8 research outputs found

    Learning a Complete Image Indexing Pipeline

    Full text link
    To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, the former continues to be based on unsupervised clustering in the literature. In this work, we propose a first system that learns both components within a unifying neural framework of structured binary encoding

    Learning a Complete Image Indexing Pipeline

    Full text link
    To work at scale, a complete image indexing system comprises two components: An inverted file index to restrict the actual search to only a subset that should contain most of the items relevant to the query; An approximate distance computation mechanism to rapidly scan these lists. While supervised deep learning has recently enabled improvements to the latter, the former continues to be based on unsupervised clustering in the literature. In this work, we propose a first system that learns both components within a unifying neural framework of structured binary encoding

    SUBIC: A supervised, structured binary code for image search

    Full text link
    For large-scale visual search, highly compressed yet meaningful representations of images are essential. Structured vector quantizers based on product quantization and its variants are usually employed to achieve such compression while minimizing the loss of accuracy. Yet, unlike binary hashing schemes, these unsupervised methods have not yet benefited from the supervision, end-to-end learning and novel architectures ushered in by the deep learning revolution. We hence propose herein a novel method to make deep convolutional neural networks produce supervised, compact, structured binary codes for visual search. Our method makes use of a novel block-softmax non-linearity and of batch-based entropy losses that together induce structure in the learned encodings. We show that our method outperforms state-of-the-art compact representations based on deep hashing or structured quantization in single and cross-domain category retrieval, instance retrieval and classification. We make our code and models publicly available online.Comment: Accepted at ICCV 2017 (Spotlight

    Spreading vectors for similarity search

    Full text link
    Discretizing multi-dimensional data distributions is a fundamental step of modern indexing methods. State-of-the-art techniques learn parameters of quantizers on training data for optimal performance, thus adapting quantizers to the data. In this work, we propose to reverse this paradigm and adapt the data to the quantizer: we train a neural net which last layer forms a fixed parameter-free quantizer, such as pre-defined points of a hyper-sphere. As a proxy objective, we design and train a neural network that favors uniformity in the spherical latent space, while preserving the neighborhood structure after the mapping. We propose a new regularizer derived from the Kozachenko--Leonenko differential entropy estimator to enforce uniformity and combine it with a locality-aware triplet loss. Experiments show that our end-to-end approach outperforms most learned quantization methods, and is competitive with the state of the art on widely adopted benchmarks. Furthermore, we show that training without the quantization step results in almost no difference in accuracy, but yields a generic catalyzer that can be applied with any subsequent quantizer.Comment: Published at ICLR 201

    Reconfigurable Inverted Index

    Full text link
    Existing approximate nearest neighbor search systems suffer from two fundamental problems that are of practical importance but have not received sufficient attention from the research community. First, although existing systems perform well for the whole database, it is difficult to run a search over a subset of the database. Second, there has been no discussion concerning the performance decrement after many items have been newly added to a system. We develop a reconfigurable inverted index (Rii) to resolve these two issues. Based on the standard IVFADC system, we design a data layout such that items are stored linearly. This enables us to efficiently run a subset search by switching the search method to a linear PQ scan if the size of a subset is small. Owing to the linear layout, the data structure can be dynamically adjusted after new items are added, maintaining the fast speed of the system. Extensive comparisons show that Rii achieves a comparable performance with state-of-the art systems such as Faiss.Comment: ACMMM 2018 (oral). Code: https://github.com/matsui528/ri

    Approximate search with quantized sparse representations

    Get PDF
    International audienceThis paper tackles the task of storing a large collection of vectors, such as visual descriptors, and of searching in it. To this end, we propose to approximate database vectors by constrained sparse coding, where possible atom weights are restricted to belong to a finite subset. This formulation encompasses, as particular cases, previous state-of-the-art methods such as product or residual quantization. As opposed to traditional sparse coding methods, quantized sparse coding includes memory usage as a design constraint, thereby allowing us to index a large collection such as the BIGANN billion-sized benchmark. Our experiments , carried out on standard benchmarks, show that our formulation leads to competitive solutions when considering different trade-offs between learning/coding time, index size and search quality
    corecore