2,405 research outputs found

    Online unit clustering in higher dimensions

    Full text link
    We revisit the online Unit Clustering and Unit Covering problems in higher dimensions: Given a set of nn points in a metric space, that arrive one by one, Unit Clustering asks to partition the points into the minimum number of clusters (subsets) of diameter at most one; while Unit Covering asks to cover all points by the minimum number of balls of unit radius. In this paper, we work in Rd\mathbb{R}^d using the LL_\infty norm. We show that the competitive ratio of any online algorithm (deterministic or randomized) for Unit Clustering must depend on the dimension dd. We also give a randomized online algorithm with competitive ratio O(d2)O(d^2) for Unit Clustering}of integer points (i.e., points in Zd\mathbb{Z}^d, dNd\in \mathbb{N}, under LL_{\infty} norm). We show that the competitive ratio of any deterministic online algorithm for Unit Covering is at least 2d2^d. This ratio is the best possible, as it can be attained by a simple deterministic algorithm that assigns points to a predefined set of unit cubes. We complement these results with some additional lower bounds for related problems in higher dimensions.Comment: 15 pages, 4 figures. A preliminary version appeared in the Proceedings of the 15th Workshop on Approximation and Online Algorithms (WAOA 2017

    Algorithms to Approximate Column-Sparse Packing Problems

    Full text link
    Column-sparse packing problems arise in several contexts in both deterministic and stochastic discrete optimization. We present two unifying ideas, (non-uniform) attenuation and multiple-chance algorithms, to obtain improved approximation algorithms for some well-known families of such problems. As three main examples, we attain the integrality gap, up to lower-order terms, for known LP relaxations for k-column sparse packing integer programs (Bansal et al., Theory of Computing, 2012) and stochastic k-set packing (Bansal et al., Algorithmica, 2012), and go "half the remaining distance" to optimal for a major integrality-gap conjecture of Furedi, Kahn and Seymour on hypergraph matching (Combinatorica, 1993).Comment: Extended abstract appeared in SODA 2018. Full version in ACM Transactions of Algorithm

    Fault-Tolerant Spanners: Better and Simpler

    Full text link
    A natural requirement of many distributed structures is fault-tolerance: after some failures, whatever remains from the structure should still be effective for whatever remains from the network. In this paper we examine spanners of general graphs that are tolerant to vertex failures, and significantly improve their dependence on the number of faults rr, for all stretch bounds. For stretch k3k \geq 3 we design a simple transformation that converts every kk-spanner construction with at most f(n)f(n) edges into an rr-fault-tolerant kk-spanner construction with at most O(r3logn)f(2n/r)O(r^3 \log n) \cdot f(2n/r) edges. Applying this to standard greedy spanner constructions gives rr-fault tolerant kk-spanners with O~(r2n1+2k+1)\tilde O(r^{2} n^{1+\frac{2}{k+1}}) edges. The previous construction by Chechik, Langberg, Peleg, and Roddity [STOC 2009] depends similarly on nn but exponentially on rr (approximately like krk^r). For the case k=2k=2 and unit-length edges, an O(rlogn)O(r \log n)-approximation algorithm is known from recent work of Dinitz and Krauthgamer [arXiv 2010], where several spanner results are obtained using a common approach of rounding a natural flow-based linear programming relaxation. Here we use a different (stronger) LP relaxation and improve the approximation ratio to O(logn)O(\log n), which is, notably, independent of the number of faults rr. We further strengthen this bound in terms of the maximum degree by using the \Lovasz Local Lemma. Finally, we show that most of our constructions are inherently local by designing equivalent distributed algorithms in the LOCAL model of distributed computation.Comment: 17 page

    The Query-commit Problem

    Full text link
    In the query-commit problem we are given a graph where edges have distinct probabilities of existing. It is possible to query the edges of the graph, and if the queried edge exists then its endpoints are irrevocably matched. The goal is to find a querying strategy which maximizes the expected size of the matching obtained. This stochastic matching setup is motivated by applications in kidney exchanges and online dating. In this paper we address the query-commit problem from both theoretical and experimental perspectives. First, we show that a simple class of edges can be queried without compromising the optimality of the strategy. This property is then used to obtain in polynomial time an optimal querying strategy when the input graph is sparse. Next we turn our attentions to the kidney exchange application, focusing on instances modeled over real data from existing exchange programs. We prove that, as the number of nodes grows, almost every instance admits a strategy which matches almost all nodes. This result supports the intuition that more exchanges are possible on a larger pool of patient/donors and gives theoretical justification for unifying the existing exchange programs. Finally, we evaluate experimentally different querying strategies over kidney exchange instances. We show that even very simple heuristics perform fairly well, being within 1.5% of an optimal clairvoyant strategy, that knows in advance the edges in the graph. In such a time-sensitive application, this result motivates the use of committing strategies

    Greedy D-Approximation Algorithm for Covering with Arbitrary Constraints and Submodular Cost

    Full text link
    This paper describes a simple greedy D-approximation algorithm for any covering problem whose objective function is submodular and non-decreasing, and whose feasible region can be expressed as the intersection of arbitrary (closed upwards) covering constraints, each of which constrains at most D variables of the problem. (A simple example is Vertex Cover, with D = 2.) The algorithm generalizes previous approximation algorithms for fundamental covering problems and online paging and caching problems

    Algorithms for covering multiple submodular constraints and applications

    Get PDF
    We consider the problem of covering multiple submodular constraints. Given a finite ground set N, a weight function w:NR+w: N \rightarrow \mathbb {R}_+, r monotone submodular functions f1,f2,,frf_1,f_2,\ldots ,f_r over N and requirements k1,k2,,krk_1,k_2,\ldots ,k_r the goal is to find a minimum weight subset SNS \subseteq N such that fi(S)kif_i(S) \ge k_i for 1ir1 \le i \le r. We refer to this problem as Multi-Submod-Cover and it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR. arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with r=1r=1 Multi-Submod-Cover generalizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced to Submod-SC. A simple greedy algorithm gives an O(log(kr))O(\log (kr)) approximation where k=ikik = \sum _i k_i and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm for Multi-Submod-Cover that covers each constraint to within a factor of (11/eε)(1-1/e-\varepsilon ) while incurring an approximation of O(1ϵlogr)O(\frac{1}{\epsilon }\log r) in the cost. Second, we consider the special case when each fif_i is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems.publishedVersio
    corecore