1,791 research outputs found

    Stochastic scheduling on unrelated machines

    Get PDF
    Two important characteristics encountered in many real-world scheduling problems are heterogeneous machines/processors and a certain degree of uncertainty about the actual sizes of jobs. The first characteristic entails machine dependent processing times of jobs and is captured by the classical unrelated machine scheduling model.The second characteristic is adequately addressed by stochastic processing times of jobs as they are studied in classical stochastic scheduling models. While there is an extensive but separate literature for the two scheduling models, we study for the first time a combined model that takes both characteristics into account simultaneously. Here, the processing time of job jj on machine ii is governed by random variable PijP_{ij}, and its actual realization becomes known only upon job completion. With wjw_j being the given weight of job jj, we study the classical objective to minimize the expected total weighted completion time E[jwjCj]E[\sum_j w_jC_j], where CjC_j is the completion time of job jj. By means of a novel time-indexed linear programming relaxation, we compute in polynomial time a scheduling policy with performance guarantee (3+Δ)/2+ϵ(3+\Delta)/2+\epsilon. Here, ϵ>0\epsilon>0 is arbitrarily small, and Δ\Delta is an upper bound on the squared coefficient of variation of the processing times. We show that the dependence of the performance guarantee on Δ\Delta is tight, as we obtain a Δ/2\Delta/2 lower bound for the type of policies that we use. When jobs also have individual release dates rijr_{ij}, our bound is (2+Δ)+ϵ(2+\Delta)+\epsilon. Via Δ=0\Delta=0, currently best known bounds for deterministic scheduling are contained as a special case

    Minimizing Flow-Time on Unrelated Machines

    Get PDF
    We consider some flow-time minimization problems in the unrelated machines setting. In this setting, there is a set of mm machines and a set of nn jobs, and each job jj has a machine dependent processing time of pijp_{ij} on machine ii. The flow-time of a job is the total time the job spends in the system (completion time minus its arrival time), and is one of the most natural quality of service measure. We show the following two results: an O(min(log2n,lognlogP))O(\min(\log^2 n,\log n \log P)) approximation algorithm for minimizing the total-flow time, and an O(logn)O(\log n) approximation for minimizing the maximum flow-time. Here PP is the ratio of maximum to minimum job size. These are the first known poly-logarithmic guarantees for both the problems.Comment: The new version fixes some typos in the previous version. The paper is accepted for publication in STOC 201

    Scheduling to Minimize Total Weighted Completion Time via Time-Indexed Linear Programming Relaxations

    Full text link
    We study approximation algorithms for scheduling problems with the objective of minimizing total weighted completion time, under identical and related machine models with job precedence constraints. We give algorithms that improve upon many previous 15 to 20-year-old state-of-art results. A major theme in these results is the use of time-indexed linear programming relaxations. These are natural relaxations for their respective problems, but surprisingly are not studied in the literature. We also consider the scheduling problem of minimizing total weighted completion time on unrelated machines. The recent breakthrough result of [Bansal-Srinivasan-Svensson, STOC 2016] gave a (1.5c)(1.5-c)-approximation for the problem, based on some lift-and-project SDP relaxation. Our main result is that a (1.5c)(1.5 - c)-approximation can also be achieved using a natural and considerably simpler time-indexed LP relaxation for the problem. We hope this relaxation can provide new insights into the problem

    Energy Efficient Scheduling via Partial Shutdown

    Get PDF
    Motivated by issues of saving energy in data centers we define a collection of new problems referred to as "machine activation" problems. The central framework we introduce considers a collection of mm machines (unrelated or related) with each machine ii having an {\em activation cost} of aia_i. There is also a collection of nn jobs that need to be performed, and pi,jp_{i,j} is the processing time of job jj on machine ii. We assume that there is an activation cost budget of AA -- we would like to {\em select} a subset SS of the machines to activate with total cost a(S)Aa(S) \le A and {\em find} a schedule for the nn jobs on the machines in SS minimizing the makespan (or any other metric). For the general unrelated machine activation problem, our main results are that if there is a schedule with makespan TT and activation cost AA then we can obtain a schedule with makespan \makespanconstant T and activation cost \costconstant A, for any ϵ>0\epsilon >0. We also consider assignment costs for jobs as in the generalized assignment problem, and using our framework, provide algorithms that minimize the machine activation and the assignment cost simultaneously. In addition, we present a greedy algorithm which only works for the basic version and yields a makespan of 2T2T and an activation cost A(1+lnn)A (1+\ln n). For the uniformly related parallel machine scheduling problem, we develop a polynomial time approximation scheme that outputs a schedule with the property that the activation cost of the subset of machines is at most AA and the makespan is at most (1+ϵ)T(1+\epsilon) T for any ϵ>0\epsilon >0

    Lift-and-Round to Improve Weighted Completion Time on Unrelated Machines

    Get PDF
    We consider the problem of scheduling jobs on unrelated machines so as to minimize the sum of weighted completion times. Our main result is a (3/2c)(3/2-c)-approximation algorithm for some fixed c>0c>0, improving upon the long-standing bound of 3/2 (independently due to Skutella, Journal of the ACM, 2001, and Sethuraman & Squillante, SODA, 1999). To do this, we first introduce a new lift-and-project based SDP relaxation for the problem. This is necessary as the previous convex programming relaxations have an integrality gap of 3/23/2. Second, we give a new general bipartite-rounding procedure that produces an assignment with certain strong negative correlation properties.Comment: 21 pages, 4 figure
    corecore