443 research outputs found

    Time-approximation trade-offs for inapproximable problems

    Get PDF
    In this paper we focus on problems which do not admit a constant-factor approximation in polynomial time and explore how quickly their approximability improves as the allowed running time is gradually increased from polynomial to (sub-)exponential. We tackle a number of problems: For Min Independent Dominating Set, Max Induced Path, Forest and Tree, for any r(n), a simple, known scheme gives an approximation ratio of r in time roughly rn/r. We show that, for most values of r, if this running time could be significantly improved the ETH would fail. For Max Minimal Vertex Cover we give a nontrivial √r-approximation in time 2n/r. We match this with a similarly tight result. We also give a log r-approximation for Min ATSP in time 2n/r and an r-approximation for Max Grundy Coloring in time rn/r. Furthermore, we show that Min Set Cover exhibits a curious behavior in this superpolynomial setting: for any δ > 0 it admits an mδ-approximation, where m is the number of sets, in just quasi-polynomial time. We observe that if such ratios could be achieved in polynomial time, the ETH or the Projection Games Conjecture would fail. © Édouard Bonnet, Michael Lampis and Vangelis Th. Paschos; licensed under Creative Commons License CC-BY

    Independent Set, Induced Matching, and Pricing: Connections and Tight (Subexponential Time) Approximation Hardnesses

    Full text link
    We present a series of almost settled inapproximability results for three fundamental problems. The first in our series is the subexponential-time inapproximability of the maximum independent set problem, a question studied in the area of parameterized complexity. The second is the hardness of approximating the maximum induced matching problem on bounded-degree bipartite graphs. The last in our series is the tight hardness of approximating the k-hypergraph pricing problem, a fundamental problem arising from the area of algorithmic game theory. In particular, assuming the Exponential Time Hypothesis, our two main results are: - For any r larger than some constant, any r-approximation algorithm for the maximum independent set problem must run in at least 2^{n^{1-\epsilon}/r^{1+\epsilon}} time. This nearly matches the upper bound of 2^{n/r} (Cygan et al., 2008). It also improves some hardness results in the domain of parameterized complexity (e.g., Escoffier et al., 2012 and Chitnis et al., 2013) - For any k larger than some constant, there is no polynomial time min (k^{1-\epsilon}, n^{1/2-\epsilon})-approximation algorithm for the k-hypergraph pricing problem, where n is the number of vertices in an input graph. This almost matches the upper bound of min (O(k), \tilde O(\sqrt{n})) (by Balcan and Blum, 2007 and an algorithm in this paper). We note an interesting fact that, in contrast to n^{1/2-\epsilon} hardness for polynomial-time algorithms, the k-hypergraph pricing problem admits n^{\delta} approximation for any \delta >0 in quasi-polynomial time. This puts this problem in a rare approximability class in which approximability thresholds can be improved significantly by allowing algorithms to run in quasi-polynomial time.Comment: The full version of FOCS 201

    Parameterized Exact and Approximation Algorithms for Maximum kk-Set Cover and Related Satisfiability Problems

    Full text link
    Given a family of subsets S\mathcal S over a set of elements~XX and two integers~pp and~kk, Max k-Set Cover consists of finding a subfamily~TS\mathcal T \subseteq \mathcal S of cardinality at most~kk, covering at least~pp elements of~XX. This problem is W[2]-hard when parameterized by~kk, and FPT when parameterized by pp. We investigate the parameterized approximability of the problem with respect to parameters~kk and~pp. Then, we show that Max Sat-k, a satisfiability problem generalizing Max k-Set Cover, is also FPT with respect to parameter~pp.Comment: Accepted in RAIRO - Theoretical Informatics and Application

    Hardness of Easy Problems: Basing Hardness on Popular Conjectures such as the Strong Exponential Time Hypothesis (Invited Talk)

    Get PDF
    Algorithmic research strives to develop fast algorithms for fundamental problems. Despite its many successes, however, many problems still do not have very efficient algorithms. For years researchers have explained the hardness for key problems by proving NP-hardness, utilizing polynomial time reductions to base the hardness of key problems on the famous conjecture P != NP. For problems that already have polynomial time algorithms, however, it does not seem that one can show any sort of hardness based on P != NP. Nevertheless, we would like to provide evidence that a problem AA with a running time O(n^k) that has not been improved in decades, also requires n^{k-o(1)} time, thus explaining the lack of progress on the problem. Such unconditional time lower bounds seem very difficult to obtain, unfortunately. Recent work has concentrated on an approach mimicking NP-hardness: (1) select a few key problems that are conjectured to require T(n) time to solve, (2) use special, fine-grained reductions to prove time lower bounds for many diverse problems in P based on the conjectured hardness of the key problems. In this abstract we outline the approach, give some examples of hardness results based on the Strong Exponential Time Hypothesis, and present an overview of some of the recent work on the topic

    New Tools and Connections for Exponential-Time Approximation

    Get PDF
    In this paper, we develop new tools and connections for exponential time approximation. In this setting, we are given a problem instance and an integer r>1, and the goal is to design an approximation algorithm with the fastest possible running time. We give randomized algorithms that establish an approximation ratio of 1. r for maximum independent set in O∗(exp(O~(n/rlog2r+rlog2r))) time, 2. r for chromatic number in O∗(exp(O~(n/rlogr+rlog2r))) time, 3. (2−1/r) for minimum vertex cover in O∗(exp(n/rΩ(r))) time, and 4. (k−1/r) for minimum k-hypergraph vertex cover in O∗(exp(n/(kr)Ω(kr))) time. (Throughout, O~ and O∗ omit polyloglog(r) and factors polynomial in the input size, respectively.) The best known time bounds for all problems were O∗(2n/r) (Bourgeois et al. i

    Distributed PCP Theorems for Hardness of Approximation in P

    Get PDF
    We present a new distributed model of probabilistically checkable proofs (PCP). A satisfying assignment x{0,1}nx \in \{0,1\}^n to a CNF formula φ\varphi is shared between two parties, where Alice knows x1,,xn/2x_1, \dots, x_{n/2}, Bob knows xn/2+1,,xnx_{n/2+1},\dots,x_n, and both parties know φ\varphi. The goal is to have Alice and Bob jointly write a PCP that xx satisfies φ\varphi, while exchanging little or no information. Unfortunately, this model as-is does not allow for nontrivial query complexity. Instead, we focus on a non-deterministic variant, where the players are helped by Merlin, a third party who knows all of xx. Using our framework, we obtain, for the first time, PCP-like reductions from the Strong Exponential Time Hypothesis (SETH) to approximation problems in P. In particular, under SETH we show that there are no truly-subquadratic approximation algorithms for Bichromatic Maximum Inner Product over {0,1}-vectors, Bichromatic LCS Closest Pair over permutations, Approximate Regular Expression Matching, and Diameter in Product Metric. All our inapproximability factors are nearly-tight. In particular, for the first two problems we obtain nearly-polynomial factors of 2(logn)1o(1)2^{(\log n)^{1-o(1)}}; only (1+o(1))(1+o(1))-factor lower bounds (under SETH) were known before

    Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

    Get PDF
    corecore