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Abstract
For any ε > 0, we give a polynomial-time nε-approximation algorithm for Max Independent
Set in graphs of bounded twin-width given with an O(1)-sequence. This result is derived from
the following time-approximation trade-off: We establish an O(1)2q−1-approximation algorithm
running in time exp(Oq(n2−q

)), for every integer q ⩾ 0. Guided by the same framework, we obtain
similar approximation algorithms for Min Coloring and Max Induced Matching. In general
graphs, all these problems are known to be highly inapproximable: for any ε > 0, a polynomial-time
n1−ε-approximation for any of them would imply that P=NP [Håstad, FOCS ’96; Zuckerman,
ToC ’07; Chalermsook et al., SODA ’13]. We generalize the algorithms for Max Independent
Set and Max Induced Matching to the independent (induced) packing of any fixed connected
graph H.

In contrast, we show that such approximation guarantees on graphs of bounded twin-width given
with an O(1)-sequence are very unlikely for Min Independent Dominating Set, and somewhat
unlikely for Longest Path and Longest Induced Path. Regarding the existence of better
approximation algorithms, there is a (very) light evidence that the obtained approximation factor
of nε for Max Independent Set may be best possible. This is the first in-depth study of the
approximability of problems in graphs of bounded twin-width. Prior to this paper, essentially the
only such result was a polynomial-time O(1)-approximation algorithm for Min Dominating Set
[Bonnet et al., ICALP ’21].
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1 Introduction

Twin-width is a graph parameter introduced by Bonnet, Kim, Thomassé, and Watrigant [7].
Its definition involves the notions of trigraphs and of contraction sequences. A trigraph is
a graph with two types of edges: black (regular) edges and red (error) edges. A (vertex)
contraction consists of merging two (non-necessarily adjacent) vertices, say, u, v into a vertex w,
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10:2 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

replacing an edge uz (resp. vz) by wz in the following way: we keep wz black if and only
if uz and vz were previously black edges. The other edges incident to w become red (if
not already), and the rest of the trigraph remains the same. A contraction sequence of an
n-vertex1 graph G is a sequence of trigraphs G = Gn, . . . , G1 = K1 such that Gi is obtained
from Gi+1 by performing one contraction. A d-sequence is a contraction sequence in which
every vertex of every trigraph has at most d red edges incident to it. The twin-width of G,
denoted by tww(G), is then the minimum integer d such that G admits a d-sequence. Figure 1
gives an example of a graph with a 2-sequence, i.e., of twin-width at most 2. Twin-width can
be naturally extended to matrices (with unordered [7] or ordered [6] row and column sets)
over a finite alphabet, and thus to binary structures.
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Figure 1 A 2-sequence witnessing that the initial graph has twin-width at most 2.

An equivalent viewpoint that will be somewhat more convenient is to consider a d-sequence
as a sequence of partitions Pn := {{v} : v ∈ V (G)}, Pn−1, . . . , P1 := {V (G)} of V (G),
such that for every integer 1 ⩽ i ⩽ n − 1, Pi has i parts and is obtained by merging two
parts of Pi+1 into one. Now the red degree of a part P ∈ Pi is the number of other parts
Q ∈ Pi such that there is in G at least one edge and at least one non-edge between P and Q.
A d-sequence is such that no part of no partition of the sequence has red degree more than d.
In that case the maximum red degree of each partition is at most d. And we similarly get
the twin-width of G as the minimum integer d such that G admits a (partition) d-sequence.
The quotient trigraph G/Pi is the trigraph Gi, if the (contraction) d-sequence Gn, . . . , G1
and the (partition) d-sequence Pn, . . . , P1 correspond.

Classes of binary structures with bounded twin-width include graph classes with bounded
treewidth, and more generally bounded clique-width, proper minor-closed classes, posets
with antichains of bounded size, strict subclasses of permutation graphs, as well as Ω(log n)-
subdivisions of n-vertex graphs [7], and some classes of (bounded-degree) expanders [4].
A notable variety of geometrically defined graph classes have bounded twin-width such
as map graphs, bounded-degree string graphs [7], classes with bounded queue number or
bounded stack number [4], segment graphs with no Kt,t subgraph, visibility graphs of
1.5D terrains without large half-graphs, visibility graphs of simple polygons without large
independent sets [3].

For every class C mentioned so far, O(1)-sequences can be computed in polynomial time2

on members of C. For classes of binary structures including a binary relation interpreted as
a linear order on the domain (called ordered binary structures), there is a fixed-parameter
approximation algorithm for twin-width [6]. More precisely, given a graph G and an integer k,
there are computable functions f and g such that one can output an f(k)-sequence of G

or correctly report that tww(G) > k in time g(k)nO(1). Such an approximation algorithm

1 In this introduction, we might implicitly use n to denote the number of vertices, and m, the number of
edges of the graph at hand.

2 Admittedly, for the geometric classes, a representation is (at least partially) needed.
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is currently missing for classes of general (not necessarily ordered) binary structures, and
in particular for the class of all graphs. We also observe that deciding if the twin-width of
a graph is at most 4 is an NP-complete task [2].

We will therefore assume that the input graph is given with a d-sequence, and treat d

as a constant (or that the input comes from any of the above-mentioned classes). Thus
far, this is the adopted setting when designing faster algorithms on bounded twin-width
graphs [7, 5, 26, 23, 15]. From the inception of twin-width [7] –actually already from the
seminal work of Guillemot and Marx [17]– it was clear that structures wherein this invariant
is bounded may often allow the design of parameterized algorithms. More concretely, it was
shown [7] that, on graphs G given with a d-sequence, model checking a first-order sentence
φ is fixed-parameter tractable –it can be solved in time f(d, φ) · n–, the special cases of,
say, k-Independent Set or k-Dominating Set admit single-exponential parameterized
algorithms [5], an effective data structure almost linear in n can support constant-time edge
queries [26], the triangles of G can be counted in time O(d2n + m) [23].

So far, however, the connection between having bounded twin-width and enjoying enhanced
approximation factors was tenuous. The only such result concerned Min Dominating Set,
known to be inapproximable in polynomial-time within factor (1−o(1)) ln n unless P=NP [12],
but yet admits a constant-approximation on graphs of bounded twin-width given with an
O(1)-sequence [5]. We start filling this gap by designing approximation algorithms on graphs
of bounded twin-width given with an O(1)-sequence for notably Max Independent Set
(MIS, for short), Max Induced Matching, and Coloring. Getting better approximation
algorithms for MIS and Coloring in that particular scenario was raised as an open
problem [5]. Before we describe our results and elaborate on the developed techniques, let us
briefly present the notorious inapproximability of these problems in general graphs.

MIS and Coloring are NP-hard [16], and very inapproximable: for every ε > 0, it is
NP-hard to approximate these problems within ratio n1−ε [19, 27]. The same was shown to
hold for Max Induced Matching [9]. Besides, there is only little room to improve over
the brute-force algorithm in 2O(n): Unless the Exponential Time Hypothesis3 [21] (ETH)
fails, no algorithm can solve MIS in time 2o(n) [22] (nor the other two problems). For any r

(possibly a function of n) WMIS can be r-approximated in time 2O(n/r) [11, 8]. Bansal
et al. [1] essentially shaved a log2 r factor to the latter exponent. It is known though that
polynomial shavings are unlikely. Chalermsook et al. [10] showed that, for any ε > 0 and
sufficiently large r (again r can be function of n), an r-approximation for MIS and Max
Induced Matching cannot take time 2O(n1−ε/r1+ε), unless the ETH fails. For instance,
investing time 2O(

√
n), one cannot hope for significantly better than a

√
n-approximation.

Contributions and techniques

Our starting point is a constant-approximation algorithm for MIS running in time 2O(
√

n)

when presented with an O(1)-sequence, which is very unlikely to hold in general graphs by
the result of Chalermsook et al. [10].

▶ Theorem 1. On n-vertex graphs given with a d-sequence Max Independent Set can be
Od(1)-approximated in time 2Od(

√
n).

Our algorithm builds upon the functional equivalence between twin-width and the so-called
versatile twin-width [4]. We defer the reader to Section 2 for a formal definition of versatile
twin-width. For our purpose, one only needs to know the following useful consequence of that

3 That is, the assumption that there is a δ > 0 such that n-variable 3-SAT cannot be solved in time δn.

STACS 2023



10:4 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

equivalence. From a d′-sequence of G, we can compute in polynomial time another partition
sequence Pn, . . . , P1 of G of width d := f(d′), for some computable function f , such that for
every integer 1 ⩽ i ⩽ n, all the i parts of Pi have size at most d · n

i . Even if some parts of Pi

can be very small, this partition is balanced in the sense that no part can be larger than d

times the part size in a perfectly balanced partition. Of importance to us is P⌊
√

n⌋ when the
number of parts (⌊

√
n⌋) and the size of a larger part in the partition (at most d n

⌊
√

n⌋ ≈ d
√

n)
are somewhat level.

We can then properly color the red graph (made by the red edges on the vertex set P⌊
√

n⌋)
with d + 1 colors. Any color class X is a subset of parts of P⌊

√
n⌋ such that between two

parts there are either all edges (black edge) or no edge at all (non-edge). In graph-theoretic
terms, the subgraph GX of G induced by all the vertices of all the parts of X has a simple
modular decomposition: a partition of at most

√
n modules each of size at most d

√
n. It is

thus routine to compute a largest independent set of GX essentially in time exponential in
the maximum between the number of modules and the maximum size of a module, that is,
in at most d

√
n. As one color class X∗ contains more than a 1

d+1 fraction of the optimum,
we get our d + 1-approximation when computing a largest independent set of GX∗ . Figure 2
on page 10 serves as a visual summary of what we described so far.

The next step is to substitute exact exponential algorithms on induced subgraphs of size
Od(

√
n) by recursive calls of our approximation algorithm. Following this inductive process

at depth q = 2, 3, 4, . . ., we degrade the approximation ratio to (d + 1)3, (d + 1)7, (d + 1)15,
etc. but meanwhile we boost the running time to 2Od(n1/4), 2Od(n1/8), 2Od(n1/16), etc. In effect
we show by induction that:

▶ Theorem 2. On n-vertex graphs given with a d-sequence Max Independent Set has an
Od(1)2q−1-approximation algorithm running in time 2Od,q(n2−q

), for every integer q ⩾ 0.

The following polynomial-time algorithm is a corollary of Theorem 2 choosing q =
Od,ε(log log n).

▶ Theorem 3. For every ε > 0, Max Independent Set can be nε-approximated in
polynomial-time Od,ε(1) · logOd(1) n · nO(1) on n-vertex graphs given with a d-sequence.

Note that the exponent of the polynomial factor is an absolute constant (not depending on d

nor on ε).

We then apply our framework to Coloring and Max Induced Matching.

▶ Theorem 4. For every ε > 0, Coloring and Max Induced Matching admit polynomial-
time nε-approximation algorithms on n-vertex graphs of bounded twin-width given with an
O(1)-sequence.

The main additional difficulty for Coloring is that one cannot satisfactorily solve/ap-
proximate that problem on a modular decomposition by simply coloring its modules and
its quotient graph. One needs to tackle a more general problem called Set Coloring.
Fortunately this generalization is the fixed point we are looking for: approximating Set
Coloring can be done in our framework by mere recursive calls (to itself).

For Max Induced Matching, we face a new kind of obstacle. It can be the case that
no decent solution is contained in any color class X –in the chosen d + 1-coloring of the red
graph G/P⌊

√
n⌋. For instance, it is possible that any such color class X induces in G an

edgeless graph, while very large induced matchings exist with endpoints in two distinct color
classes. We thus need to also find large induced matchings within the black edges and within
the red edges of G/P⌊

√
n⌋. This leads to a more intricate strategy intertwining the coloring
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of bounded-degree graphs (specifically the red graph and the square of its line graph) and
recursive calls to induced subgraphs of G, and to special induced subgraphs of the total
graph (i.e., made by both the red and black edges) of G/P⌊

√
n⌋.

We then explore the limits of our results and framework in terms of amenable problems.
We give the following technical generalization to the approximation algorithms for MIS and
Max Induced Matching.

▶ Theorem 5. For every connected graph H and ε > 0, Mutually Induced H-packing
admits a polynomial-time nε-approximation algorithms on n-vertex graphs of bounded twin-
width given with an O(1)-sequence.

In this problem, one seeks for a largest induced subgraph that consists of a disjoint
union of copies of H. All the previous technical issues are here combined. We try all the
possibilities of batching the vertices of H into at most |V (H)| parts of G/P⌊

√
n⌋, based on

the trigraph that these parts define. For instance with H = K2 (an edge), i.e., the case
of Max Induced Matching, the three possible trigraphs are the 1-vertex trigraph, two
vertices linked by a red edge, and two vertices linked by a black edge. In the general case,
the problem generalization is quite delicate to find. We have to keep some partitions of
V (G) and V (H) to enforce that the copies of H in G follow a pattern that the algorithm
committed to higher up in the recursion tree, and a weight function on |V (H)|-tuples of
vertices of G, not to forget how many mutually induced copies of H can be packed within
these vertices. The other novelty is that some recursive calls are on induced subgraphs of
the total graph of G/P⌊

√
n⌋ that are not induced subgraphs of G. Fortunately, these graphs

keep the same bound of versatile twin-width, and thus our framework allows it.
Defining, for a family of graphs H, Mutually Induced H-packing as the same

problem where the connected components of the induced subgraph should all be in H,
we get a similar approximation factor when H is a finite set of connected graphs. (Note
that Mutually Induced H-packing is sometimes called Independent Induced H-
Packing.) In particular, we can similarly approximate Independent H-Packing, which is
the same problem but the copies of H need not be induced. (Our approximation algorithms
could extend to other H-packing variants without the independence requirement, but these
problems can straightforwardly be O(1)-approximated in general graphs.)

We can handle some cases when H is infinite, too. For instance, by slightly adapting the
case of MIS, we can get an nε-approximation when H is the set of all cliques. We also show
the following result, also expressible as Mutually Induced H-packing for H the set of
all trees or the set all stars.

▶ Theorem 6. For every ε > 0, finding the induced (star) forest with the most edges admits
a polynomial-time nε-approximation algorithms on n-vertex graphs of bounded twin-width
given with an O(1)-sequence.

As we already mentioned, our framework is exclusively useful for problems that are very
inapproximable in general graphs; at least for which an nε-approximation algorithm is not
known for every ε > 0. Are there natural such problems that cannot be approximated better
in graphs of bounded twin-width? We answer this question positively with the example of
Min Independent Dominating Set.

▶ Theorem 7. For every ε > 0, Min Independent Dominating Set does not admit an
n1−ε-approximation algorithm in n-vertex graphs given with an O(1)-sequence, unless P=NP.

STACS 2023



10:6 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

The reduction is the same as the one for general graphs [18], but performed from a planar
variant of 3-SAT. The obtained instances are not planar but can be contracted to planar
trigraphs, hence overall have bounded twin-width.

Finally the case of Longest Path and Longest Induced Path is interesting. The
best approximation factor for the former [14] is worse than n0.99, while the latter is known
to have the same inapproximability as MIS [24]. However an nε-approximation algorithm
(for every ε > 0) is not excluded for Longest Path. We show that the property of bounded
twin-width is unlikely to help for these two problems, as it would lead to better approximation
algorithms for Longest Path in general graphs. This is mainly because subdividing at least
2 log n times every edge of any n-vertex graph gives a graph with twin-width at most 4 [2].

▶ Theorem 8. For any r = ω(1), an r-approximation for Longest Induced Path
or Longest Path on graphs given with an O(1)-sequence would imply a (1 + o(1))r-
approximation for Longest Path in general graphs.

In turn, this can be used to exhibit a family H with an infinite antichain for the induced
subgraph relation such that Mutually Induced H-packing is hard to nε-approximate on
graphs of bounded twin-width. The family H is simply the set of all paths terminated by
triangles at both ends.

▶ Theorem 9. There is an infinite family H of connected graphs such that if for every ε > 0,
Mutually Induced H-packing admits an nε-approximation algorithm on n-vertex graphs
given with an O(1)-sequence, then so does Longest Path on general graphs.

Table 1 summarizes our results and hints at future work.

Table 1 Approximability status of graph problems in general graphs and in graphs of bounded
twin-width given with an O(1)-sequence. Everywhere “ε” should be read as “∀ε > 0”. Our results
are enclosed by boxes. “Longest Path-hard” means that getting an r-approximation would yield
essentially the same ratio for Longest Path in general graphs. The other lower bounds are under
standard complexity-theoretic assumptions, mostly P ̸=NP. Not to clutter the table, we do not put
the references, which can all be found in the paper.

Problem name lower bound upper bound lower bound
general graphs bounded tww bounded tww

Max Independent Set n1−ε nε ?, self-improvement
Coloring n1−ε nε 4/3 − ε

Max Induced Matching n1−ε nε ?
Mut. Ind. H-Packing n1−ε nε (H connected) ?
Mut. Ind. H-Packing n1−ε nε for some H Longest Path-hard
Min Ind. Dom. Set n1−ε n/polylog(n) n1−ε

Longest Path 2log1−ε n n/ exp(Ω(
√

log n)) Longest Path-hard
Longest Induced Path n1−ε n/polylog(n) Longest Path-hard
Min Dominating Set (1 − ε) ln n O(1) ?

For the main highly inapproximable graph problems, we either obtain an nε-approximation
algorithm on graphs of bounded twin-width given with an O(1)-sequence, or a conditional
obstruction to such an algorithm. In the former case, can we improve further the approxima-
tion factor? The next theorem was observed using the self-improvement reduction of Feige
et al. [13], which preserves the twin-width bound. This reduction consists of going from a
graph G to the lexicographic product G[G], where every vertex of G is replaced by a module
inducing a copy of G (and iterating this trick).
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▶ Theorem 10 ([5]). Let r : N → R be any non-decreasing function such that for every
ε > 0, r(n) = o(nε). If Max Independent Set admits an r(n)-approximation algorithm
on n-vertex graphs of bounded twin-width given with an O(1)-sequence, then it further admits
an r(n)ε-approximation.

To our knowledge, the application of the self-improvement trick is always to strengthen
a lower bound, and never to effortlessly obtain a better approximation factor. Therefore, we
may take Theorem 10 as a weak indication that our approximation ratio is best possible.
Still, not even a polynomial-time approximation scheme (PTAS) is ruled out for MIS (nor
for Max Induced Matching, Min Dominating Set, etc.) and we would like to see better
approximation algorithms. For Coloring, as was previously observed [5], a PTAS is ruled
out by the NP-hardness of deciding if a planar graph is 3-colorable or 4-chromatic, since
planar graphs have twin-width at most 9 and a 9-sequence can be found in linear time [20].

Due to space restrictions, only Theorems 1–3 and half of Theorem 4 are presented in the
short version of the paper. All other results as well as some deferred proofs, marked with a ⋆,
can be found in the long version, in appendix.

2 Preliminaries

For i and j two integers, we denote by [i, j] the set of integers that are at least i and at
most j. For every integer i, [i] is a shorthand for [1, i].

2.1 The contraction and partition viewpoints of twin-width
A trigraph G has vertex set V (G), black edge set E(G), red edge set R(G) such that
E(G) ∩ R(G) = ∅ (and E(G), R(G) ⊆

(
V (G)

2
)
). A contraction in a trigraph G replaces a

pair of (non-necessarily adjacent) vertices u, v ∈ V (G) by one vertex w that is linked to
G − {u, v} in the following way to form a new trigraph G′. For every z ∈ V (G) \ {u, v},
wz ∈ E(G′) whenever uz, vz ∈ E(G), wz /∈ E(G′) ∪ R(G′) whenever uz, vz /∈ E(G) ∪ R(G),
and wz ∈ R(G′), otherwise. The red graph (V (G), R(G)) will be denoted by R(G). We
denote by T (G) the total graph of G defined as (V (G), E(G)∪R(G)). An induced subtrigraph
of a trigraph G is obtained by removing vertices (but no edges) to G, analogously to induced
subgraphs. A partial contraction sequence of an n-vertex (tri)graph G (to a trigraph H) is a
sequence of trigraphs G = Gn, · · · , Gt = H for some t ∈ [n] such that Gi is obtained from
Gi+1 by performing one contraction. A (complete) contraction sequence is such that t = 1,
that is, H is the 1-vertex trigraph. A d-sequence S of G is a contraction sequence of G in
which the red graph of every trigraph of S has maximum degree at most d.

Assume that there is a partial contraction sequence from a (tri)graph G to a trigraph H.
If u is a vertex of H, then u(G) ⊆ V (G) denotes the set of vertices eventually contracted into
u in H. We denote by P(H) the partition {u(G) : u ∈ V (H)} of V (G). If G is clear from
the context, we may refer to a part of H as any set in {u(G) : u ∈ V (H)}. We will mostly
see d-sequences as sequences of partitions, that is, Pn, . . . , Pt with Pi := {u(G) : u ∈ V (Gi)}
when Gn, . . . , Gt is a partial (contraction) d-sequence.

Given a graph G and a partition P of V (G), the quotient graph of G with respect to P is
the graph with vertex set P, where PP ′ is an edge if there is u ∈ P and v ∈ P ′ such that
uv ∈ E(G). Given a (tri)graph G and a partition P of V (G), the quotient trigraph G/P is
the trigraph with vertex set P , where PP ′ is a black edge if these two parts are fully adjacent
– for every u ∈ P and every v ∈ P ′, uv ∈ E(G) –, and a red edge if either there is u ∈ P and
v ∈ P ′ such that uv ∈ R(G), or there is u1, u2 ∈ P and v1, v2 ∈ P ′ such that u1v1 ∈ E(G)
and u2v2 /∈ E(G).

STACS 2023



10:8 Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

A trigraph H is a cleanup of another trigraph G if V (H) = V (G), R(H) ⊆ R(G), and
E(G) ⊆ E(H) ⊆ E(G) ∪ R(G). That is, H is obtained from G by turning some of its red
edges into black edges or non-edges. We further say that H is full cleanup of G if H has no
red edge, and thus, is considered as a graph. Note that the total graph T (G) and the black
graph (V (G), E(G)) of a trigraph G are extreme examples of full cleanups of G.

2.2 Balanced partition sequences
It was shown that twin-width and versatile twin-width (we will not need a definition here;
see long version) are functionally equivalent [4]. The relevant consequence for our purposes
is that every graph G with a d′-sequence admits a balanced d-sequence, where d = h(d′)
depends only on d′, i.e., one for which the partitions Pn, . . . , P1 are such that for every i ∈ [n]
and P ∈ Pi, |P | ⩽ d · n

i . As we will resort to recursion on induced subtrigraphs and quotient
trigraphs, we need to keep more information on those subinstances that the mere fact that
they have twin-width at most d (otherwise the twin-width bound could quickly diverge).

This will be done by opening up the proof in [4], and handling divided 0, 1, r-matrices
with some specific properties. Thus we need to recall the relevant definitions.

Given two partitions P, P ′ of the same set, we say that P ′ is a coarsening of P if every
part of P is contained in a part of P ′, and P, P ′ are distinct. Given a matrix M , we call row
division (resp. column division) a partition of the rows (resp. columns) of M into parts of
consecutive rows (resp. columns). A (k, ℓ)-division, or simply division, of a matrix M is a pair
(R = {R1, . . . , Rk}, C = {C1, . . . , Cℓ}) where R is a row division and C is a column division.
In a matrix division (R, C), each part R ∈ R is called a row part, and each part C ∈ C is
called a column part. Given a subset R of rows and a subset C of columns in a matrix M , the
zone M [R, C] denotes the submatrix of all entries of M at the intersection between a row of R

and a column of C. A zone of a matrix partitioned by (R, C) = ({R1, . . . , Rk}, {C1, . . . , Cℓ})
is any M [Ri, Cj ] for i ∈ [k] and j ∈ [ℓ]. A zone is constant if all its entries are identical,
horizontal if all its columns are equal, and vertical if all its rows are equal. A 0,1-corner is a
2 × 2 0, 1-matrix which is neither horizontal nor vertical.

Unsurprisingly, 0, 1, r-matrices are such that each entry is in {0, 1, r} where r is an error
symbol that should be understood as a red edge. A neat division of a 0, 1, r-matrix is a
division for which every zone either contains only r entries or contains no r entry and is
horizontal or vertical (or both, i.e., constant). Zones filled with r entries are called mixed.
A neatly divided matrix is a pair (M, (R, C)) where M is a 0, 1, r-matrix and (R, C) is a neat
division of M . A t-mixed minor in a neatly divided matrix is a (t, t)-division which coarsens
the neat subdivision, and contains in each of its t2 zones at least one mixed zone (i.e., filled
with r entries) or a 0,1-corner. A neatly divided matrix is said t-mixed free if it does not
admit a t-mixed minor.

A mixed cut of a row part R ∈ R of a neatly divided matrix (M, (R, C = {C1, C2, . . .})) is
an index i such that both M [R, Ci] and M [R, Ci+1] are not mixed, and there is a 0, 1-corner
in the 2-by-|R| zone defined by the last column of Ci, the first column of Ci+1, and R. The
mixed value of a row part R ∈ R of a neatly divided matrix (M, (R, C = {C1, C2, . . .})) is
the number of mixed zones M [R, Cj ] plus the number of mixed cuts of R. We similarly
define the mixed value of a column part C ∈ C. The mixed value of a neat division of a
0, 1, r-matrix is the maximum of the mixed values taken over every part. The part size of a
division (R, C) is defined as max(maxR∈R |R|, maxC∈C |C|). A division is symmetric if the
largest row index of each row part and the largest column index of each column part define
the same set of integers. We call symmetric fusion of a symmetric division the contraction of
two consecutive parts in C and of the two corresponding parts in R. A symmetric fusion
on a symmetric division yields another symmetric division. A matrix A := (ai,j)i,j is said
symmetric in the usual sense, namely, for every entry ai,j of A, ai,j = aj,i.
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In what follows, we set cd := 8/3(d + 1)224d.

▶ Definition 11. Let Mn,d be the class of the neatly divided n × n symmetric 0, 1, r-matrices
(M, (R, C)), such that (R, C) is symmetric and has:

mixed value at most 4cd,
part size at most 24cd+2, and
no d-mixed minor.

We show in the long version the next couple of key lemmas.

▶ Lemma 12 (⋆). Let d be a natural, s := 24cd+4, and d′ := cd · 24cd+4. Given an n-vertex
graph G with a d-sequence, one can compute in time nO(1) a partition P = {P1, P2, . . . , P⌊

√
n⌋}

of V (G) satisfying
for every integer 1 ⩽ i ⩽ ⌊

√
n⌋, |Pi| ⩽ s

√
n ⩽ d′√n, and

the red graph of G/P has maximum degree at most d′.

A neatly divided matrix (M, (R, C)) is said conform to a trigraph G if M is the adjacency
matrix of a trigraph G′ such that G is a cleanup of G′.

▶ Lemma 13 (⋆). Let d̂ be a natural, d = 2d̂ + 2, and set s := 24cd+4, and d′ := cd · 24cd+4.
Given an n-vertex graph G with a d̂-sequence, or an n-vertex trigraph G with a neatly divided
matrix (M, (R, C)) ∈ Mn,d such that M is conform to G, one can compute in time nO(1)

a partition P = {P1, P2, . . . , P⌊
√

n⌋} of V (G) with maximum red degree at most d′ satisfying
that, for every integer 1 ⩽ i ⩽ ⌊

√
n⌋, |Pi| ⩽ s

√
n ⩽ d′√n, and for any trigraph H that is

a cleanup of an induced subtrigraph of G/P, or
an induced subtrigraph G[

⋃
i∈J⊆[⌊

√
n⌋] Pi],

a neatly divided matrix (M ′, (R′, C′)) ∈ M|V (H)|,d conform to H can be computed in time
nO(1).

3 Approximation algorithms for Max Independent Set

We naturally start our study with Max Independent Set, a central problem that is very
inapproximable [19, 27], and yet constitutes the textbook example of our approach.

3.1 Subexponential-time constant-approximation algorithm
We present a subexponential-time Od(1)-approximation for WMIS on graphs given with
a d-sequence, which we recall, is unlikely to exist in general graphs [10].

▶ Lemma 14. Let d′ be a natural, s := 24cd′ +4, and d := cd′ ·24cd′ +4. Assume n-vertex inputs
G, vertex-weighted by w, are given with a d′-sequence. Weighted Max Independent Set
can be (d + 1)-approximated in time 2Od(

√
n) on these inputs.

Proof. By Lemma 12, we compute in polynomial time a partition P = {P1, . . . , P⌊
√

n⌋}
of V (G) whose parts have size at most s

√
n and such that R(G/P) has maximum degree at

most d.
For every integer 1 ⩽ i ⩽ ⌊

√
n⌋, we compute a heaviest independent set in G[Pi], say Si.

Even with an exhaustive algorithm, this takes time
√

n · s2n · 2s
√

n = 2Od(
√

n). We then
(d + 1)-color (in linear time) R(G/P), which is possible since this graph has maximum degree
at most d. This defines a coarsening of P in d + 1 parts Q = {C1, . . . , Cd+1}. Thus, Q is
a partition of V (G) such that Cj consists of all the parts Pi ∈ P receiving color j in the
(d + 1)-coloring of R(G/P).

STACS 2023
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For every j ∈ [d+1], let Hj be the graph (G/P)[Cj ]4 vertex-weighted by Pi ⊆ Cj 7→ w(Si).
Note that (G/P)[Cj ] can indeed be assimilated to a graph, since it has, by design, no red edge.
We compute a heaviest independent set in Hj , say Rj . This takes time (d+1)·n·2

√
n = 2Od(

√
n).

We output
⋃

Pi⊆Rj
Si for the index j ∈ [d + 1] maximizing

∑
Pi⊆Rj

w(Si).

This finishes the description of the algorithm. We already argued that its running time is
2Od(

√
n). We shall justify that it does output an independent set of weight at least a 1

d+1
fraction of the optimum α(G). Let I be the output of the algorithm.

w(S4)

w(S2)

w(S7)w(S13)

w(S10) w(S9)

⩽ s
√

n
vertices

. . .

C1 C2 C3

Figure 2 The trigraph G/P with its ⌊
√

n⌋ vertices, each corresponding to a subset of at most s
√

n

vertices of G. The weights w(Si) of heaviest independent sets Si of G[Pi] for each part Pi of the color
class C2 of the d + 1-coloring of R(G/P). A heaviest independent set in the so-weighted (G/P)[C2]
(shaded) corresponds to an optimum solution in G[

⋃
Pi⊆C2

Pi]. One of these d + 1 independent sets
is a d + 1-approximation.

I is indeed an independent set. For any j ∈ [d + 1], consider two vertices x, y ∈
⋃

Pi⊆Rj
Si.

If {x, y} ∈ Si for some i, then x and y are non-adjacent since Si is an independent set of
G[Pi]. Else x ∈ Si and y ∈ Si′ for some i ̸= i′. Pi and Pi′ are not linked by a black edge in
(G/P)[Cj ] since Rj is an independent set in Hj , nor they can be linked by a red edge (there
are none in (G/P)[Cj ]). Thus again, x and y are non-adjacent in G.

I has weight at least α(G)
d+1 . We claim that

⋃
Pi⊆Rj

Si is a heaviest independent set of
G[Cj ]. Note that the Pis that are included in Cj (and partition it) form a module partition of
G[Cj ]. In particular, any heaviest independent set intersecting some Pi ⊆ Cj has to contain
a heaviest independent of G[Pi]. This is precisely what the algorithm computes. Then a
heaviest independent set in G[Cj ] packs such subsolutions to maximize the total weight,
which is what is computed in Hj .

We conclude by the pigeonhole principle, since a heaviest independent set X of G is such
that w(X ∩ Cj) ⩾ α(G)

d+1 for some j ∈ [d + 1]. ◀

3.2 Time-approximation trade-offs
Lemma 14 runs exhaustive algorithms on induced subgraphs of size Od(

√
n). As such,

the latter inputs keep the same twin-width upper bound. To speed up the algorithm
(admittedly while worsening the approximation factor) it is tempting to recursively call our
very algorithm. We show that this leads to a time-approximation trade-off parameterized

4 We use this notation as a slight abuse of notation for (G/P)[{Pi : Pi ⊆ Cj}].
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by an integer q = 0, . . . , Od(log log n). At one end of this discrete curve, one finds the exact
exponential algorithm (q = 0), and more interestingly the d + 1-approximation in time
2Od(

√
n) (q = 1), while at the other end lies a polynomial-time algorithm with approximation

factor nε, where ε > 0 can be made as small as desired.
As we will deal with the same kind of recursions for several problems, we show the

following generic abstraction.

▶ Lemma 15. Let d̂ be a natural, d′ = 2d̂+2, and d := cd′ ·24cd′ +4. Let Π be an optimization
graph problem where inputs come with a d̂-sequence of their n-vertex graph G, or with a neatly
divided matrix (M, (R, C)) ∈ Mn,d′ conform to G. Let P be the partition of V (G) given
by Lemma 13. Assume that
1. Π can be exactly solved in time 2O(n), and there are constants c1, c2, c3, and a function

f ⩾ 1 such that
2. a dc3r2-approximation of Π on G can be built in time nc2 by using at most nc1 calls

to an r-approximation of Π –or another optimization problem Π ′ already satisfying the
conclusion of the lemma– on an induced subgraph of G with at most f(d)

√
n vertices or

a full cleanup of an induced subtrigraph of G/P (on at most
√

n vertices).
Then Π can be dc3(2q−1)-approximated in time

(f(d)qn)(2−2−q)(c1+c2) · 2f(d)2(1−2−q)n2−q

,

for any non-negative integer q.

Proof. The proof is by induction on q. The case q = 0 is implied by Item 1. The case q = 1,
and the induction step in general, is nothing more than an abstraction of Lemma 14, where
exhaustive algorithms are replaced by recursive calls.

For any q ⩾ 0, we assume that Π can dc3(2q−1)-approximated in the claimed running time,
and show the same statement for the value q + 1. Following Item 2, we run this algorithm –or
one for another optimization problem Π ′ satisfying the conclusion of the lemma– at most nc1

times on f(d)
√

n-vertex induced subgraphs of the input graph G or on full cleanups of induced
subtrigraphs of G/P . The latter graphs have at most

√
n ⩽ f(d)

√
n vertices. By Lemma 13,

we can compute in polynomial time a neatly divided matrix (M ′, (R′, C′)) ∈ M|V (H)|,d′

conform to H, for each graph H of a recursive call; hence the induction applies.
Overall this takes time at most

nc1 + nc2 ·
(

(f(d)q · f(d)
√

n)(2−2−q)(c1+c2) · 2f(d)2(1−2−q)(f(d)
√

n)2−q
)

⩽ (f(d)q+1n)c1+c2+ 1
2 (2−2−q)(c1+c2) · 2f(d)2(1−2−q)+2−q

n
2−q

2

= (f(d)q+1n)(2− 2−q

2 )(c1+c2) · 2f(d)2−2−q+1+2−q
n2−(q+1)

= (f(d)q+1n)(2−2−(q+1))(c1+c2) · 2f(d)2(1−2−(q+1))n2−(q+1)

.

For the first inequality, we assume that the two summands are larger than 2, so their
sum can be bounded by their product.

Besides we get an approximation of factor at most (dc3(2q−1))2dc3 = dc3(2q+1−1). ◀

In more legible terms we have proved that:

▶ Lemma 16. Problems Π satisfying the assumptions of Lemma 15 can be dO(1)(2q−1)-
approximated in time 2Od,q( 2q√

n), for any non-negative integer q.
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While most graph problems admit single-exponential algorithms, we will deal with such
a problem that is only known to be solvable in time 2O(n log n). Therefore we prove a variant
of Lemma 15 with a slightly worse running time.

▶ Lemma 17 (⋆). Let Π be solvable in time 2O(n log n) and satisfy the second item of Lemma 15.
Then Π can be dc3(2q−1)-approximated in time

2
(

(c1+c2)(2−2−q) log f(d)+f(d)2(1−2−q)n2−q )
log n

,

for any non-negative integer q.

Again the previous lemma can be rewritten as:

▶ Lemma 18. Problems Π satisfying the assumptions of Lemma 17 can be dO(1)(2q−1))-
approximated in time 2Od,q( 2q√

n log n), for any non-negative integer q.

We derive from Lemma 17 the following notable regimes.

▶ Theorem 19 (⋆). Problems Π satisfying the assumptions of Lemma 17 admit polynomial-
time nε-approximation algorithms, for any ε > 0.

▶ Theorem 20 (⋆). Problems Π satisfying the assumptions of Lemma 15, resp. Lemma 17,
admit a log n-approximation algorithm running in time 2Od(n

1
log log n ), resp. 2Od(n

1
log log n log n).

We derive the following for Weighted Max Independent Set.

▶ Theorem 21 (⋆). Weighted Max Independent Set on n-vertex graphs G (vertex-
weighted by w) given with a d′-sequence satisfies the assumptions of Lemma 15. In particular,
this problem admits

a (d + 1)2q−1-approximation in time 2Od,q(n2−q
), for every integer q ⩾ 0,

an nε-approximation in polynomial-time Od,ε(1) logOd(1) n · nO(1), for any ε > 0, and

a log n-approximation in time 2Od(n
1

log log n ),
with d := c2d′+2 · 24c2d′+2+4.

4 Finding the suitable generalization: the case of Coloring

In this section, we deal with the Coloring problem. Unlike for WMIS, we cannot solely
resort to recursively calling our Coloring algorithm on smaller graphs. The right problem
generalization needs to be found for the inductive calls to work through, and it happens to
be Set Coloring.

In the Set Coloring problem, the input is a couple (G, b) where G is a graph, and
b is a function assigning a positive integer to each vertex of G. The goal is to find, for
each v ∈ V (G), a set Sv of at least b(v) colors such that Su ∩ Sv = ∅ whenever uv ∈ E(G),
and minimizing | ∪v∈V (G) Sv|. Let χb(G) be the optimal value of Set Coloring for (G, b).
Observe that Coloring corresponds to the case where b(v) = 1 for every v ∈ V (G).

▶ Theorem 22. Set Coloring (and hence Coloring) on n-vertex graphs G given with a
d′-sequence satisfies the assumptions of Lemma 17. In particular, this problem admits

a (d + 1)2q−1-approximation in time 2Od,q(n2−q
log n), for every integer q ⩾ 0, and

an nε-approximation in polynomial-time for any ε > 0.
with d := c2d′+2 · 24c2d′+2+4.
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Proof. It is known [25] that Set Coloring can be solved using the inclusion-exclusion
principle in time O∗(maxv∈V (G) b(v)n) = 2O(n log n). We now prove that it satisfies the second
item of Lemma 15. We denote by A the r-approximation algorithm of the statement, which
we will use on instances of Set Coloring. In particular, we will call it at most

√
n + 1

times, and will obtain at the end a (d + 1)r2-approximation on our input (G, b) in polynomial
time.

We first apply Lemma 13 to get, in polynomial-time, a partition P = {P1, . . . , P⌊
√

n⌋}
of V (G) whose parts have size at most d

√
n and such that R(G/P) has maximum degree

at most d. For every i ∈ [⌊
√

n⌋], we use A to compute an r-approximated solution cPi
of

(G[Pi], b|Pi
). We denote by b′ the function which assigns, to each Pi, the number of colors

of cPi
. We now compute, in polynomial-time, a proper (d + 1)-coloring of R(G/P), which

defines the sets C1, . . . , Cd+1. For each j ∈ [d + 1], we construct another Set Coloring
instance consisting of the graph Hj = (G/P)[Cj ] (recall that this trigraph has no red edge,
and can thus be seen as a graph), together with the function b′

|Cj
. Again we use A to compute

an r-approximated solution on (Hj , b′
|Cj

). We denote by cH this solution. Let Gj be the
subgraph of G induced by ∪Pi∈Cj

Pi, and bj the restriction of b to V (Gj). We now show how
to construct a solution cj of Set Coloring to (Gj , bj) from cH and all cPi

. Recall that
for every Pi ∈ Cj , every v ∈ Pi, we have that cPi

(v) is a subset of {1, . . . , b′(Pi)} of size at
least b(v), and that cH(Pi) is a subset of size at least b′(Pi). Hence, for each Pi ∈ Cj , one
can choose an arbitrary bijection τ from {1, . . . , b′(Pi)} to cH(Pi), and define to each vertex
v ∈ Pi the set cj(v) as {τ(x) : x ∈ cPi

(v)}.
By construction, this solution is a feasible one for the instance (Gj , bj). Let us prove

that it is an r2-approximation of χbj
(Gj). First, by definition of cH , our solution uses at

most r · χb′
|Cj

(Hj) colors. Then, by definition of cPi for every Pi ∈ Cj , we have b′
Cj

(Pi) ⩽

r · χb|Pi
(G[Pi]). Now, denote by Γ the function which assigns to each Pi ∈ Cj the number

χb|Pi
(G[Pi]). We now use the following claim, whose proof is left to the reader.

▷ Claim 23. Let (G, b) be an instance of Set Coloring, and r ∈ R+. It holds that
χr·b(G) ⩽ r · χb(G), where r · b is the function which assigns r · b(v) to each v ∈ V (G).

This implies χb′
|Cj

(Hj) ⩽ r ·χΓ (Hj), and thus our solution uses at most r2 ·χΓ (Hj) colors.
We now prove the following claim.

▷ Claim 24. χΓ (Hj) ⩽ χbj (Gj).

Proof of the claim. Let c be an optimal solution for (Gj , bj). For every distinct Pi, Pi′ ∈ Cj

such that PiPi′ is an edge of Hj , it holds that there are all possible edges between Pi and
Pi′ in Gj (by definition of the coloring C1, · · · , Cd+1), hence it holds that

⋃
v∈Pi

c(v) and⋃
v∈Pi′ c(v) have empty intersection. Moreover, by definition of Γ , we have that

⋃
v∈Pi

c(v)
is of size at least Γ (Pi), hence the function which assigns

⋃
v∈Pi

c(v) to each Pi is a feasible
solution for (Hj , Γ ) using at most χbj

(Gj) colors. ◁

We now have in hand an r2-approximated solution of (Gj , bj) for every j ∈ [d + 1], which
can be turned into a (d + 1)r2-approximated solution of (G, b), as desired. ◀
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