order cone.

3. The positive semidefinite cone is another special case of hyperbolicity cone with
hyperbolic function det(X) and the directional vector I, i.e., the identity matrix. We
may check that the roots of the polynomial p(t) = det(X − tI) are all nonnegative
indeed happens when the eigenvalues of the matrix X are all nonnegative. This is
exactly the positive semidefinite cone.

In fact, the set of homogeneous cones is a proper subset of the set of hyperbolicity cones.

In the homogeneous and hyperbolicity cone settings, we may still find the Hessian of the
scaling point, however the Hessian may map the primal cone into a proper subset of the
dual cone in this case. As a result, the object v̄ in the proof of Theorem 5.2.1 involving
the inverse of the Hessian can be mapped outside the primal cone. The same method does
not seem to work immediately for homogeneous and hyperbolicity cones.

One possible remedy is to map v̄ back to the cone by projection with respect to the
Euclidean norm. Since the cone is a convex set, the point projected is the unique point
that has the minimum distance to v̄. Another possible fix for this is to find a point of
minimum distance to v̄ on the boundary of the cone under a suitable local norm. We can
then normalize the point on the boundary of the cone and follow the rest of the proof to
obtain an approximation ratio of 〈ū, v̄〉.
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5.4 Other generalizations of primal-dual pairs of el-

lipsoids

The version of finding the largest primal-dual pairs of ellipsoids by Todd when applied
to the positive semidefinite cone setting or positive semidefinite Hermitian setting can be
formulated as follows:

Given A,B � 0, find a self-adjoint positive definite form H on the space, so that it achieves
the maximum of the following optimization problem:

max
H�0

αA(H)αB(H−1).

In Lim [32], the result of Todd in the setting of positive semidefinite Hermitian cone is
generalized by an additional symmetric gauge norm on the eigenvalues of the matrices. We
will see that Todd’s result corresponds to the case where the gauge norm is the standard
2-norm in Rn.

A norm φ on the Euclidean space Rn is a symmetric gauge function if it is invariant under
permutations, sign changes of coordinates, and φ((1, 0, . . . , 0)T ) = 1. Every symmetric
gauge function induces a unitarily invariant norm on the whole matrix space, and in par-
ticular for hermitian or symmetric matrices we have the following definition:

Let Hn be the space of n-by-n Hermitian matrices, and let φ be a symmetric gauge norm
on Rn. ||·||φ is the corresponding unitarily invariant norm on the space of Hn by ||X||φ =

φ(λ(X)), where λ(X) = (λ1(X), . . . , λn(X))T ∈ Rn, and λi(X) are the eigenvalues of
the matrix X ∈ Hn. The eigenvalues λi(X) are ordered in non-increasing order. For
instance, when we take the symmetric gauge norms to be the 1-norm and 2-norm on Rn,
the corresponding unitarily invariant norms on the space of Hn are the nuclear norm and
the operator 2-norm respectively.

For any given X � 0, we define a norm on Hn as:

||Y ||φ,X :=
∣∣∣∣∣∣X− 1

2Y X−
1
2

∣∣∣∣∣∣
φ
.

We will use similar notations as in the last section,

Bφ,X(A, t) := {U ∈ Hn : ||A− U ||φ,X ≤ t},

and
αA(φ,X) := max{t > 0 : Bφ,X(A, t) ⊆ Sn+}.
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We first consider the problem of finding the largest volume ellipsoid contained in the
positive semidefinite cone given a specific center A and an ellipsoidal shape ||·||φ,X , i.e.,
to find αA(φ,X). Then, we consider a similar problem as in Todd’s largest primal-dual
ellipsoids section, i.e., given two interior point A, B and a gauge norm φ, to find

max
X�0

αA(φ,X)αB(φ,X−1).

We see that Todd’s result is the special case where the gauge norm is the 2-norm in the
Euclidean space Rn.

The first result below by Lim is a direct generalization of our Proposition 4.5.1. Proposition
4.5.1 deals with the special case of the gauge norm being the standard 2-norm. We include
a modification of the proof here to illustrate the analogy and difference between the proof
techniques for the more general gauge norm and the special case of it being the 2-norm in
the Euclidean space Rn.

Theorem 5.4.1 (Lim [32]). Let φ be any symmetric gauge norm and let A,X � 0. Then

αA(φ,X) = λmin(X−1A).

Proof. Given a symmetric gauge norm φ, we first notice that for any x ∈ Rn,

|xi| ≤ φ(x), i = 1, 2, ..., n. (5.9)

This is because of the monotonicity property of φ: |xi| = φ(xiei) ≤ φ(x).

Let us first show the largest radius is at least λmin(A), i.e.,

||A− Y ||φ ≤ λmin(A), Y � 0.

When φ is 2-norm, this statement corresponds to the second part of the proof of Proposition
4.5.1. When we fix A = I and X = I the ball BI(I, 1) is entirely contained in the positive
semidefinite cone. This implies the radius of the ellipsoid must be at least 1 = λmin(I · I).

Using Weyl’s perturbation theorem (Please see Theorem III.4.4 in Bhatia [5]), the state-
ment for a general φ can be proved:

φ(λ(A)− λ(Y )) ≤ (φ ◦ λ)(A− Y ) = ||A− Y ||φ ,

and suppose Y has a negative eigenvalue, i.e., λi(Y ) < 0 for some i, then

λi(A) < λi(A)− λi(Y ) ≤ φ(λ(A)− λ(Y )) ≤ ||A− Y ||φ ≤ λmin(A).
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This is clearly a contradiction. Thus, if ||A− Y ||φ ≤ λmin(A), Y � 0.

Secondly, we will show αA(φ,X) = α
X−

1
2AX−

1
2
(φ, I).

Notice X−
1
2 ·X− 1

2 is an automorphism of the cone, and an ellipsoid is maximal if and only
if it is maximal after applying an automorphism. Moreover, after some simple algebraic
calculation we have:

X−
1
2 (Bφ,X(A,αA(φ,X)))X−

1
2 = Bφ,I(X

− 1
2AX−

1
2 , αA(φ,X)).

Hence, α
X−

1
2AX−

1
2
(φ, I) = αA(φ,X).

Lastly, we show αA(φ, I) = λmin(A). Since we have shown λmin(A) is a lower bound, we
just need to show it is an upper bound as well.

This is again obvious when φ is the 2-norm. To see it is also an upper bound, we just need
to notice the minimum distance from A to the boundary of the cone under the local norm
defined by I is λmin(A). The boundary point that achieves the minimum distance from A
is Ā = A− λmin(A)vvT , where v is the normalized smallest eigenvector of A.

For general φ, the arguments are very similar. We just need to notice that∣∣∣∣vvT ∣∣∣∣
φ

= ||diag(0, . . . , 0, 1)||φ = φ(0, . . . , 0, 1) = 1.

Hence, ∣∣∣∣A− Ā∣∣∣∣
φ

=
∣∣∣∣λmin(A)vvT

∣∣∣∣
φ

= λmin(A)
∣∣∣∣vvT ∣∣∣∣

φ
= λmin(A)

This shows there exists a point Ā on the boundary of the cone that is λmin(A) away from A
with the norm ||·||φ,I . As a result, αA(φ, I) ≤ λmin(A), and it implies αA(φ, I) = λmin(A).

Together with the previous argument, we must have

αA(φ,X) = α
X−

1
2AX−

1
2
(φ, I) = λmin(X−

1
2AX−

1
2 ) = λmin(X−1A).

As a result, the minimum distance in terms of the standard norm from an interior point A in
a positive semidefinite cone to its boundary under the local norm defined by the positive

definite matrix X, i.e., ||Y ||X =
∣∣∣∣∣∣X− 1

2Y X−
1
2

∣∣∣∣∣∣, is equal to the minimum eigenvalue of

X−1A. Also, given an interior point A ∈ Sn++, and a self adjoint positive definite linear
operator of the form U ·U for some U ∈ Sn++, the largest radius r of the ellipsoid centered
at A with the above shape and is contained in Sn+ is the minimum eigenvalue of UA.

The following result can be derived from the Gel’fand-Naimark theorem on singular values
(Please see Theorem III.4.5 in Bhatia [5]):
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Theorem 5.4.2. Let A,B � 0, then

max
X�0

λmin(AX−1)λmin(XB) = λmin(AB).

Theorem 5.4.3 (Lim [32]). Let φ be any symmetric gauge norm and let A,B � 0. Then

max
X�0

αA(φ,X)αB(φ,X−1) = λmin(AB).

Proof. The result follows immediately from Theorem 5.4.1 and Theorem 5.4.2.

Notice that for both result, the choice of the symmetric gauge norm does not affect the
results at all.

It also turns out that the set:

T (A,B) := argmaxX�0 αA(φ,X)αB(φ,X−1)

= argmaxX�0 λmin(AX−1)λmin(XB)

= {X � 0 : λmin(AX−1)λmin(XB) = λmin(AB)}

of maximizers is a closed convex cone in the Hermitian matrix space independent of the
symmetric gauge norms, and every point on the geodesic line with respect to the Finsler
distance (see [6]) between A and B−1 achieves the maximum.
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Chapter 6

Conclusion and future research

We studied inner approximations to convex cones in Euclidean spaces by ellipsoids. We
considered two fundamental problems in this area:

1. Given a convex cone K, and an interior point x of K, what is the maximum volume
ellipsoid centered at x and contained in K?

2. Given a convex coneK, a scalar product, and a pair of points x̄ ∈ int(K), s̄ ∈ int(K∗),
what is the largest pair (in terms of product of their volumes) of dual ellipsoids that
are centered at x̄ and s̄, and contained in K and K∗ respectively?

The second fundamental problem above was proposed and solved by Todd [46] for all
symmetric cones K.

In this thesis, we solve problem 1. above for second order cones (which was first solved
by Güler and Gürtuna [19]) and cones of n-by-n symmetric positive semidefinite matrices.
Our solutions are easily extendible to symmetric cones via employing the Euclidean Jordan
algebra techniques.

However, generalizations of our results to more general classes of cones, such as homoge-
neous cones or hyperbolic cones seem to require yet more new techniques. These are left
for future work.

Similarly, solution of problem 2. for classes of convex cones beyond the symmetric cones
seem to require new techniques, and are also left for future work.

There are a few more questions relating to these two fundamental problems which could
be of interest for future research:
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Questions relating to the first problem:

Let L ⊂ Sn be a linear subspace such that Sn++ ∩ L 6= ∅. For which subspaces L, can
we “easily” utilize our knowledge of the maximum volume ellipsoid for Sn+ to obtain the
maximum volume ellipsoid for Sn+ ∩ L?

For the more general version of this question, assume that K is an arbitrary closed convex
cone with non-empty interior and L is a linear subspace such that int(K)∩L 6= ∅. Then, for
which subspaces L can we “easily” utilize our knowledge of the maximum volume ellipsoid
for K to obtain the maximum volume ellipsoid for K ∩ L?

Questions relating to the second problem:

In this thesis, we used the product of the radii or the product of the volumes of the pair of
primal-dual ellipsoids as our measure of “largeness” for the pair. This measure corresponds
to the geometric mean of the radii αx̄ and αs̄. If we were to use some other notions of
mean instead, how would the solution change as a result?

How does the product of the volumes of the primal-dual pair of ellipsoids compare to that
of the volumes of two ellipsoids taken individually as the largest volume ellipsoids inscribed
in the primal and dual cones respectively?

Let F be the standard self-concordant barrier function for a positive semidefinite cone.
By Lim [32], F ′′(g) and [F ′′(g)]−1, where g is on the geodesic line with respect to the
Finsler distance between x̄ and z = −F ′∗(s̄), define the largest pair of primal-dual ellipsoids
centered at x̄ and s̄ contained in the respective cones. Would this result be true in an
analogous sense in the more general setting of homogeneous or hyperbolic cones?

95



References

[1] Keith Ball. Ellipsoids of maximal volume in convex bodies. Geom. Dedicata, 41(2):241–
250, 1992.

[2] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization.
Princeton University Press, 2009.

[3] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization.
MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia,
PA, 2001. Analysis, algorithms, and engineering applications.

[4] Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization–methodology and ap-
plications. Mathematical Programming, 92(3):453–480, 2002.

[5] Rajendra Bhatia. Matrix analysis, volume 169 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1997.

[6] Rajendra Bhatia. On the exponential metric increasing property. Linear Algebra
Appl., 375:211–220, 2003.

[7] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear matrix inequalities in system and control theory, volume 15 of SIAM Studies
in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1994.

[8] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University
Press, Cambridge, 2004.

[9] Chek Beng Chua. The primal-dual second-order cone approximations algorithm for
symmetric cone programming. Found. Comput. Math., 7(3):271–302, 2007.

96



[10] Andrew R. Conn, Nicholas I. M. Gould, and Philippe L. Toint. Trust-region methods.
MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia,
PA, 2000.

[11] Christophe Croux, Gentiane Haesbroeck, and Peter J. Rousseeuw. Location adjust-
ment for the minimum volume ellipsoid estimator. Stat. Comput., 12(3):191–200,
2002.

[12] Ludwig Danzer, Detlef Laugwitz, and Hanfried Lenz. Über das Löwnersche Ellipsoid
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