1,863 research outputs found

    Robust Entanglement in Anti-ferromagnetic Heisenberg Chains by Single-spin Optimal Control

    Full text link
    We demonstrate how near-perfect entanglement (in fact arbitrarily close to maximal entanglement) can be generated between the end spins of an anti-ferromagnetic isotropic Heisenberg chain of length NN, starting from the ground state in the N/2N/2 excitation subspace, by applying a magnetic field along a given direction, acting on a single spin only. Temporally optimal magnetic fields to generate a singlet pair between the two end spins of the chain are calculated for chains up to length 20 using optimal control theory. The optimal fields are shown to remain effective in various non-ideal situations including thermal fluctuations, magnetic field leakage, random system couplings and decoherence. Furthermore, the quality of the entanglement generated can be substantially improved by taking these imperfections into account in the optimization. In particular, the optimal pulse of a given thermal initial state is also optimal for any other initial thermal state with lower temperature.Comment: 10 pages, revte

    Scaling Sparse Constrained Nonlinear Problems for Iterative Solvers

    Get PDF
    We look at scaling a nonlinear optimization problem for iterative solvers that use at least first derivatives. These derivatives are either computed analytically or by differncing. We ignore iterative methods that are based on function evaluations only and that do not use any derivative information. We also exclude methods where the full problem structure is unknown like variants of delayed column generation. We look at related work in section (1). Despite its importance as evidenced in widely used implementations of nonlinear programming algorithms, scaling has not received enough attention from a theoretical point of view. What do we mean by scaling a nonlinear problem itself is not very clear. In this paper we attempt a scaling framework definition. We start with a description of a nonlinear problem in section (2). Various authors prefer different forms, but all forms can be converted to the form we show. We then describe our scaling framework in section (3). We show the equivalence between the original problem and the scaled problem. The correctness results of section (3.3) play an important role in the dynamic scaling scheme suggested. In section (4), we develop a prototypical algorithm that can be used to represent a variety of iterative solution methods. Using this we examine the impact of scaling in section (5). In the last section (6), we look at what the goal should be for an ideal scaling scheme and make some implementation suggestions for nonlinear solvers.

    Order reduction approaches for the algebraic Riccati equation and the LQR problem

    Full text link
    We explore order reduction techniques for solving the algebraic Riccati equation (ARE), and investigating the numerical solution of the linear-quadratic regulator problem (LQR). A classical approach is to build a surrogate low dimensional model of the dynamical system, for instance by means of balanced truncation, and then solve the corresponding ARE. Alternatively, iterative methods can be used to directly solve the ARE and use its approximate solution to estimate quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies that simultaneously reduce the dynamical system while approximately solving the ARE by projection. This methodology significantly generalizes a recently developed Galerkin method by using a pair of projection spaces, as it is often done in model order reduction of dynamical systems. Numerical experiments illustrate the advantages of the new class of methods over classical approaches when dealing with large matrices

    Low-rank approximate inverse for preconditioning tensor-structured linear systems

    Full text link
    In this paper, we propose an algorithm for the construction of low-rank approximations of the inverse of an operator given in low-rank tensor format. The construction relies on an updated greedy algorithm for the minimization of a suitable distance to the inverse operator. It provides a sequence of approximations that are defined as the projections of the inverse operator in an increasing sequence of linear subspaces of operators. These subspaces are obtained by the tensorization of bases of operators that are constructed from successive rank-one corrections. In order to handle high-order tensors, approximate projections are computed in low-rank Hierarchical Tucker subsets of the successive subspaces of operators. Some desired properties such as symmetry or sparsity can be imposed on the approximate inverse operator during the correction step, where an optimal rank-one correction is searched as the tensor product of operators with the desired properties. Numerical examples illustrate the ability of this algorithm to provide efficient preconditioners for linear systems in tensor format that improve the convergence of iterative solvers and also the quality of the resulting low-rank approximations of the solution

    Global Control Methods for GHZ State Generation on 1-D Ising Chain

    Full text link
    We discuss how to prepare an Ising chain in a GHZ state using a single global control field only. This model does not require the spins to be individually addressable and is applicable to quantum systems such as cold atoms in optical lattices, some liquid- or solid-state NMR experiments, and many nano-scale quantum structures. We show that GHZ states can always be reached asymptotically from certain easy-to-prepare initial states using adiabatic passage, and under certain conditions finite-time reachability can be ensured. To provide a reference useful for future experimental implementations three different control strategies to achieve the objective, adiabatic passage, Lyapunov control and optimal control are compared, and their advantages and disadvantages discussed, in particular in the presence of realistic imperfections such as imperfect initial state preparation, system inhomogeneity and dephasing.Comment: 13 pages, 11 figure
    corecore