9 research outputs found

    Exponential Time Complexity of Weighted Counting of Independent Sets

    Full text link
    We consider weighted counting of independent sets using a rational weight x: Given a graph with n vertices, count its independent sets such that each set of size k contributes x^k. This is equivalent to computation of the partition function of the lattice gas with hard-core self-repulsion and hard-core pair interaction. We show the following conditional lower bounds: If counting the satisfying assignments of a 3-CNF formula in n variables (#3SAT) needs time 2^{\Omega(n)} (i.e. there is a c>0 such that no algorithm can solve #3SAT in time 2^{cn}), counting the independent sets of size n/3 of an n-vertex graph needs time 2^{\Omega(n)} and weighted counting of independent sets needs time 2^{\Omega(n/log^3 n)} for all rational weights x\neq 0. We have two technical ingredients: The first is a reduction from 3SAT to independent sets that preserves the number of solutions and increases the instance size only by a constant factor. Second, we devise a combination of vertex cloning and path addition. This graph transformation allows us to adapt a recent technique by Dell, Husfeldt, and Wahlen which enables interpolation by a family of reductions, each of which increases the instance size only polylogarithmically.Comment: Introduction revised, differences between versions of counting independent sets stated more precisely, minor improvements. 14 page

    FPTAS for Hardcore and Ising Models on Hypergraphs

    Get PDF
    Hardcore and Ising models are two most important families of two state spin systems in statistic physics. Partition function of spin systems is the center concept in statistic physics which connects microscopic particles and their interactions with their macroscopic and statistical properties of materials such as energy, entropy, ferromagnetism, etc. If each local interaction of the system involves only two particles, the system can be described by a graph. In this case, fully polynomial-time approximation scheme (FPTAS) for computing the partition function of both hardcore and anti-ferromagnetic Ising model was designed up to the uniqueness condition of the system. These result are the best possible since approximately computing the partition function beyond this threshold is NP-hard. In this paper, we generalize these results to general physics systems, where each local interaction may involves multiple particles. Such systems are described by hypergraphs. For hardcore model, we also provide FPTAS up to the uniqueness condition, and for anti-ferromagnetic Ising model, we obtain FPTAS where a slightly stronger condition holds

    FPTAS for Counting Monotone CNF

    Full text link
    A monotone CNF formula is a Boolean formula in conjunctive normal form where each variable appears positively. We design a deterministic fully polynomial-time approximation scheme (FPTAS) for counting the number of satisfying assignments for a given monotone CNF formula when each variable appears in at most 55 clauses. Equivalently, this is also an FPTAS for counting set covers where each set contains at most 55 elements. If we allow variables to appear in a maximum of 66 clauses (or sets to contain 66 elements), it is NP-hard to approximate it. Thus, this gives a complete understanding of the approximability of counting for monotone CNF formulas. It is also an important step towards a complete characterization of the approximability for all bounded degree Boolean #CSP problems. In addition, we study the hypergraph matching problem, which arises naturally towards a complete classification of bounded degree Boolean #CSP problems, and show an FPTAS for counting 3D matchings of hypergraphs with maximum degree 44. Our main technique is correlation decay, a powerful tool to design deterministic FPTAS for counting problems defined by local constraints among a number of variables. All previous uses of this design technique fall into two categories: each constraint involves at most two variables, such as independent set, coloring, and spin systems in general; or each variable appears in at most two constraints, such as matching, edge cover, and holant problem in general. The CNF problems studied here have more complicated structures than these problems and require new design and proof techniques. As it turns out, the technique we developed for the CNF problem also works for the hypergraph matching problem. We believe that it may also find applications in other CSP or more general counting problems.Comment: 24 pages, 2 figures. version 1=>2: minor edits, highlighted the picture of set cover/packing, and an implication of our previous result in 3D matchin

    How to Couple from the Past Using a Read-Once Source of Randomness

    Full text link
    We give a new method for generating perfectly random samples from the stationary distribution of a Markov chain. The method is related to coupling from the past (CFTP), but only runs the Markov chain forwards in time, and never restarts it at previous times in the past. The method is also related to an idea known as PASTA (Poisson arrivals see time averages) in the operations research literature. Because the new algorithm can be run using a read-once stream of randomness, we call it read-once CFTP. The memory and time requirements of read-once CFTP are on par with the requirements of the usual form of CFTP, and for a variety of applications the requirements may be noticeably less. Some perfect sampling algorithms for point processes are based on an extension of CFTP known as coupling into and from the past; for completeness, we give a read-once version of coupling into and from the past, but it remains unpractical. For these point process applications, we give an alternative coupling method with which read-once CFTP may be efficiently used.Comment: 28 pages, 2 figure

    Correlation Decay up to Uniqueness in Spin Systems

    Full text link
    We give a complete characterization of the two-state anti-ferromagnetic spin systems which are of strong spatial mixing on general graphs. We show that a two-state anti-ferromagnetic spin system is of strong spatial mixing on all graphs of maximum degree at most \Delta if and only if the system has a unique Gibbs measure on infinite regular trees of degree up to \Delta, where \Delta can be either bounded or unbounded. As a consequence, there exists an FPTAS for the partition function of a two-state anti-ferromagnetic spin system on graphs of maximum degree at most \Delta when the uniqueness condition is satisfied on infinite regular trees of degree up to \Delta. In particular, an FPTAS exists for arbitrary graphs if the uniqueness is satisfied on all infinite regular trees. This covers as special cases all previous algorithmic results for two-state anti-ferromagnetic systems on general-structure graphs. Combining with the FPRAS for two-state ferromagnetic spin systems of Jerrum-Sinclair and Goldberg-Jerrum-Paterson, and the very recent hardness results of Sly-Sun and independently of Galanis-Stefankovic-Vigoda, this gives a complete classification, except at the phase transition boundary, of the approximability of all two-state spin systems, on either degree-bounded families of graphs or family of all graphs.Comment: 27 pages, submitted for publicatio

    FPTAS for #BIS with Degree Bounds on One Side

    Full text link
    Counting the number of independent sets for a bipartite graph (#BIS) plays a crucial role in the study of approximate counting. It has been conjectured that there is no fully polynomial-time (randomized) approximation scheme (FPTAS/FPRAS) for #BIS, and it was proved that the problem for instances with a maximum degree of 66 is already as hard as the general problem. In this paper, we obtain a surprising tractability result for a family of #BIS instances. We design a very simple deterministic fully polynomial-time approximation scheme (FPTAS) for #BIS when the maximum degree for one side is no larger than 55. There is no restriction for the degrees on the other side, which do not even have to be bounded by a constant. Previously, FPTAS was only known for instances with a maximum degree of 55 for both sides.Comment: 15 pages, to appear in STOC 2015; Improved presentations from previous version

    Computational complexity of graph polynomials

    Get PDF
    The thesis provides hardness and algorithmic results for graph polynomials. We observe VNP-completeness of the interlace polynomial, and we prove VNP-completeness of almost all q-restrictions of Z(G; q; x), the multivariate Tutte polynomial. Using graph transformations, we obtain point-to-point reductions for graph polynomials.We develop two general methods: Vertex/edge cloning and, more general,uniform local graph transformations. These methods unify known and new hardness-of-evaluation results for graph polynomials. We apply both methods to several examples. We show that, almost everywhere, it is #P-hard to evaluate the two-variable interlace polynomial and the (normal as well as extended) bivariate chromatic polynomial. Almost everywhere" means that the dimension of the set of exceptional points is strictly less than the dimension of the domain of the graph polynomial. We also give an inapproximability result for evaluation of the independent set polynomial. Providing a new family of reductions for the interlace polynomial that increases the instance size only polylogarithmically, we obtain an exp(Ω (n= log3 n)) time lower bound for evaluation of the independent set polynomial under a counting version of the exponential time hypothesis. We observe that the extended bivariate chromatic polynomial can be computed in vertex-exponential time. We devise a means to compute the interlace polynomial using tree decompositions. This enables a parameterized algorithm to evaluate the interlace polynomial in time linear in the size of the graph and single-exponential in the treewidth. We give several versions of the algorithm, including a parallel one and a faster way to compute the interlace polynomial of any graph. Finally, we propose two faster algorithms to compute/evaluate the interlace polynomial in special cases.Diese Arbeit beinhaltet Härteresultate und Algorithmen für Graphpolynome. Wir stellen zunächst fest, dass das Interlacepolynom VNP-vollständig ist, und wir zeigen die VNP-Vollständigkeit fast aller q-Restriktionen des multivariaten Tutte-Polynoms Z(G; q; x). Unter Verwendung von Graphtransformationen erhalten wir Punkt-zu-Punkt-Reduktionen für Graphpolynome. Dabei entwickeln wir auch zwei allgemeine Methoden: Das Klonen von Knoten bzw. Kanten und, allgemeiner, uniforme lokale Graphtransformationen. Beide Methoden vereinheitlichen bekannte und neue Härteresultate für das Auswerten von Graphpolynomen. Wir wenden beide Methoden auf verschiedene Beispiele an. Wir zeigen, dass es fast überall #P-schwer ist, das Interlacepolynom in zwei Variablen bzw. das (normale oder erweiterte) bivariatechromatische Polynom auszuwerten. Fast überall heißt hier: Überall, außerauf einer Ausnahmemenge, deren Dimension um mindestens eins kleiner ist als der Definitionsbereich des Graphpolynoms. Wir zeigen auch, dass näherungsweises Auswerten des Independent-Set-Polynoms schwer ist. Wir entwickeln eine neue Familie von Reduktionen für das Interlacepolynom, die die Instanz nur polylogarithmisch vergrößert. Damit zeigen wir, unter Annahme einer Variante der Exponentialzeit-Hypothese, dass das Auswerten des Independent-Set-Polynoms fast überall Zeit exp(Ω(n= log3 n)) benötigt. Wir stellen fest, dass das erweiterte bivariate chromatische Polynom in Zeit exponentiell in der Knotenzahl berechnet werden kann. Wir entwickeln ein Mittel, um das Interlacepolynom mit Hilfe von Baumzerlegungen zu berechnen. Das führt zu einem parametrisierten Algorithmus zum Auswerten des Interlacepolynoms mit Laufzeit linear in der Anzahl der Knoten und einfach exponentiell in der Weite der gegebenen Baumzerlegung. Wir diskutieren verschiedene Varianten dieses Algorithmus, einschließlich Parallelisierung und einer Möglichkeit, das Interlacepolynom jedes Graphen asymptotisch schneller zu berechnen. Schließlich geben wir zwei schnellere Algorithmen an, die das Interlacepolynomin speziellen Situationen berechnen
    corecore