5,144 research outputs found

    Quantale Modules and their Operators, with Applications

    Full text link
    The central topic of this work is the categories of modules over unital quantales. The main categorical properties are established and a special class of operators, called Q-module transforms, is defined. Such operators - that turn out to be precisely the homomorphisms between free objects in those categories - find concrete applications in two different branches of image processing, namely fuzzy image compression and mathematical morphology

    The Hyperdimensional Transform: a Holographic Representation of Functions

    Full text link
    Integral transforms are invaluable mathematical tools to map functions into spaces where they are easier to characterize. We introduce the hyperdimensional transform as a new kind of integral transform. It converts square-integrable functions into noise-robust, holographic, high-dimensional representations called hyperdimensional vectors. The central idea is to approximate a function by a linear combination of random functions. We formally introduce a set of stochastic, orthogonal basis functions and define the hyperdimensional transform and its inverse. We discuss general transform-related properties such as its uniqueness, approximation properties of the inverse transform, and the representation of integrals and derivatives. The hyperdimensional transform offers a powerful, flexible framework that connects closely with other integral transforms, such as the Fourier, Laplace, and fuzzy transforms. Moreover, it provides theoretical foundations and new insights for the field of hyperdimensional computing, a computing paradigm that is rapidly gaining attention for efficient and explainable machine learning algorithms, with potential applications in statistical modelling and machine learning. In addition, we provide straightforward and easily understandable code, which can function as a tutorial and allows for the reproduction of the demonstrated examples, from computing the transform to solving differential equations

    A New Hammerstein Model for Non-Linear System Identification

    Get PDF
    In the present work a newer type of black box nonlinear model in Hammerstein structure is proposed. The model has Wavelet Network coupled with Orthonormal Basis Functions which is capable of modeling a class of non-linear systems with acceptable accuracy. Wavelet basis functions have the property of localization in both the time and frequency domains which enables wavelet networks to approximate severe non-linearities using few number of parameters. Orthonormal Basis functions possess the ability to approximate any linear time invariant system using appropriate basis functions. The efficacy of the model in modeling is demonstrated using numerical examples

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Attribute dependency data analysis for massive datasets by fuzzy transforms

    Get PDF
    We present a numerical attribute dependency method for massive datasets based on the concepts of direct and inverse fuzzy transform. In a previous work, we used these concepts for numerical attribute dependency in data analysis: Therein, the multi-dimensional inverse fuzzy transform was useful for approximating a regression function. Here we give an extension of this method in massive datasets because the previous method could not be applied due to the high memory size. Our method is proved on a large dataset formed from 402,678 census sections of the Italian regions provided by the Italian National Statistical Institute (ISTAT) in 2011. The results of comparative tests with the well-known methods of regression, called support vector regression and multilayer perceptron, show that the proposed algorithm has comparable performance with those obtained using these two methods. Moreover, the number of parameters requested in our method is minor with respect to those of the cited in the above two algorithms
    • …
    corecore