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Abstract— In the present work a newer type of black box non-
linear model in Hammerstein structure is proposed. The model 
has Wavelet Network coupled with Orthonormal Basis 
Functions which is capable of modeling a class of non-linear 
systems with acceptable accuracy. Wavelet basis functions 
have the property of localization in both the time and 
frequency domains which enables wavelet networks to 
approximate severe non-linearities using few number of 
parameters. Orthonormal Basis functions possess the ability to 
approximate any linear time invariant system using 
appropriate basis functions. The efficacy of the model in 
modeling is demonstrated using numerical examples. 

I.     INTRODUCTION 
System identification is an important field of science 

with its applications spanning  several industries such as 
aerospace, power, civil engineering, and naval engineering. 
It involves the use of statistical methods to build 
mathematical models of dynamical systems from measured 
data. Black box modeling is an elegant system identification 
technique that is employed when there is no a priori 
knowledge or insight about the system except the input 
output data of the system. In this type of modeling, using the 
input-output data a model is developed such that the model 
maps the input space to the  output space of the system with 
the best possible accuracy. Linear systems can be modeled 
perfectly with the help of existing models. However, 
modeling of non-linear systems is an open research problem. 

 
Extensive study in the domain of non linear system 

identification has produced several models, the most 
important among them are the polynomial NARMAX (Non 
Linear Auto Regressive Moving Average with eXogenous 
inputs) model [1],[2]   neural networks [3],  fuzzy logic 
based models [4], neuro-fuzzy networks [5], wavelet 
mutiresolution decompositions [6] and wavelet networks [7]. 
The common criteria for judging the efficacy of the model 
include model parsimony, ease of development of the model 
and the accuracy of the model.[8] All of these techniques are 
found lacking, when it comes to displaying all these traits 
simultaneously. The NARMAX model can gather global 
information of the system dynamics efficiently but fails to 
approximate local dynamics parsimoniously[1],[2].Neural 
networks can identify the process dynamics efficiently, but 

there is no rigorous way of determining the number of 
hidden  layers and neurons in the network model[3].Fuzzy 
logic based models can represent very complex non-
linearities like discontinuities and jumps and saturations [4]. 
However, none of these models possess all the merits stated 
above. 

Wavelet decomposition in gaining in popularity as a 
formidable tool in the field of signal processing.[9] Wavelet 
decomposition is essentially a decomposition of any function  
f ∈ L2(Rn )  in terms of dilated and translated versions of a 

basis function, called the "mother wavelet”. Due to the 
property of time and frequency localization of wavelet 
functions, severe non-linearities can be approximated in an 
efficient manner.However,this property is not effective for 
approximating low-order non-linearity in a function. 

Zhang and Benvesite [7] discovered the similarity 
between wavelet decomposition and single-hidden layer 
neural nework and wavelet network was developed. In this 
wavelet network, non-orthogonal redundant wavelets, called 
wavelet frames are used in discrete wavelet transformation to 
approximate functions with lesser number of terms. 
Although wavelet network can approximate any static non-
linearity in an effective manner, the linear dynamic part of 
the system also has to be represented by appropriate means. 
The dynamic  part can be integrated into the model in two 
ways - either the Hammerstein Model structure or the 
Weiner type structure. This paper advocates the use of a 
Hammerstein type model.Hammerstein Model structure 
consists of a static non-linearity followed by a linear 
dynamic portion. It can be used to model only a specific 
class of non-linear systems whose dynamic part can be 
considered as a Linear Time Invariant (LTI) system. 

There are several orthonormal basis functions used for 
linear system identification such as the Laguerre filters, the 
Kautz filters and finite impulse response (FIR) filters. All of 
these fall in the category of generalized orthonormal basis 
filters (GOBF). [10] A transfer function of an LTI system 
can be represented as a weighted sum of these basis 
functions. [11] The poles and the weights of the basis 
functions can be estimated using iterative optimization 
methods which use either steepest descent or Newton's 
algorithms.[11],[13]. 
 Orthonormal basis functions(OBF) can represent 
any linear dynamic system efficiently [10] ; likewise wavelet 
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networks can represent any static non-linear function with 
considerable accuracy.OBF can be used piecewise linear 
models for mildly non-linear system, but they fail when they 
are tried to model severe non-linear systems. On the other 
hand, wavelet network fails miserable for mildly non-linear 
systems. These demerits of OBF and wavelet networks are 
removed when they are used together in a Hammerstein 
Model. [8] 
 A variety of algorithms exist  for identification of 
the Hammerstein model such as the cross-correlation 
algorithm developed by Hunter and Korenberg[16] and the 
separable least squares (SLS) optimization algorithm 
developed by Westwick and Kerney.[17] However all these 
methods use polynomials to approximate the static non-
linearity. Highly non-linear systems require the use of high 
order polynomials which include oscillations. Accuracy of 
such polynomial approximations tends to degenerate at the 
edge of the data set, rendering the model to be 
unreliable.[18] 
 In this paper , a combination of wavelet network 
and Kautz filters in the Hammerstein model structure is used 
for black box modeling of non-linear systems. The model 
development is executed through learning algorithms based 
on gradient based optimization. 
  The paper is organized as follows. Section II 
presents a brief overview of the different kinds orthonormal 
basis functions (OBF) along with methods to select poles of 
OBF. Section III describes the wavelet network and the 
structure of the Hammerstein model. In section IV, the 
algorithm used for training of the wavelet networks is 
discussed. In Section V , an illustrative example is presented 
to compare the efficiency of the proposed model with models 
that exist in literature .It is followed by application to the 
model to a real physical system, namely the DC to DC boost 
converter  . Finally, section VI addresses the conclusions. 
 

II. ORTHONORMAL BASIS FILTERS 
 

Orthonormal Basis Functions (OBF) [14] are a very 
general category of filters that admit a variety of real or 
conjugate poles. The commonly known FIR, Laguerre and 
Kautz filters are restrictive special cases of Orthonormal 
Basis Filters. [10]  These bases are capable of representing 
almost all type of linear, causal and stable systems .The 
generalized OBF can be described as:  

 

       Bn (z) =
z 1− | ξn |2

z − ξn

1− ξkz
z − ξk

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

k=0

n −1

∏         (1) 

     
where  ξ represents the vector containing the poles of the 

filter. An elementary transfer function  G(z) for a stable and 
causal LTI system can be decomposed as:   

  G(z) = gnBn (z,ξ)
n=0

N

∑                                   (2)   

where{gn} represents the set of Fourier coefficients, N is the 
truncating order. Such a system can also be described in 
discrete state space representation of the form:   [14]  
 
             X(k +1) = AX(k) + Bu(k)

y(k) = θ T X(k)
        (3)    

with X being the state vector of dimension (N+1) :  
        X(k) = x0(k) x1(k) ..... xN (k)[ ]T           (4)        
where: 
  xn (k) = Z −1 Bn (z,ξ){ }u(k)                         (5)    
                 
A is a matrix of dimension (N+1) x (N+1) defined by:  
 

  
A(p,q) =

ξp −1 if p = q
a(p,q) if p > q

0 if p < q

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

                      (6) 

            
where:  
              a(p,q) = (−1)p +q +1α p −1(1− ξq −1ξq −1) α l −1ξ l −1

l =q +1

p −1

∏         (7)                    

B and θ are vectors of dimension  (N+1): 
            B( p) = (−1)p +1α p −1 α l −1ξl −1

l =q −1

p −1

∏                       (8)

            θ = g0 g1 ..... gN[ ]T

                                    (9)                      
where:  

 α l =
1− | ξl |2

1− | ξl −1 |2
    (l>0)   and  α0 = 1− | ξ0 |2  

     
u(k) is the discrete input signal  
y(k) is the discrete output signal  

 
 

A.  Kautz filters 
Kautz filters are a form of orthonormal basis filter 

realization obtained by choosing a pair of complex  
conjugate  poles (β,β)  for the orthonormal basis functions .   
The result  is  the  well  known  Kautz   basis, whose z-
domain  representation is given as:  

  
  

Ψ2m (z) =
z (1 − c 2)(1 − b2 )
z 2 + b(c −1)z − c

×
−cz 2 + b(c −1)z +1
z2 + b(c −1)z − c

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

m −1

Ψ2m −1(z) =
z(z − b) (1 − c 2)
z2 + b(c −1)z − c

×
−cz2 + b(c −1)z +1
z2 + b(c −1)z − c

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

m −1

 (10) 

 
with Ψ2m(z)  and Ψ2m−1(z)  denoting the even and odd Kautz 

functions respectively. The scalars b and c  are real - valued 
parameters satisfying |b|<1 and |c|<1 . These parameters are 
related to the pair of Kautz poles  (β,β)   as 
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  b = (β + β) /(1+ ββ)

c = −ββ
                (11)

 Kautz filters are a good choice for modeling LTI 
systems having oscillatory response for given step input , i.e. 
there exist at least one  pair of complex conjugate poles . 

 
 

B. Selection of Poles for Kautz filters 
Let us suppose Kautz filters are used to model a LTI system. 
To calculate the optimal poles of the system it is necessary to 
solve the optimization problem:      

 min
θ

J =
1
2

[y(k) − ˆ y (k)
k =1

Nd

∑ ]2T    (12)

                              
where θ,J, y(k), ˆ y (k)  are, respectively, the vector of 

parameters containing the poles of the Kautz filters and the 
weights of the basis functions, the prediction error, the 
measured output of the system and the predicted output using 
the model. A gradient-based optimization algorithm is used 
to solve this problem, wherein the gradient of the prediction 
error is computed with respect to the vector of parameters, 
which is updated at every iteration in a direction opposite to 
the gradient of the error. A detailed description of this 
method is given in [10].  

III. WAVELET NETWORKS 

A. Wavelet Transforms 
Wavelet transforms are used to represent a function as a sum 
of wavelets functions.  Wavelet transforms, unlike Fourier 
transforms, can provide a good time-frequency localization 
of the function simultaneously. Continuous Wavelet 
Transform (CWT) of any function at a scale a > 0  and 
translation b ∈ R, f ∈ L2(R) is given by ( [8] , [9] ) 
 X(a,b) = f (x) | a |−1/ 2 ϕ(

x − b
a

)
R n∫ dx    (13) 

where ψ (x)  is a continuous function called the mother 
wavelet. The purpose of the dilation and translation 
parameters is to generate daughter wavelets which are simple 
dilated and translated versions of the mother wavelet. Owing 
to the time - frequency localization properties of the wavelet 
transform, if the dilation and translation parameters are 
chosen intelligently, any function can be approximated with 
the help of only a few daughter wavelets.  The function  f (x)  
can be reconstructed back by using the inverse wavelet 
transform:        
        f (x) = CΨ

−1 a−(n +1)

0

∞

∫ wa ,ba−n / 2Ψ(
x − b

aR n

∫ )dadb         

 (14)               

The inverse wavelet transform is not implementable in 
computers without discretization. So the inverse wavelet 
transform when discretized, takes the following form:  
    f (x) = wa,b

i ai
−n / 2Ψ(

x − bi

aii
∑ )    (15) 

B. Structure of Wavelet Network 
It was first proposed by Zhang and Benvensite [7]  that 

the discrete form of the inverse wavelet transform can be 
viewed as a one-hidden-layer Artificial Neural Network 
(ANN). By optimally choosing the parameters wi,ai,bi  with 
ψ(.)  as the hidden layer activation function and a linear 
function in the output layer, the construction becomes similar 
to that of single hidden layer neural networks, called  
Wavelet Network. Wavelet functions satisfy the "universal 
approximation " property. The structure of the wavelet 
network is as follows:          

 g(x) = wi
i=1

N

∑ Ψ[DiRi(x − ti)]+ g                 (16)        

where x  is the input vector,  ti  are translation vectors, Di 
are diagonal matrices built from dilation vectors, while Ri  
are rotation matrices. The parameter g  is introduced to 
account for  functions with non-zero average, since the 
multi-dimensional wavelet function ψ(x) is with zero mean 
.This structure is illustrated in Fig.1.  

C. Training of the Wavelet Network Model 
This section details the training methodology of the 
parameters of the wavelet network. The learning is based on 
a sample of random input/output pairs { x , f(x) }  where f(.)  
is the function to be approximated. A stochastic gradient type 
of algorithm is used in the present work, as described in 
detail by Zhang and Benvesite [7]. A short summary of the 
algorithm is as follows: 
 

i. Network Initialization 
The efficiency of the learning algorithm and the accuracy 

of the final model are heavily dependent on the initialization 
of the dilation and translation parameters of the wavelet 
network. For the one-dimensional case, Zhang and Benvesite 
have proposed a method that estimates the "centre of 
gravity" of a function f(x)  in an interval [ a , b ] and uses it 
to initialize the translation parameter. The dilation parameter 
is taken to be proportional to the length of the interval. The 
interval is then split about the centre of gravity and the next 
two translation and dilation parameters are estimated from 
the sub-intervals. The same method can be adapted to the 
multi-dimensional case. However, the approach used by 
Oussar and Dreyfus [15] is found to be more expedient. This 
approach uses a family of wavelets described by the relation:  

Ωd = 2m / 2φ(2m x − n),(m,n) ∈ Z 2{ }    (17) 
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Figure 1.  General Hammerstein Model 

   
from which appropriate wavelet functions are chosen. 

Depending upon the input domain { ak, bk } of the k'th 
 input, 

the values of the translation parameters are chosen such that:  
                ak ≤ 2−m n ≤ bk                                 (18) 

This results in a library of wavelet functions that can be used 
for approximation. These wavelet functions are ranked in 
order of decreasing relevance using the Gram Schmidt 
Method,  [15] from which the most relevant wavelets 
functions are used in the wavelet network. This approach of 
initialization of  wavelet network parameters is adopted in 
the present work.  
 

ii. Learning algorithm 
 
Using the above approach, all the parameter wi,ti,Di and 

Ri  are collected in a vector θ . Representing the network 
with the parameters θ as gθ (x) , the following objective 
function is minimized :  

  C(θ) =
1
2

E gθ (x) − y[ ]2{ }  (19)

  The stochastic gradient algorithm modifies 
the parameter vector  θ at each iteration in the opposite 
direction of the gradient of the functional  

  c(θ, xk,yk ) =
1
2

gθ (x) − y[ ]2  (20)

 For calculation of the stochastic gradient and setting 
constraints on the Adjustable Parameters, refer to [7] .  

 
STRUCTURE OF THE HAMMERSTEIN MODEL 
 
The Hammerstein model consists of a static non-linear 

part followed with a linear dynamic part. Note that 
Hammerstein model are applicable only to a specific class of 
non-linear systems whose dynamic portion can be modeled 
as an LTI system and the non-linearity is at the input side of 
the system. Fig.2 illustrates the schematic diagram of a 
general Hammerstein model, where y(t) is the measured 
output u(t) and ˜ u (t)  are input and output of the non-linear 
box respectively, A(z) and B(z) are polynomials of degrees  

 

  
Figure 2.   General Hammerstein Model 

 

 
 

Figure 3.   Hammerstein Model with static non-linear  Wavelet Network 
and dynamic linear Orthonormal Basis Filters 

  
na and nb in the unit backward shift operator 
z−1[z−1y(t) = y(t −1)] with 
A(z) =1+ a1z

−1 + a2z
−2 + ....+ ana

z−na

B(z) = b1z
−1 + b2z

−2 + ....+ bnb
z−nb     

  Fig.3  shows the schematic diagram of the Hammerstein 
model proposed by us, which consists of  Wavelet Network 
for approximating the static non-linearity and orthonormal 
basis filters for modeling the linear dynamic portion.        
 
 V. ILLUSTRATIVE EXAMPLE    
 
To illustrate the efficacy of our model, it is applied to an  
artificial system with complicated static non-linearity. It is 
supplemented by application of the model to a DC-DC 
Boost Converter. The simulations presented in this section 
have been carried out on Simulink tool in Matlab 2008a on a 
2.26 GHz Intel Core 2 Duo processor with an associated 
2GB 1067 MHz DDRAM . 

A. Numerical System 
Consider a system whose  static non-linearity is described 
by the function :  

  
f (u) =

−1+ cosu 0 ≤ x ≤
π
2

−1+
2
π

x −
π
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

π
2

< x ≤
3π
2

1 − sin x −
3π
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ x ≤ 2π

⎧ 

⎨ 

⎪ 
⎪ ⎪ 

⎩ 

⎪ 
⎪ 
⎪ 

 

 
and the linear dynamic part by the transfer function :  
  G(s) =

5
s2 + 2s + 5

  

The system is excited with a random sequence of pulses  
with sufficient pulse period to allow the system to stabilize 
to a steady value, before it is excited by another pulse. The 
input-output data extracted from this experiment is used to 
train the wavelet network and Kautz filter functions, to form 
the Hammerstein model.  
One dimensional wavelet network consisting of 5 wavelons 
is used for approximating the static non-linearity. Each 
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wavelon consists of a dilation and translation parameter and 
has a weight associated with it. These, together with the 
offset g make for 16 parameters for the wavelet network. A 
data set of 300 sample points is used for training the wavelet 
network, according to the algorithm described in section 
III.C  . 2000 learning iterations are performed. 
Kautz filter functions of the second order are used for 
modeling the linear dynamics. An input data set of 100 
points is used for selection of optimal poles for the Kautz 
filters, using the iterative optimization method described in 
section II.B . The unknown parameters for the Kautz model 
are the real and imaginary parts of the poles and the weights 
respectively. Therefore the entire Hammerstein model has a 
total of just 20 unknown parameters, thus forming a 
parsimonious model. 
The comparison is performed by modeling the same system 
with the aid of a Hammerstein model that uses polynomial 
functions for the static non-linearity and a second order 
ARX model for modeling the linear subsystem. The 
coefficients of the polynomial can be computed using the 
least squares approximation and the ARX model is 
identified using the system identification tool available in 
MATLAB. This model has 10 unknown parameters, 6 for 
the polynomic non-linearity and 4 for the second order ARX 
model.The performance of the two models is compared in 
Fig. 4. 
Mean absolute error of conventional model is 0.1732 
whereas that of the proposed model is 0.0619 
It should be mentioned that there is no significant change in 
the performance of the conventional Hammerstein model by 
increasing the order of the ARX model, or by increasing the 
order of the polynomial used for approximating the static 
non-linearity. 
Evidently, for complex non-linearities involving sharp 
changes and jumps, the conventional Hammerstein model is 
going to fail. However the proposed model consisting of 
wavelet network for identifying the non-linearity will 
provide a good performance for any type of non-linear 
system.  
 

B. DC-DC Boost Converter 
 

A DC-to-DC boost converter is a power converter used to 
step up DC voltage. A simple DC-to-DC converter consists 
of an inductor as an energy storing device and two switches 
- a transistor and a diode. Filters made of capacitors are 
added at the output to reduce the output voltage ripple. The 
key principle that drives a boost converter is the tendency of 
an inductor to resist changes in current. When the switch is 
closed, the inductor acts like a load and gets charged. When 
the switch is open, the only path offered to the current 
through the inductor is through the diode, the capacitor and 
the load. This results in transferring the energy accumulated 
during the ON - state into the capacitor. The voltage 
produced by the inductor during the discharging phase is 

related to the rate of change of current and not the original 
charging voltage, thus allowing the output voltage to be 
different.  
By operating the switch at a high frequency, it is possible to 
generate an output DC voltage greater than the input 
voltage. The switch can be made using a MOSFET and it 
can be regulated using a PWM(Pulse Width Modulated) 
signal. The output DC voltage is related to the duty cycle of 
the pulse wave. The approximate relation between the input 
and output voltage can be given as:  
   Vo

Vi

=
1

1− D
     (21)  

From the above expression it can be seen that the output DC 
voltage is always higher than the input voltage (as the duty 
cycle always goes from 0 to 1) and it increases non linearly 
with increase in the duty cycle. The DC-DC Boost 
Converter can be considered to be a non-linear system with 
input u(k) as the duty cycle of the pulse wave and the output 
y(k) as the output DC voltage.The configuration of the 
DC/DC converter used in the present study employs an 
inductor of inductance 69 micro henries ; capacitor of 550 
micro farads ; Diode of resistance 0.001 ohms and forward 
voltage 0.8 Volts  ; MOSFET with  FET resistance of 
0.1ohms and internal diode resistance of 0.01 ohms .The 
input DC voltage is 10V and  pulse period of the PWM 
signal is 10 micro seconds. Simulink Model of the System 
(Matlab 2008a) is given in Figure 5. The dynamic 
characteristics of the DC-DC Boost Converter are illustrated 
in Figure 6 .  From the dynamics of the DC-DC converter, it 
is clear that for large negative changes in the duty cycle, the 
fall in output DC voltage is very slow.  The reason for this is 
that when the duty cycle  decreases, the average charge on 
the capacitor has to decrease, so the average current through 
the inductor has to decrease. However, as the inductor 
current can never be negative, with the presence of the 
diode, discharging of average charge of the capacitor is very 
slow. This effect can be seen in Figure 6 

. 
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Figure 4.    Hammerstein Model Output for Numerical System 

 

Figure 5.    Simulink Model of Boost Converter  

 

 
Figure 6.    Dynamic Characteristics of DC-DC Boost Converter 

 
Figure 7.    Hammerstein Model with Disturbance Filter 

To overcome this problem, we have proposed a modified 
model with an additional disturbance filter.  
Figure 7 illustrates the new model. LTID is the "disturbance 
filter”.  The filter can be trained using data corresponding to 
the response of the system to a sequence of negative steps in 
the input duty cycle. Once the disturbance filter has been 
integrated into the model, the output of the modified 
Hammerstein model can be estimated for an input duty 
cycle in a wide range.  
Figure 8 compares the actual output with the output of the 
Hammerstein model and the Modified Hammerstein Model.  
Mean absolute error of approximation of  Hammerstein 
model is 0.3872 and Mean absolute error of approximation 
of  Hammerstein model with disturbance is 0.2678 .  
Evidently, the Hammerstein Model with a disturbance filter 
provides a better approximation of the non-linear dynamics 

of the DC-DC Boost Converter. However, it can be seen 
that the dynamic characteristics of the Boost converter 
change with the region of operation and the range of the 
duty cycles.  

 
Figure 8.    Hammerstein Model Prediction for DC-DC Boost Converter 

  
 

VI. CONCLUSIONS 

In this paper, a new method has been proposed for black 
box modeling  of non-linear systems that combines the 
virtues of wavelet networks and orthonormal basis 
functions. The model possesses the ability to model 
complicated non-linear systems parsimoniously and can be 
trained using simple newton- based optimization 
algorithms.Simulation results reveal the robustness and 
effectiveness of the proposed method.  
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