6 research outputs found

    Approximate results for rainbow labelings

    Get PDF
    The final publication is available at Springer via https://doi.org/10.1007/s10998-016-0151-2]A simple graph G=(V,E) is said to be antimagic if there exists a bijection f:E¿[1,|E|] such that the sum of the values of f on edges incident to a vertex takes different values on distinct vertices. The graph G is distance antimagic if there exists a bijection f:V¿[1,|V|], such that ¿x,y¿V, ¿xi¿N(x)f(xi)¿¿xj¿N(y)f(xj). Using the polynomial method of Alon we prove that there are antimagic injections of any graph G with n vertices and m edges in the interval [1,2n+m-4] and, for trees with k inner vertices, in the interval [1,m+k]. In particular, a tree all of whose inner vertices are adjacent to a leaf is antimagic. This gives a partial positive answer to a conjecture by Hartsfield and Ringel. We also show that there are distance antimagic injections of a graph G with order n and maximum degree ¿ in the interval [1,n+t(n-t)], where t=min{¿,¿n/2¿}, and, for trees with k leaves, in the interval [1,3n-4k]. In particular, all trees with n=2k vertices and no pairs of leaves sharing their neighbour are distance antimagic, a partial solution to a conjecture of Arumugam.Peer ReviewedPostprint (author's final draft

    Antimagic Labelings of Caterpillars

    Get PDF
    A kk-antimagic labeling of a graph GG is an injection from E(G)E(G) to {1,2,,E(G)+k}\{1,2,\dots,|E(G)|+k\} such that all vertex sums are pairwise distinct, where the vertex sum at vertex uu is the sum of the labels assigned to edges incident to uu. We call a graph kk-antimagic when it has a kk-antimagic labeling, and antimagic when it is 0-antimagic. Hartsfield and Ringel conjectured that every simple connected graph other than K2K_2 is antimagic, but the conjecture is still open even for trees. Here we study kk-antimagic labelings of caterpillars, which are defined as trees the removal of whose leaves produces a path, called its spine. As a general result, we use constructive techniques to prove that any caterpillar of order nn is ((n1)/22)(\lfloor (n-1)/2 \rfloor - 2)-antimagic. Furthermore, if CC is a caterpillar with a spine of order ss, we prove that when CC has at least (3s+1)/2\lfloor (3s+1)/2 \rfloor leaves or (s1)/2\lfloor (s-1)/2 \rfloor consecutive vertices of degree at most 2 at one end of a longest path, then CC is antimagic. As a consequence of a result by Wong and Zhu, we also prove that if pp is a prime number, any caterpillar with a spine of order pp, p1p-1 or p2p-2 is 11-antimagic.Comment: 13 pages, 4 figure

    Approximate results for rainbow labelings

    No full text
    Article de recerc

    Approximate results for rainbow labelings

    No full text
    Article de recerc
    corecore