33 research outputs found

    System support for object replication in distributed systems

    Get PDF
    Distributed systems are composed of a collection of cooperating but failure prone system components. The number of components in such systems is often large and, despite low probabilities of any particular component failing, the likelihood that there will be at least a small number of failures within the system at a given time is high. Therefore, distributed systems must be able to withstand partial failures. By being resilient to partial failures, a distributed system becomes more able to offer a dependable service and therefore more useful. Replication is a well known technique used to mask partial failures and increase reliability in distributed computer systems. However, replication management requires sophisticated distributed control algorithms, and is therefore a labour intensive and error prone task. Furthermore, replication is in most cases employed due to applications' non-functional requirements for reliability, as dependability is generally an orthogonal issue to the problem domain of the application. If system level support for replication is provided, the application developer can devote more effort to application specific issues. Distributed systems are inherently more complex than centralised systems. Encapsulation and abstraction of components and services can be of paramount importance in managing their complexity. The use of object oriented techniques and languages, providing support for encapsulation and abstraction, has made development of distributed systems more manageable. In systems where applications are being developed using object-oriented techniques, system support mechanisms must recognise this, and provide support for the object-oriented approach. The architecture presented exploits object-oriented techniques to improve transparency and to reduce the application programmer involvement required to use the replication mechanisms. This dissertation describes an approach to implementing system support for object replication, which is distinct from other approaches such as replicated objects in that objects are not specially designed for replication. Additionally, object replication, in contrast to data replication, is a function-shipping approach and deals with the replication of both operations and data. Object replication is complicated by objects' encapsulation of local state and the arbitrary interaction patterns that may exist among objects. Although fully transparent object replication has not been achieved, my thesis is that partial system support for replication of program-level objects is practicable and assists the development of certain classes of reliable distributed applications. I demonstrate the usefulness of this approach by describing a prototype implementation and showing how it supports the development of an example toy application. To increase their flexibility, the system support mechanisms described are tailorable. The approach adopted in this work is to provide partial support for object replication, relying on some assistance from the application developer to supply application dependent functionality within particular collators for dealing with processing of results from object replicas. Care is taken to make the programming model as simple and concise as possible

    Hub-and-spoke Interoperability: an out of the skies approach for large-scale data interoperability

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de ComputadoresData Interoperability is a key challenge in large-scale heterogeneous environments. In here, interoperability via standards is not feasible or even possible; then, the classic approach, Point-to-Point (P2P) Interoperability, presents here two key problems: the trouble of non-modifiable systems that inhibit full possible interoperability and the excessive quantity of interoperability resources needed for establishing interoperability. A new approach is required for sustaining interoperability in those environments! Laterally thinking, commercial air transportation environments exhibit similar properties and problems to Data Interoperability environments and therefore face comparable difficulties. Outstanding approaches such as scissor-hub operations and the hub-andspoke paradigm have managed to address those challenges in commercial air transportation environments. Which, looking from data interoperability perspective, raises the idea of Mediated Interoperability and Interoperability Compositions. From there, a novel approach for data interoperability is proposed, the Hub-and-Spoke(H&S) Interoperability, as the hypothesis for addressing data interoperability in largescale environments. The H&S Interoperability approach fully solves the interoperability coverage problem and significantly reduces the number of resources needed for realising interoperability, thus outperforming P2P Interoperability. At the end, it is provided a technological realisation of the H&S approach, as the Plug’n’Interoperate solution, built upon plug-and-play principles applied to data interoperability

    Third International Symposium on Space Mission Operations and Ground Data Systems, part 1

    Get PDF
    Under the theme of 'Opportunities in Ground Data Systems for High Efficiency Operations of Space Missions,' the SpaceOps '94 symposium included presentations of more than 150 technical papers spanning five topic areas: Mission Management, Operations, Data Management, System Development, and Systems Engineering. The papers focus on improvements in the efficiency, effectiveness, productivity, and quality of data acquisition, ground systems, and mission operations. New technology, techniques, methods, and human systems are discussed. Accomplishments are also reported in the application of information systems to improve data retrieval, reporting, and archiving; the management of human factors; the use of telescience and teleoperations; and the design and implementation of logistics support for mission operations

    Fourth NASA Goddard Conference on Mass Storage Systems and Technologies

    Get PDF
    This report contains copies of all those technical papers received in time for publication just prior to the Fourth Goddard Conference on Mass Storage and Technologies, held March 28-30, 1995, at the University of Maryland, University College Conference Center, in College Park, Maryland. This series of conferences continues to serve as a unique medium for the exchange of information on topics relating to the ingestion and management of substantial amounts of data and the attendant problems involved. This year's discussion topics include new storage technology, stability of recorded media, performance studies, storage system solutions, the National Information infrastructure (Infobahn), the future for storage technology, and lessons learned from various projects. There also will be an update on the IEEE Mass Storage System Reference Model Version 5, on which the final vote was taken in July 1994

    Research in progress and other activities of the Institute for Computer Applications in Science and Engineering

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics and computer science during the period April 1, 1993 through September 30, 1993. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustic and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science
    corecore