3 research outputs found

    Approximating Directed Steiner Problems via Tree Embedding

    Get PDF
    In the k-edge connected directed Steiner tree (k-DST) problem, we are given a directed graph G on n vertices with edge-costs, a root vertex r, a set of h terminals T and an integer k. The goal is to find a min-cost subgraph H of G that connects r to each terminal t by k edge-disjoint r,t-paths. This problem includes as special cases the well-known directed Steiner tree (DST) problem (the case k = 1) and the group Steiner tree (GST) problem. Despite having been studied and mentioned many times in literature, e.g., by Feldman et al. [SODA'09, JCSS'12], by Cheriyan et al. [SODA'12, TALG'14] and by Laekhanukit [SODA'14], there was no known non-trivial approximation algorithm for k-DST for k >= 2 even in the special case that an input graph is directed acyclic and has a constant number of layers. If an input graph is not acyclic, the complexity status of k-DST is not known even for a very strict special case that k= 2 and |T| = 2. In this paper, we make a progress toward developing a non-trivial approximation algorithm for k-DST. We present an O(D k^{D-1} log n)-approximation algorithm for k-DST on directed acyclic graphs (DAGs) with D layers, which can be extended to a special case of k-DST on "general graphs" when an instance has a D-shallow optimal solution, i.e., there exist k edge-disjoint r,t-paths, each of length at most D, for every terminal t. For the case k= 1 (DST), our algorithm yields an approximation ratio of O(D log h), thus implying an O(log^3 h)-approximation algorithm for DST that runs in quasi-polynomial-time (due to the height-reduction of Zelikovsky [Algorithmica'97]). Consequently, as our algorithm works for general graphs, we obtain an O(D k^{D-1} log n)-approximation algorithm for a D-shallow instance of the k-edge-connected directed Steiner subgraph problem, where we wish to connect every pair of terminals by k-edge-disjoint paths

    O(log2k/loglogk)O(\log^2k/\log\log{k})-Approximation Algorithm for Directed Steiner Tree: A Tight Quasi-Polynomial-Time Algorithm

    Get PDF
    In the Directed Steiner Tree (DST) problem we are given an nn-vertex directed edge-weighted graph, a root rr, and a collection of kk terminal nodes. Our goal is to find a minimum-cost arborescence that contains a directed path from rr to every terminal. We present an O(log2k/loglogk)O(\log^2 k/\log\log{k})-approximation algorithm for DST that runs in quasi-polynomial-time. By adjusting the parameters in the hardness result of Halperin and Krauthgamer, we show the matching lower bound of Ω(log2k/loglogk)\Omega(\log^2{k}/\log\log{k}) for the class of quasi-polynomial-time algorithms. This is the first improvement on the DST problem since the classical quasi-polynomial-time O(log3k)O(\log^3 k) approximation algorithm by Charikar et al. (The paper erroneously claims an O(log2k)O(\log^2k) approximation due to a mistake in prior work.) Our approach is based on two main ingredients. First, we derive an approximation preserving reduction to the Label-Consistent Subtree (LCST) problem. The LCST instance has quasi-polynomial size and logarithmic height. We remark that, in contrast, Zelikovsky's heigh-reduction theorem used in all prior work on DST achieves a reduction to a tree instance of the related Group Steiner Tree (GST) problem of similar height, however losing a logarithmic factor in the approximation ratio. Our second ingredient is an LP-rounding algorithm to approximately solve LCST instances, which is inspired by the framework developed by Rothvo{\ss}. We consider a Sherali-Adams lifting of a proper LP relaxation of LCST. Our rounding algorithm proceeds level by level from the root to the leaves, rounding and conditioning each time on a proper subset of label variables. A small enough (namely, polylogarithmic) number of Sherali-Adams lifting levels is sufficient to condition up to the leaves

    Polylogarithmic Approximation Algorithm for k-Connected Directed Steiner Tree on Quasi-Bipartite Graphs

    Get PDF
    In the k-Connected Directed Steiner Tree problem (k-DST), we are given a directed graph G = (V,E) with edge (or vertex) costs, a root vertex r, a set of q terminals T, and a connectivity requirement k > 0; the goal is to find a minimum-cost subgraph H of G such that H has k edge-disjoint paths from the root r to each terminal in T. The k-DST problem is a natural generalization of the classical Directed Steiner Tree problem (DST) in the fault-tolerant setting in which the solution subgraph is required to have an r,t-path, for every terminal t, even after removing k-1 vertices or edges. Despite being a classical problem, there are not many positive results on the problem, especially for the case k ? 3. In this paper, we present an O(log k log q)-approximation algorithm for k-DST when an input graph is quasi-bipartite, i.e., when there is no edge joining two non-terminal vertices. To the best of our knowledge, our algorithm is the only known non-trivial approximation algorithm for k-DST, for k ? 3, that runs in polynomial-time Our algorithm is tight for every constant k, due to the hardness result inherited from the Set Cover problem
    corecore