20,982 research outputs found

    Parallel Algorithms for Geometric Graph Problems

    Full text link
    We give algorithms for geometric graph problems in the modern parallel models inspired by MapReduce. For example, for the Minimum Spanning Tree (MST) problem over a set of points in the two-dimensional space, our algorithm computes a (1+ϵ)(1+\epsilon)-approximate MST. Our algorithms work in a constant number of rounds of communication, while using total space and communication proportional to the size of the data (linear space and near linear time algorithms). In contrast, for general graphs, achieving the same result for MST (or even connectivity) remains a challenging open problem, despite drawing significant attention in recent years. We develop a general algorithmic framework that, besides MST, also applies to Earth-Mover Distance (EMD) and the transportation cost problem. Our algorithmic framework has implications beyond the MapReduce model. For example it yields a new algorithm for computing EMD cost in the plane in near-linear time, n1+oϵ(1)n^{1+o_\epsilon(1)}. We note that while recently Sharathkumar and Agarwal developed a near-linear time algorithm for (1+ϵ)(1+\epsilon)-approximating EMD, our algorithm is fundamentally different, and, for example, also solves the transportation (cost) problem, raised as an open question in their work. Furthermore, our algorithm immediately gives a (1+ϵ)(1+\epsilon)-approximation algorithm with nδn^{\delta} space in the streaming-with-sorting model with 1/δO(1)1/\delta^{O(1)} passes. As such, it is tempting to conjecture that the parallel models may also constitute a concrete playground in the quest for efficient algorithms for EMD (and other similar problems) in the vanilla streaming model, a well-known open problem

    Minimizing Flow-Time on Unrelated Machines

    Get PDF
    We consider some flow-time minimization problems in the unrelated machines setting. In this setting, there is a set of mm machines and a set of nn jobs, and each job jj has a machine dependent processing time of pijp_{ij} on machine ii. The flow-time of a job is the total time the job spends in the system (completion time minus its arrival time), and is one of the most natural quality of service measure. We show the following two results: an O(min(log2n,lognlogP))O(\min(\log^2 n,\log n \log P)) approximation algorithm for minimizing the total-flow time, and an O(logn)O(\log n) approximation for minimizing the maximum flow-time. Here PP is the ratio of maximum to minimum job size. These are the first known poly-logarithmic guarantees for both the problems.Comment: The new version fixes some typos in the previous version. The paper is accepted for publication in STOC 201

    Closing the Gap for Pseudo-Polynomial Strip Packing

    Get PDF
    Two-dimensional packing problems are a fundamental class of optimization problems and Strip Packing is one of the most natural and famous among them. Indeed it can be defined in just one sentence: Given a set of rectangular axis parallel items and a strip with bounded width and infinite height, the objective is to find a packing of the items into the strip minimizing the packing height. We speak of pseudo-polynomial Strip Packing if we consider algorithms with pseudo-polynomial running time with respect to the width of the strip. It is known that there is no pseudo-polynomial time algorithm for Strip Packing with a ratio better than 5/4 unless P = NP. The best algorithm so far has a ratio of 4/3 + epsilon. In this paper, we close the gap between inapproximability result and currently known algorithms by presenting an algorithm with approximation ratio 5/4 + epsilon. The algorithm relies on a new structural result which is the main accomplishment of this paper. It states that each optimal solution can be transformed with bounded loss in the objective such that it has one of a polynomial number of different forms thus making the problem tractable by standard techniques, i.e., dynamic programming. To show the conceptual strength of the approach, we extend our result to other problems as well, e.g., Strip Packing with 90 degree rotations and Contiguous Moldable Task Scheduling, and present algorithms with approximation ratio 5/4 + epsilon for these problems as well

    Automatic surrogate model type selection during the optimization of expensive black-box problems

    Get PDF
    The use of Surrogate Based Optimization (SBO) has become commonplace for optimizing expensive black-box simulation codes. A popular SBO method is the Efficient Global Optimization (EGO) approach. However, the performance of SBO methods critically depends on the quality of the guiding surrogate. In EGO the surrogate type is usually fixed to Kriging even though this may not be optimal for all problems. In this paper the authors propose to extend the well-known EGO method with an automatic surrogate model type selection framework that is able to dynamically select the best model type (including hybrid ensembles) depending on the data available so far. Hence, the expected improvement criterion will always be based on the best approximation available at each step of the optimization process. The approach is demonstrated on a structural optimization problem, i.e., reducing the stress on a truss-like structure. Results show that the proposed algorithm consequently finds better optimums than traditional kriging-based infill optimization

    Online Scheduling on Identical Machines using SRPT

    Full text link
    Due to its optimality on a single machine for the problem of minimizing average flow time, Shortest-Remaining-Processing-Time (\srpt) appears to be the most natural algorithm to consider for the problem of minimizing average flow time on multiple identical machines. It is known that \srpt achieves the best possible competitive ratio on multiple machines up to a constant factor. Using resource augmentation, \srpt is known to achieve total flow time at most that of the optimal solution when given machines of speed 21m2- \frac{1}{m}. Further, it is known that \srpt's competitive ratio improves as the speed increases; \srpt is ss-speed 1s\frac{1}{s}-competitive when s21ms \geq 2- \frac{1}{m}. However, a gap has persisted in our understanding of \srpt. Before this work, the performance of \srpt was not known when \srpt is given (1+\eps)-speed when 0 < \eps < 1-\frac{1}{m}, even though it has been thought that \srpt is (1+\eps)-speed O(1)O(1)-competitive for over a decade. Resolving this question was suggested in Open Problem 2.9 from the survey "Online Scheduling" by Pruhs, Sgall, and Torng \cite{PruhsST}, and we answer the question in this paper. We show that \srpt is \emph{scalable} on mm identical machines. That is, we show \srpt is (1+\eps)-speed O(\frac{1}{\eps})-competitive for \eps >0. We complement this by showing that \srpt is (1+\eps)-speed O(\frac{1}{\eps^2})-competitive for the objective of minimizing the k\ell_k-norms of flow time on mm identical machines. Both of our results rely on new potential functions that capture the structure of \srpt. Our results, combined with previous work, show that \srpt is the best possible online algorithm in essentially every aspect when migration is permissible.Comment: Accepted for publication at SODA. This version fixes an error in a preliminary versio
    corecore