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RESEARCH ARTICLE

Approximate Invariant Subspaces and Quasi-Newton

Optimization Methods

Serge Gratton and Philippe L. Toint
(Received 00 Month 200x; in final form 00 Month 200x)

New approximate secant equations are shown to result from the knowledge of (problem depen-
dent) invariant subspace information, which in turn suggests improvements in quasi-Newton
methods for unconstrained minimization. A new limited-memory BFGS using approximate
secant equations is then derived and its encouraging behaviour illustrated on a small collection
of multilevel optimization examples. The smoothing properties of this algorithm are consid-
ered next, and automatic generation of approximate eigenvalue information demonstrated.
The use of this information for improving algorithmic performance is finally investigated on
the same multilevel examples.

Keywords: large-scale optimization, quasi-Newton methods, limited memory algo-

rithms, discretized problems, multilevel optimization.

1. Introduction

The history of quasi-Newton methods for optimization is rich and long. Start-
ing with the Davidon-Fletcher-Powell (DFP) method (Davidon [8], Fletcher and
Powell [11]), most famously represented by the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) update (Broyden [3], Fletcher [10], Goldfarb [12] and Shanno [28]), and
excellently explained in the classical book by Dennis and Schnabel [9], they have
played an important role in the solution of practical problems. In the context of
unconstrained minimization, i.e. the solution of problems of the form

min
x∈IRn

f(x) (1)

for a smooth objective function f from ℜn into ℜ, they attempt to construct,
around a given point x ∈ ℜn, a second-order model of this function of the form

m(x + s) = f(x) + 〈g(x), s〉 + 1

2
〈s, Bs〉

where g(x)
def
= ∇xf(x), and where B is an (often positive-definite) approximation

of the Hessian matrix ∇xxf(x), capturing information about the curvature of the
objective function around x. Quasi-Newton methods then proceed to exploit a
sequence of models of this type in an iterative manner. In this process, the curva-
ture information at iterate xk+1 is obtained by updating the approximate Hessian
matrix Bk to obtain the new approximation Bk+1 such that the secant equation

Bk+1sk = yk, (2)
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holds, where

sk
def
= xk+1 − xk and yk

def
= g(xk+1) − g(xk), (3)

The pair (sk, yk) is then said to be the quasi-Newton pair associated with equation
(2). If positive-definiteness of the matrix Bk is also maintained throughout the
iterations (as can be enforced for instance with the BFGS or DFP updates), the
search direction at iteration k is then computed from

dk+1 = −B−1
k+1g(xk+1) (4)

and a linesearch is performed along this direction (see Dennis and Schnabel [9]
for details). In order to avoid the cost of solving the linear system in (4), the

matrix Hk+1
def
= B−1

k+1 is typically recurred instead of Bk+1, using the inverse

secant equation

Hk+1yk = sk (5)

as an alternative to (2), and

dk+1 = −Hk+1g(xk+1) (6)

instead of (4). Note that (5) uses the same pair as (2) but in the reverse order.
For the BFGS update, which is particular interest to us in this paper, the relevant
updating formula is then given by

Hk+1 =

(

I −
sky

T
k

yT
k sk

)

Hk

(

I −
yks

T
k

yT
k sk

)T

+
sks

T
k

yT
k sk

(7)

It readily follows from this formula that Hk+1 remains positive-definite if Hk is
positive-definite and if

yT
k sk > 0, (8)

a condition one can always enforce in the linesearch procedure if the objective
function is bounded below (again see Dennis and Schnable [9]).

We are especially interested in the application of quasi-Newton to large-scale
problems, in which case it is often impractical to store the (dense) matrices Bk+1

or Hk+1 explicitly. In such a context, a “limited-memory” version of the quasi-
Newton method has been pioneered by several authors, in which the matrix Hk+1

is assembled at every iteration as a product of finitely many low-rank updates,
each involving a pair (sj , yj) (see Liu and Nocedal [22] and Byrd, Lu and Nocedal
[5], for the most famous algorithm of this type and further references).

Our purpose in the present paper is to show that additional knowledge about
the eigenstructure of the local Hessian matrix ∇xxf can be used to advantage in
order to capture more information on the local curvature. We discuss in particular
how this can be achieved when limited-memory BFGS updates are considered,
and illustrate the practical motivation for this analysis in the case of large-scale
multilevel unconstrained optimization. Examples of this type are presented, and it
is shown that our proposal may improve their numerical solution substantially.

The resulting multilevel optimization method is a linesearch algorithm, at vari-
ance with the trust-region based techniques discussed in Gratton, Sartenaer and
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Toint [14, 15] or Gratton, Mouffe, Toint and Weber-Mendonça [13]. It also differs
from the proposals by Nash [25], Lewis and Nash [20] and Wen and Goldfrab [32] in
that none of these techniques makes explicit use of limited-memory quasi-Newton
Hessian approximations.

Section 2 introduces the use of invariant subspaces in the derivation of secant
information, presents the resulting quasi-Newton algorithm and discusses the spe-
cialization of this new algorithm to the multilevel case. Section 4 briefly describes
our test problems, and reports our first numerical results. Section 5 discusses fur-
ther consequences of the use of the new algorithm to multilevel optimization, intro-
duces approximate eigenvalue equations and their use within the new algorithmic
framework. Section 6 presents the associated numerical tests. Some conclusions and
perspectives are finally outlined in Section 7.

2. Invariant Subspaces in Quasi-Newton Methods

2.1. Invariant Subspaces and Approximate Secant Equations

We start by considering the case where the objective function f is a convex
quadratic, that is

f(x) = f + 〈g, x〉 + 1

2
〈x, Gx〉

where f ∈ ℜ, g ∈ ℜn and G is a positive-definite symmetric matrix. In this case,
it is easy to verify that, if we consider a step sk at iteration k of a quasi-Newton
algorithm, then

Hyk = sk (9)

where H = G−1. Assume now that we also know a decomposition of ℜn in a
collection of invariant subspaces {Si}

p
i=1 related to G, i.e. subspaces such that, for

each i, Gd ∈ Si whenever d ∈ Si. Since the eigenvectors of H are identical to those
of G, the subspaces Si are also invariant for H. Now consider Si the orthogonal
projectors onto Si. Since these projectors share a common system of eigenvectors
with H, we know that they must commute, that is HSi = SiH. Using this very
simple observation, we then obtain, for a step sk at iteration k of a quasi-Newton
algorithm, that

HSiyk = SiHyk = Sisk, (10)

thereby yielding a new secant equation with the pair (Sisk, Siyk). Repeating the
procedure for i ∈ {1, . . . , p}, we therefore obtain p additional secant equations (in
addition to the original equation (9)) provided we know the projections Si.

If we now consider general twice differentiable, possibly non-convex, objective
functions, then (9) remains valid for

G =

∫ 1

0
∇xxf(xk + t(xk+1 − xk))sk dt

and the same reasonning still holds if the invariant subspaces are now associated
with this latter matrix. Finally, if the subspaces Si are only approximately in-
variant, or if the operators Si are only approximately equal to projectors onto
these subspaces, then our secant equations stop being exact but can be expected
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to hold approximately. We therefore refer to secant equations of the type (10) as
approximate, as opposed to the exact equation (5). We are interested in the size of
perturbations of G that would be necessary for the approximate secant equation
(10) to hold exactly. We first consider all (possibly nonsymmetric) perturbations
Fi such that

(G + Fi)Sisk = Siyk, 1 ≤ i ≤ p. (11)

A direct computation shows that for each i, the perturbation given by the Powell-
Symmetric-Broyden (PSB) update (Powell [27])

Ei =
(GSisk − Siyk)(Sisk)

T + (Sisk)(GSisk − Siyk)
T

‖Sisk‖
2

−
(GSisk − Siyk)

T Sisk

‖Sisk‖
2
2

Sisks
T
k ST

i

‖Sisk‖
2
2

satisfies (11) (with Fi = Ei), and that ‖Ei‖2 ≤ 3‖GSisk − Siyk‖2/‖Sisk‖2. There-
fore,

‖Ei‖2

‖G‖2
≤ 3

‖GSisk − Siyk‖2

‖G‖2‖Sisk‖2
, (12)

for k ≥ 0 and 0 ≤ i ≤ p. Interestingly, the factor 3 the right-hand side turns out to
be unnecessary, as pointed out by Bunch, Demmel and Van Loan [4] (or Higham
[18], p. 149), and we deduce that there exists a symmetric perturbation Ei such
that Ei solves (11) and

‖Ei‖2

‖G‖2
=

‖GSisk − Siyk‖2

‖G‖2‖Sisk‖2
, (13)

for k ≥ 0 and 0 ≤ i ≤ p. If the quantity on the right-hand side of this inequality
is modest, relation (10) (H = G−1) holds exactly for a symmetric Hessian approx-
imation relatively close to G. It may thus be reasonable to use it for extracting
curvature information, which may then be included in our current Hessian approx-
imation. Let us now consider the numerator of the right-hand side of inequality
(13), and assume that the operator Si is symmetric and can be decomposed as
Si = QiDiQ

T
i , where the columns of Qi form an orthonormal basis of Si and Di is

diagonal of dimension dim(Si). Now consider Qi such that the matrix (Qi, Q
c
i ) is

orthogonal and define

QT
i GQi = Gi and (QC

i )T GQi = Fi.

Then we have that

‖GSisk − Siyk‖
2 = ‖GQiDiQ

T
i sk − QiDiQ

T
i yk‖

2

= ‖GiDiQ
T
i sk − DiQ

T
i yk‖

2 + ‖FiDiQ
T
i sk‖

2.

Decomposing the step orthogonally as sk = Qisik + Qc
is

c
ik and using the secant

equation Gsk = yk, we obtain that

‖GSisk − Siyk‖
2 = ‖GiDisik − DiGisik − DiFis

c
ik‖

2 + ‖FDisik‖
2

≤ ‖(GiDi − DiGi)sik‖
2 + ‖Fi‖

2‖Di‖
2 ( ‖sik‖

2 + ‖sc
ik‖

2 ),
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and therefore, using (13) and the triangle inequality, that

‖Ei‖

‖G‖
≤

‖GiDi − DiGi‖

σmin(Di)‖G‖
+ κ(Di)

‖Fi‖

‖G‖

‖sk‖

‖sik‖
, (14)

where σmin(Di) is the smallest singular value of Di. This formula shows that we
may expect the relative perturbation to G to be small when Si is an approximate
projector, in which case Di is close to the identity matrix and of modest condi-
tioning, and if the off-diagonal term Fi small compared to ‖G‖ (which we would
expect if Si is approximately invariant) together with ‖sik‖ being non-marginal
with respect to ‖sk‖. This last condition is also acceptable, since we would not
be interested in exploiting the curvature information along a “projected step” sik

which is vanishingly small compared to the complete step sk, because rounding
errors would make then this information unreliable. Note that (14) also yields the
further bound

‖Ei‖

‖G‖
≤ κ(Di)

[

2
‖Gi‖

‖G‖
+

‖Fi‖

‖G‖

‖sk‖

‖sik‖

]

, (15)

which indicates that, if ‖Gi‖ is small compared to ‖G‖, we may also expect a rela-
tively small perturbation to G even when Di differs significantly from the identity
(while remaining well-conditioned).

2.2. Multi-Secant (Limited-Memory) Quasi-Newton Algorithms

Using the simple derivation exposed above, and assuming, crucially, that a col-
lection of (possibly approximate) projectors Si are known, we may then outline a
multi-secant quasi-Newton algorithm as in Algorithm 2.1.

Algorithm 2.1: Multi-Secant Quasi-Newton Algorithm (outline)

• Step 0: Initialization. An initial point x0 ∈ ℜn and an initial (positive-
definite) Hessian H0 are given. The operators Si (i = 1, . . . , p) are also given,
as well a a small tolerance ǫ ≥ 0. Compute f(x0) and g(x0), and set k = 0.

• Step 1: If ‖g(xk)‖ ≤ ǫ, stop.

• Step 2: Compute the search direction. Define dk = −Hkg(xk).

• Step 3: Linesearch. Perform a linesearch ensuring

f(xk+1) ≤ f(xk) + α〈g(xk), dk〉 and 〈g(xk+1), dk〉 ≥ β〈g(xk), dk〉

for some α ∈ (0, 1) and β ∈ (α, 1), yielding f(xk+1), g(xk+1), sk and yk

satisfying (8).

• Step 4: Update the Hessian approximation. Compute Hk+1 such that
(5) holds and

Hk+1(Siyk) = (Sisk) i ∈ {1, . . . , p}. (16)

• Step 5: Loop. Set k = k + 1 and return to Step 1.
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In this outline, we have not specified the linesearch procedure in detail, but
this well understood technique is described in detail in Section 6.3 of Dennis and
Schnabel [9] or in Moré and Thuente [23], for instance. We have not either indicated
how we can impose (5) and (16) together. While updating simultaneously for more
than one secant equation is indeed possible (see Byrd, Nocedal and Schnabel [7]),
we focus here on the incorporation of the information in the Hessian in a sequential
manner, by performing first p BFGS updates of the form (7) using the p pairs
(Sisk, Siyk), followed by a final update using the pair (sk, yk). Of course the order
in which the p “subspace updates” are performed is then significant.

If the problem size is large, which is the case of interest to us, it is often better to
avoid the explicit updating of Bk+1 or Hk+1, mostly because the low rank update
(7) typically results in Hk+1 being dense. To circumvent this problem, variants
of the classical quasi-Newton algorithm have been proposed that replace (6) by
a recursion in which Hk+1 is implicitly reconstructed from some simple initial
approximation (typically a multiple of the identity matrix: we use the matrix

〈yk, sk〉

‖yk‖2
2

I

in the experiments discussed below) and a modest number of the most recent
pairs (sj , yj). No matrix is ever assembled in the process, which only requires the
storage of a small number of vectors. Because only the most recent pairs are used,
these methods are called “limited-memory” methods, compared to the usual (full-
memory) quasi-Newton algorithms where Hk+1 includes information derived from
all past pairs. The best-known method of this type is the limited-memory BFGS
method pioneered by Byrd, Lu, Nocedal and Zhu [6]. The update (7) is (implicitly)
used in this algorithm to compute the step. An efficient technique to perform the
calculation of the step sk is described on page 225 of Nocedal and Wright [26], where
m pairs (sj , yj) are used sequentially in the implicit update of a diagonal initial
approximation. We refer below to this technique as the implicit-secant-updating
algorithm.

This technique can readily be adapted to our context where each secant pair gen-
erates p additional approximate ones corresponding to its images in p approximate
invariant subspaces. Instead of considering only the last m pairs in the limited-
memory updating procedure, we may now consider m × p pairs, or any selection
we care to make amongst them. An extreme case is when we select only the p + 1
secant pairs corresponding to (sk, yk) and its images (16) onto {Si}

p
i=1, giving a

“memory-less” BFGS method.

2.3. Collinearity and Curvature Control

Nothing in the algorithm we have described so far prevents secant pairs from being
linearly dependent. While not a major issue in the usual context where secant pairs
are generated at different iterations, this might be an issue in our case, where one
expects some dependency amongst the pairs generated from different, but possibly
nested, invariant subspaces. Fortunately, some control of the possible collinearity of
the secant pairs is easy, and we have chosen to include a provision in our algorithm
that considers the angle between approximate secant pairs generated at iteration k
and the “exact” pair (sk, yk). More formally, we have decided to ignore the secant
pair (Sisk, Siyk) whenever

|〈Sisk, sk〉|2 ≤ τ‖Sisk‖2 ‖sk‖2 or |〈Sisk, Sjsk〉| ≤ τ‖Sisk‖2 ‖Sjsk‖2
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for some τ ∈ (0, 1] (typically 0.999 when this feature is active) and some j < i.
Note that this last condition depends on the order in which the secant pairs are
considered, a choice which we discuss below.

Because we wish to preserve the positive-definite nature of the approximate Hes-
sian Hk+1, we also ignore approximate secant pairs for which

〈Siyk, Sisk〉 ≥ µ‖Siyk‖2 ‖Sisk‖2

for some µ ∈ (0, 1).
Of course, the above discussion and the proposed multi-secant quasi-Newton

methods may only be of practical interest when suitable operators Si are known
for a collection of (approximate) invariant subspaces. The purpose of the next
paragraph is to show that this desirable situation may occur in at least an important
practical case: multilevel optimization. But it should be noted that our derivation,
and the bounds (14) and (15) are not restricted to this particular framework.

3. An Application to Multilevel Optimization

We now consider a particular framework in which the concepts described above
occur naturally and therefore can be exploited to design improved optimization
algorithms.

3.1. Invariant Subspaces and Multigrid

Let us assume that the optimization variables of the problem under consideration
represent the discretization of some continuous field defined on some spatial or
temporal domain, a very common situation in engineering applications or physical
modelling. For example, the variables may stand for coordinates of a design sur-
face, atmospheric pressure over some part of the ocean, or position of a spacecraft
along a controlled trajectory. The main characteristics of these problems is that
it is possible to define discretization of the field of interest with varying degree of
coarseness, from the very coarse to the very fine. For the sake of the argument,
suppose that we consider r+1 such different field discretizations, which we number
from 0 (coarsest) to r (finest). In this case, it is very often reasonable to assume
that, for each i ∈ {1, . . . , r}, there exist a full-rank linear operator Ri from ℜni into
ℜni−1 (the restriction from the fine grid i to the coarser grid i−1) and another full-
rank operator Pi from ℜni−1 into ℜni (the prolongation from the coarse grid i − 1
to the fine grid i) such that σiPi = RT

i for some known constant σi > 0. Moreover,
these grid-transfer operators are typically computationaly cheap to apply: the pro-
longation is for instance often chosen as the linear interpolation operator and the
restriction as some multiple of its transpose, sometimes called the full-weighting
operator.

When the problem to be solved for the (field) variables is a linear or nonlinear
system of equations (instead of an optimization problem), multigrid techniques of-
ten yield the computationally most efficient algorithm, as their cost typically grows
only linearly with the number of variables. The main characteristics of multigrid
algorithms (we refer the reader to Briggs, Henson and McCormick [2] for an ex-
cellent introduction, or to Trottenberg, Oosterlee and Schüller [29], for a fuller
treatment) are based on the observation that different “frequencies” are present
in the solution of the finest grid problem (or even of the infinite-dimensional one),
and become only progressively visible in the hierarchy from coarse to fine grids.
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Low frequencies are visible from coarse grids and up, but higher ones can only be
distinguished when the mesh-size of the grid becomes comparable to the inverse
of the frequency in question. In multigrid strategies, specific algorithms, called
smoothers, are known to very efficiently reduce the high frequency components of
the error on a grid (that is, in most cases, the components whose “wavelength” is
comparable to the grid’s mesh-size), but have little effect on the low frequency error
components. It is observed however that such components on a fine grid appear
more oscillatory on a coarser grid. They may thus be viewed as high frequency
components on some coarser grid and be in turn efficiently reduced by a smoother.
Moreover, this is done at a lower cost since computations on coarse grids are typ-
ically much cheaper than on finer ones. The multigrid strategy consists therefore
in alternating between solving the problem on coarse grids, essentially annihilating
low frequency components of the error, and on fine grids, where high frequency
components are reduced (at a higher cost) by a smoother. This last operation is
often called smoothing and the associated method a smoother because the effect
of reducing high frequency components without altering much the low frequency
ones has a “smoothing effect” on the error’s behaviour.

In other words, the multigrid strategy exploits the fact that the considered op-
erator is (approximately) separable in the frequency domain, and that restrictions
from fine to progressively coarser grids followed by prolongations to the fine grid
isolate the corresponding nested invariant subspaces frequency-wise. A very well-
understood example is that of the linear Poisson equation in a bounded domain,
given in its discretized1 variational form by

min
u

1

2
〈u, ∆u〉 − 〈f, u〉, (17)

where u = u(x) is the unknown temperature distribution at position x of the un-
derlying spatial domain and ∆ is the discretized Laplacian. It is easy (see Briggs,
Henson and McCormick [2], page 18) to verify that the eigenvalues of the unidi-
mensional discretized operator in n− 1 variables are (when one takes the Dirichlet
boundary condition u0 = un = 0 into account)

λi = 4 sin2

(

iπ

2n

)

(i = 1, . . . , n − 1)

and that its eigenvectors are given componentwise by

zi,j = sin

(

ijπ

n

)

(i = 1, . . . , n − 1, j = 0, . . . , n).

It is remarkable that the eigenvectors zi (i = 1, . . . , 1

2
n) on the fine grid are exactly

representable on a coarser grid with double mesh-size. If we choose the commonly
used full weighting restriction operator (the transpose of the linear interpolator),
it is possible to verify (see Briggs, Henson and McCormick [2], pages 80–81) that

[Rrzi]j = θi sin

(

ijπ

n/2

)

, where θi =







cos2
(

iπ
2n

)

for i = 1, . . . , 1

2
n,

− sin2
(

iπ
2n

)

for i = 1

2
n, . . . , n.

1Using a simple finite-difference scheme.
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It would be ideal if the prolongation PrRrzi would be exactly a linear combination

of {zi}
n/2
i=1, the eigenvectors associated with the smooth modes on the fine grid, since

then the image of PrRr would be identical to the invariant subspace spanned by

the vectors {zi}
n/2
i=1. Unfortunately, this often not the case, due to a (often modest)

contamination of the prolongated vector by oscillatory modes. Thus the image of
PrRr is only approximately equal to Sr−1, but this operator is typically very cheap
to apply.

3.2. A Multi-Secant Limited-Memory BFGS Algorithm

We may now combine all the ingredients of our discussion so far into a single
minimization algorithm: it suffices to use the multi-secant limited-memory BFGS
method described above with the definition of our multigrid approximate (sym-
metric) operators

Siur
def
= Pr . . . Pi+1Ri+1 . . . Rrur for 0 ≤ i ≤ r − 1. (18)

In the usual multigrid framework, this operator would be combined with explicit
smoothing steps in order to reduce the propagation of high frequency components
in the result. More generally (and restricting the argument to two levels only and
to the case where sk belongs to the coarse subspace), the equation

Riyk = RiGPiP
+
i sk

also suggests to distinguish between differences in gradients (the vectors yk) to
which the restriction operators Ri may naturally be applied (as gradients belong
to the dual) and steps (the vectors sk) for which it would be more suitable to
apply the generalized inverse P+

i (these vectors lie in the primal). Unfortunately,
these options are difficult to apply in practice because smoothing steps typically
require the explicit knowledge of the Hessian matrix, which is unavailable here,
and because computing the generalized inverse would be too costly. Moreover, as
is discussed in Section 5, the limited-memory quasi-Newton method may itself be
interpreted as a smoother, which thus provides an implicit a posteriori smoothing
in the process.

We obviously expect multi-secant updates to work at their best potential when
the eigensystem of the objective function’s Hessian ∇xxf(x) is well-aligned with
the grid, in the sense that

Si∇xxf(x) ≈ ∇xxf(x)Si.

Note that many algorithmic variants are possible in selecting Pk+1 (in Step 5). One
may for instance give priority to the most recent information by selecting the pairs
(sk,0, yk,0), . . . , (sk,r−1, yk,r−1), (sk, yk) or to exact secant equations (as in the usual
limited-memory BFGS) by including pairs (sk−m+1, yk−m+1), . . . , (sk, yk) instead.
Any combination of the above is also possible.

4. Numerical Experience with Multi-Secant Equations

We now illustrate the performance of the multi-secant multigrid limited-memory
BFGS algorithm on test problems exhibiting the multigrid structure.
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Algorithm 3.1: Multi-Secant Multigrid Limited-Memory BFGS

• Initialization. An initial point x0 ∈ ℜnr and an initial (positive-definite)
Hessian H0 are given. The restriction and prolongation operators Ri and
Pi are given for i = 1, . . . , r, and the operators Si are given by (18) for
i = 0, . . . , r − 1. Choose a memory size m ≥ 1, as well a a small tolerance
ǫ ≥ 0. Compute f(x0) and g(x0), define the initial set of secant pairs P0 = ∅
and set k = 0.

• Step 1: If ‖g(xk)‖ ≤ ǫ, stop.

• Step 2: Compute the search direction. Apply the implicit-secant-
updating algorithm to compute sk = −Hkg(xk) using the secant pairs in
Pk.

• Step 3: Linesearch. Perform a linesearch ensuring

f(xk+1) ≤ f(xk) + α〈g(xk), sk〉 and 〈g(xk+1), sk〉 ≥ β〈g(xk), sk〉

for some α ∈ (0, 1) and β ∈ (α, 1), yielding f(xk+1), g(xk+1) and yk satisfying
(8).

• Step 4: Generate secant pairs. Apply the operators to compute

sk,i = Sisk and yk,i = Siyk

for i = 0, . . . , r − 1 and set

P+
k = Pk ∪ {(sk,0, yk,0), . . . , (sk,r−1, yk,r−1), (sk, yk)}.

• Step 5: Select the next set of secant pairs. Select m pairs in P+
k to

form Pk+1.

• Step 6: Loop. Set k = k + 1 and return to Step 1.

4.1. Test Examples

We now briefly describe the problems on which our multi-secant limited-memory
BFGS algorithm has been applied.

4.1.1. DN: A Dirichlet-to-Neumann Transfer Problem

Let S be the square [0, π]×[0, π] and let Γ be its lower edge defined by {(x, y), 0 ≤
x ≤ π, y = 0}. The Dirichlet-to-Neumann transfer problem (Lewis and Nash [21])
consists in finding the function a(x) defined on [0, π], that minimizes

∫ π

0
[∂yu(x, 0) − φ(x)]2 dx,

where ∂yu is the partial derivative of u with respect to y, and where u is the solution
of the boundary value problem

∆u = 0 in S,
u(x, y) = a(x) on Γ,
u(x, y) = 0 on ∂S\Γ.

The problem is a one-dimensional minimization problem, but the computations
of the objective function and gradient involve a partial differential equation in
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two dimensions. To introduce oscillatory components in the solution, we set
φ(x) =

∑15
i=1 [sin(i x) + sin(40x)] . The discretization of the problem is performed

by finite differences with the same grid spacing in the two directions. The dis-
cretized problem is a linear least-squares problem.

4.1.2. Q2D: A Simple Quadratic Example

We consider here the two-dimensional model problem for multigrid solvers in the
unit square domain S2 = [0, 1] × [0, 1] = {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}:

−∆u(x, y) = f in S2

u(x, y) = 0 on ∂S2,

where f is such that the analytical solution to this problem is u(x, y) = 2y(1 −
y)+2x(1−x). This problem is discretized using a 5-point finite-difference scheme,
giving linear systems Aix = bi at level i where each Ai is a symmetric positive-
definite matrix. The optimization is carried out on the variational minimization
problem

min
x∈ℜnr

1

2
xT Arx − xT br, (19)

which is obviously equivalent to the linear system Arx = br. The main purpose of
this example is to illustrate that our algorithm is able to exploit the best multigrid
structure.

4.1.3. MS: A Minimum Surface Problem

We consider the minimum surface problem

min
v∈K

∫ 1

0

∫ 1

0

√

1 + (∂xv)2 + (∂yv)2 dx dy,

where K =
{

v ∈ H1(S2) | v(x, y) = v0(x, y) on ∂S2

}

. The boundary condition v0

is chosen as

v0(x, y) =















f(x), y = 0, 0 ≤ x ≤ 1,
0, x = 0, 0 ≤ y ≤ 1,
f(x), y = 1, 0 ≤ x ≤ 1,
0, x = 1, 0 ≤ y ≤ 1,

where f(x) = x(1 − x). This convex problem is discretized using a finite element
basis defined using a uniform triangulation of S2, with same grid spacing h along
the two coordinate directions. The basis functions are the classical P1 functions
which are linear on each triangle and take value 0 or 1 at each vertex. The starting
point is a random vector uniformly distributed in [0, 1].

4.1.4. BR: Bratu’s Problem in Two Dimensions

We consider the minimization problem

min
v∈K

∫ 1

0

∫ 1

0
(∂xv)2 + (∂yv)2 + R v ev dx dy,
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where K =
{

v ∈ H1(S2) | v(x, y) = 0 on ∂S2

}

, corresponding to a variational for-
mulation of the partial differential equation

−∆u(x, y) + Reu = 0 in S2

u(x, y) = 0 on ∂S2,

where R = 6.8, as advocated in Moré and Toraldo [24]. This variational problem
is discretized using the same finite element basis as that used in the MS problem.
The starting point is a random vector uniformly distributed in [0, 1].

4.1.5. IP: An Inverse Problem from Image Processing

We consider the image deblurring problem stated on page 130 of Vogel [30].
In this problem, the columns of the unknown deblurred image are stacked into a
vector f . A doubly block Toeplitz matrix T is computed using the blur function of
Hansen’s toolbox [17], which also yields the blurred image d. The image deblurring
problem uses the total variation principle and can be written as

min
f

[

1

2
‖Tf − d‖2

2 + 1

10

∫ 1

0

∫ 1

0

√

1 + (∂xf)2 + (∂yf)2 dx dy

]

.

The problem is convex. The discretization scheme is the same as for the MS prob-
lem, and the starting point for the minimization is chosen as f = 0.

4.1.6. MT: A Membrane Tracking Problem

We consider the minimization problem

min
v∈K

∫ 1

0

∫ 1

0
(∂xv)2 + (∂yv)2 + v dx dy.

The set of constraints is defined by

K =
{

v ∈ H1(S2) | v(x, y) = 0 on Γ1 and v(x, y) ≥ l(x, y) on Γ2

}

,

where boundary conditions are defined on the line segments Γ1 = {0} × [0, 1] and

Γ2 = {1} × [0, 1], and where l(x, y) =
√

1 − (y − 0.5)2 − 1.3. This problem corre-

sponds to the displacement of a membrane under a traction of unit density (see
Hlavacek, Haslinger, Necas and Lovisek [19]). To fit into our unconstrained opti-
mization framework, this bound-constrained problem is transformed into a problem
with Dirichlet boundary conditions by replacing K with

K ′ =
{

v ∈ H1(S2) | v(x, y) = 0 on Γ1 and v(x, y) = l(x, y) on Γ2

}

.

The discretization of the above problem again uses the same finite element basis as
for the MS problem. The starting point is a random vector uniformly distributed
in [0, 1].

4.1.7. DASW: Data Assimilation for the Shallow-Water System

Data assimilation problems constitute an important class of parameter estima-
tion. Their purpose is to reconstruct the initial conditions at t = 0 of a dynamical
system based on knowledge of the system evolution laws and on observations of
the state at times ti. More precisely, consider a dynamical system described by the
equation ẋ = f(t, x) whose solution operator is given by x(t) = M(t, x0). Assume
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that the system state is observed (possibly only in parts) at times {ti}
N
i=0, yielding

observation vectors {yi}
N
i=0, whose model is given by yi = Hx(ti) + ǫ, where ǫ is

a noise with covariance matrix Ri. Assume finally that one knows B, an a priori

error covariance matrix on x0. We are then interested to find x0 which minimizes

1

2
‖x0 − xb‖

2
B−1 +

1

2

N
∑

i=0

‖HM(ti, x0) − yi‖
2
R−1

i

. (20)

The first term in this cost function is the often called the background term, the
second the observation term.

An interesting application of (20) is given by a system governed by the (two-
dimensional) shallow-water equations. This system is often considered as a good
approximation of the dynamical systems used in ocean modeling, themselves a cru-
cial element of climatic evolution scenarios (Griffies [16]). The system’s equations
are



















∂u
∂t

+ u∂u
∂x

+ v∂v
∂y

− fv + g ∂z
∂x

= 0,

∂v
∂t

+ u∂v
∂x

+ v∂v
∂y

+ fu + g ∂z
∂y

= 0,

∂z
∂t

+ u∂z
∂x

+ v ∂z
∂y

+ z
(

∂u
∂x

+ ∂v
∂y

)

= 0,

(21)

where u, v and z are functions of (x, y, t). The domain is the rectangle [0, Lx] ×
[0, Ly] (with Lx = 32 × 106 meters and Ly = 8 × 106 meters) and the integration
horizon is 50 timesteps of 400 seconds. The boundary conditions are assumed to be
periodic in y and of Dirichlet type in x. Following the suggestion by Weaver and
Courtier [31] we have modelled the a priori term xb using a diffusion operator. As is
recommended in the climate modelling community (we refer the reader to Griffies
[16], for further details), our formulation uses initial geostrophic winds and a β-
plane formulation for the Coriolis force; we integrate this system using a leapfrog
scheme and a Laplacian spatial damping (which introduces a right-hand side of the
form µ(∆u, ∆v,∆z)T in the system (21), where µ = 3 × 106). We also considered
using an Asselin time-filter (see Asselin [1]), but gave this up as it had little effect
on our results. In our problem, we assume to observe the state at every fifth point
in the spatial domain and every fifth time step. The true initial geopotential height,
which we seek to reconstruct, is assumed to be

z(x, y, 0) = 5000 + 50 sin

(

2πx

Lx

)

cos2
(

π(y − 1

2
Ly)

Ly

)

.

The same starting point for this non-convex problem is used for all tests and is
generated as the initial state perturbed by normally distributed random noise with
zero mean and standard deviation equal to 10−2.

This problem is interesting for our tests because numerical experiments indicate
that this problem is not well-suited to a multigrid approach1.

1We experimented with a Galerkin full-multigrid scheme on a linear system whose matrix was obtained
from finite differences in the gradients of (20), and observed a numerical performance not significantly
better than that of a pure Gauss-Seidel smoother.
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4.2. The First Results

We now turn to the numerical experiments themselves, where we considered the
test examples described above for the sizes and algorithmic parameters presented
in Table 1. In this table, m is the total number of secant pairs (exact and approxi-
mate) memorized by our algorithm and “# levels” is the number of levels exploited
in the multi-secant algorithm. All experiments were run in Matlab. We used the
full-weighting restriction and the linear-interpolation prolongation operators in all
cases, and µ was set to 10−6. Convergence of the algorithm was declared as soon
as ‖g(xk)‖ ≤ ǫ, the values of this tolerance being also specified in Table 1.

DN Q2D MS BR
size (n) 255 1046529 = 10232 1046529 = 10232 261121 = 5112

memory (m) 10 9 9 7
# levels (r) 7 8 7 3
accuracy (ǫ) 10−5 10−5 10−5 10−5

IP MT DASW
size (n) 66049 = 2572 262143 = 511 × 513 3969 = 632

memory (m) 9 8 5
# levels (r) 4 6 4
accuracy (ǫ) 10−5 10−5 10−3

Table 1. The parameters in our numerical tests

The algorithmic variants tested differ according to the mechanism used in Step 5
to select the secant pairs, the order in which these pairs are used in the implicit
updating procedure and the level of collinearity control τ . We have defined three
different strategies for the selection of secant pairs:

• full: all secant pairs (exact and approximate) are considered for each iteration,
but the pairs generated at the iterations further in the past are dropped first,
and, amongst those corresponding to the same iteration, the approximate pairs
are dropped before the exact one;

• local: only the approximate secant pairs generated at the current iterations are
considered for updating, in addition to as many past exact pairs as allowed by
the memory;

• mless: all information from previous iterations is discarded and only the (ex-
act and approximate) pairs generated at the current iteration are considered.
This corresponds to using the multiple-secant updates in a purely “memoryless”
manner.

We have also defined two different strategies for the order in which the approximate
secant pairs are used for updating :

• coarse-first: the approximate inverse Hessian is updated for the pairs corre-
sponding to the coarser levels first;

• fine-first: the approximate inverse Hessian is updated for the pairs correspond-
ing to the finer levels first.

Each algorithmic variant is thus characterized by the triplet specifying its the pair
selection strategy, its pair ordering strategy and its value of τ . We also consider
the standard limited-memory BFGS method (L-BFGS) for comparison. Table 2 on
the next page presents the results of our first tests, expressed in terms of number
of objective function evaluations (nf) and iterations (nit).

These results indicate that using approximate secant pairs associated with grid
levels is potentially useful, although not uniformly for every problem nor across
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Multi-secant LM variant DN Q2D MS BR
Pairs upd. order τ nf nit nf nit nf nit nf nit
full coarse-first 1.0 152 122 381 304 2130 1716 472 381
full coarse-first 0.999 131 108 515 432 2541 2194 547 465
full fine-first 1.0 130 105 366 273 2097 1815 428 367
full fine-first 0.999 120 98 638 550 2361 2099 396 337
local coarse-first 1.0 94 84 563 427 2003 1707 440 372
local coarse-first 0.999 110 92 501 385 2033 1725 450 384
local fine-first 1.0 120 100 304 233 2267 1943 397 339
local fine-first 0.999 90 76 335 278 1867 1605 400 341
mless coarse-first 1.0 125 100 563 427 1724 1364 527 422
mless coarse-first 0.999 113 89 501 385 2207 1832 401 316
mless fine-first 1.0 137 100 304 233 1679 1371 420 313
mless fine-first 0.999 140 107 335 278 2204 1844 445 338

L-BFGS 330 319 1505 1471 2671 2644 1074 1053

Multi-secant LM variant IP MT DASW
Pairs upd. order τ nf nit nf nit nf nit
full coarse-first 1.0 196 186 1542 1277 73 70
full coarse-first 0.999 204 206 1262 1041 73 70
full fine-first 1.0 213 200 1070 883 64 62
full fine-first 0.999 214 210 1272 1077 64 62
local coarse-first 1.0 165 161 929 781 73 70
local coarse-first 0.999 165 162 1070 882 73 70
local fine-first 1.0 185 184 1027 861 64 62
local fine-first 0.999 180 179 1138 959 64 62
mless coarse-first 1.0 355 353 1536 1221 73 70
mless coarse-first 0.999 280 279 1307 1051 73 70
mless fine-first 1.0 265 256 862 650 64 62
mless fine-first 0.999 232 225 1461 1149 64 62

L-BFGS 181 176 1419 1386 60 57
Table 2. Performance of multi-secant limited-memory BFGS algorithms

variants. Further variations were also observed for other choices of m and r, but
leave the overall picture unchanged. In the results reported here, the improvement
is especially noticeable for problems (like Q2D and BR) where one expects the
multigrid method to perform well. One also notes that the “local” and “mless”
variants seem to be most efficient, and that collinearity control often helps some-
what the first of these strategies. The memoryless variants (“mless”) are especially
efficient on the Laplacian (Q2D) and Bratu (BR) problems. We also note that the
memory-less and local variants give identical number of function evaluations and
iterations for problem Q2D, which we believe results from the fact that r ≈ m,
which leaves little room for past iteration history. The same comment applies to the
data assimilation problem (DASW), for which the multisecant variants are clearly
less successful. Given our observation that this latter example is not well-suited to
multigrids, the performance of our algorithms on this problem does not come as a
surprise. We finally observe that collinearity control produces fairly mixed results,
and seems to be irrelevant for problem DASW.

In order to verify the analysis of Section 2.1, we have also computed the relative
perturbations (13) (with G = ∇xxf(xk+1) and ‖ · ‖ = ‖ · ‖∞) during runs of the
variant [local,coarse-first,1.0] on problems Q2D and MS. Typical results are shown
in Figure 1.

This figure shows that the size of the relative perturbation of the true Hessian
needed to make the approximate secant exact is very modest (a few percent of
‖∇xxf(xk+1)‖, typically). The relative size of the Hessian perturbation necessary
make the exact secant equation (5) hold exactly is shown in the right figure as the
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Figure 1. Evolution of the relative Hessian perturbation sizes (13) with k for the variant [local,coarse-
first,1.0] with m = 7 and r = 4 for problems of size n = 632 (Q2D on the left, MS on the right, logarithmic
vertical scale)

curve ultimately decreasing to the order of 10−5. Clearly, this perturbation is of
the same order as that for the approximate secant equations in the early iterations
of the algorithm. It is invisible on the left figure, because it is always tiny (between
10−15 and 10−10) on a quadratic function. Further analysis (not illustrated here)
indicates that the perturbation corresponding to past exact secant equations follows
the same pattern as that corresponding to the current one, both for quadratic and
nonquadratic problems.

5. Asymptotic Approximate Eigenvalue Equations

These numerical experiments prompt another discussion. It was observed in the
numerical test-runs that the multiple-secant limited-memory BFGS algorithm also
acts as a smoother on the original problem, in the sense that convergence often
occurs much faster for the oscillatory modes of the solution than for the smooth
modes. This is illustrated in Figure 2 which shows the decomposition of the step
sk along the subspaces S0,S

C
1 ,SC

2 , . . . ,SC
r , where, for i > 0, SC

i is the orthogonal
complement of Si−1 in Si, thereby isolating to contribution which is specific to each
of the nested subspaces.
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Figure 2. Evolution of the decomposition of the step sk for the variant [local,coarse-first,1.0] with m = 7
and r = 4 along S0,SC

1
,SC

2
, . . . ,SC

r for problems of size n = 312 (Q2D on the left, MS on the right,
logarithmic vertical scale)

In this figure, one observes that, for both problems, sk is nearly entirely contained
in S0 (the coarse subspaces corresponding to very smooth modes), for k sufficiently
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large, which we express by writing that

sk ≈ S0sk (22)

for large k. Now observe that the eigenvalues associated with S0 are typically the
smallest ones: in the case of the one-dimensional Laplacian model problem analyzed
above, we have that

S0 = span

{

sin

(

ijπ

n

)}n0

i=1

and the eigenvalues associated with this invariant subspace are

λi = 4 sin2

(

iπ

2n

)

(i = 1, . . . , n0). (23)

If we assume, for instance, that n = 255 and that we exploit five levels, we ver-
ify that n0 = 7. The eigenvalues (23) are therefore all contained in the interval
[0.00015, 0.0074]. The norm of the Laplacian operator is however given by its max-
imal eigenvalue, equal to 4. Thus the deviation of the eigenvalues associated to
S0 from any approximation ρ0 in the interval, relative to the operator norm, is
bounded by

0.0074 − 0.00015

4
≈ 0.0018,

that is slightly less than 0.2%. Modifying the Laplacian operator by imposing that
its restriction to S0 is ρ0I therefore amounts to a perturbation of the operator of
at most 0.2%, which is again very modest. Moreover, this discussion is consistent
with our observation following (15) as we see here that ‖G0‖ is small compared to
‖G‖. Returning to the case discussed in Section 2.1, this indicates that

Gsk ≈ GS0sk ≈ ρ0sk,

and sk ≈ S0sk is an approximate eigenvector of G, the value ρ0 being the Rayleigh
quotient along this direction, given by

ρ0‖S0sk‖
2 = 〈S0sk, GS0sk〉 ≈ 〈S0sk, S0Gsk〉 ≈ 〈S0sk, S0yk〉.

Moreover,

S0yk = S0Gsk = GS0sk ≈ Gsk = yk. (24)

If we now consider S1 (a superset of S0 of dimension 15 in our example), the size of
relative perturbation Hessian remains at most 9%. Expressing the above reasoning
for an a generic invariant subspace Si (note that S0 ⊂ Si in our multilevel context),
we may thus expect that

GSisk ≈
〈GSisk, Sisk〉

‖Sisk‖2
2

Sisk ≈
〈yk, Sisk〉

‖Sisk‖2
2

Sisk ≈
〈Siyk, Sisk〉

‖Sisk‖2
2

Sisk,
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which yields

HSisk ≈
‖Sisk‖

2

〈Siyk, Sisk〉
Sisk. (25)

Alternatively,

〈Siyk, HSiyk〉 ≈ 〈Siyk, SiHyk〉 ≈ 〈Siyk, Sisk〉 ≈ 〈yk, Sisk〉,

yielding

HSisk ≈
〈Siyk, Sisk〉

‖Siyk‖2
2

Sisk. (26)

Using the approximations (22) and (24), we see that equations of the form

Hpi,k ≈ ρi,kqi,k (i = 0, . . . , r − 1), (27)

may therefore be of interest when updating our Hessian approximation, where we
have the choice to select pi,k and qi,k among Sisk (0 ≤ i < r − 1) or sk, and ρi,k

among

‖Sisk‖
2
2

〈yk, Sisk〉
,

‖Sisk‖
2
2

〈Siyk, Sisk〉
,

〈yk, Sisk〉

‖Siyk‖2
2

or
〈Siyk, Sisk〉

‖Siyk‖2
2

(28)

Further alternative forms may be obtained by replacing Sisk by sk or ‖Sisk‖
2
2 by

〈sk, Sisk〉 or ‖sk‖
2
2, or Siyk by yk in (28). . .

We also note that Algorithm 3.1 was stated above using only secant equations
of the form (16), but it is now possible to incorporate equations of the form (27)
(possibly in combination with (16)) into the updates. This only requires the redef-
inition of the vectors yk,i to be generated at Step 4: for instance, we redefine yk,i

to be

〈yk,i, sk,i〉

‖sk,i‖2
2

sk,i

if one wishes to use (25).
Finally, we observe that the variants described in this section differ from those in

Section 2.1 in that they only require the storage of the steps sk, This significantly
reduces the memory needs for the method, which might be an advantage for very
large problems.

6. Numerical Experience with Eigenvalue Equations

Our present purpose is not to conduct a full investigation of which of the alternative
forms mentioned in the previous section is numerically preferable and when. We
focus in this section on verifying the main lines of our analysis of approximate
eigenvalue equations and on illustrating the potential of a few choices in a simple
algorithmic setting. We leave the more complete experimentation and the design
of a suitable selection mechanism for further research.

In this first exploration, we have chosen to experiment with four variants of the
many possible choices of the type (27)-(28), namely the “eigenvalue equations”
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given by (25), (26),

HSisk ≈
‖Sisk‖

2
2

〈yk, Sisk〉
Sisk, (29)

and

HSisk ≈
〈yk, Sisk〉

‖Siyk‖2
2

Sisk. (30)

The results of the numerical experience using these equations in the limited memory
framework already detailed for approximate secant equations are given in Tables 3
to 9.

Eigenvalue LM variant (29) (25) (30) (26)
Pairs upd. order τ nf nit nf nit nf nit nf nit
full coarse-first 1.0 219 129 158 126 132 118 139 114
full coarse-first 0.999 222 125 129 106 177 160 153 129
full fine-first 1.0 529 272 176 134 129 117 145 106
full fine-first 0.999 243 127 157 118 145 129 113 89
local coarse-first 1.0 156 96 121 101 233 217 138 117
local coarse-first 0.999 164 106 122 99 195 178 126 103
local fine-first 1.0 159 100 104 86 116 104 101 85
local fine-first 0.999 159 103 127 105 135 124 123 105
mless coarse-first 1.0 199 112 169 136 246 223 138 111
mless coarse-first 0.999 224 128 178 132 239 219 153 125
mless fine-first 1.0 229 128 122 90 229 192 168 135
mless fine-first 0.999 216 119 155 117 188 159 156 125

Table 3. Performance of eigenvalue limited-memory BFGS algorithms on problem DN (L-BFGS uses 330 function

evaluations and 319 iterations on this problem)

Eigenvalue LM variant (29) (25) (30) (26)
Pairs upd. order τ nf nit nf nit nf nit nf nit
full coarse-first 1.0 707 564 806 608 689 534 552 440
full coarse-first 0.999 592 470 868 672 704 592 689 595
full fine-first 1.0 414 316 439 336 565 467 842 675
full fine-first 0.999 908 749 1068 853 1185 966 770 637
local coarse-first 1.0 551 437 771 576 630 482 686 551
local coarse-first 0.999 405 313 524 410 532 410 602 481
local fine-first 1.0 690 528 479 366 558 433 520 428
local fine-first 0.999 579 479 389 313 699 582 518 413
mless coarse-first 1.0 551 437 771 576 630 482 686 551
mless coarse-first 0.999 405 313 524 410 532 410 532 481
mless fine-first 1.0 690 528 479 366 558 433 520 428
mless fine-first 0.999 579 479 389 313 699 582 518 413

Table 4. Performance of eigenvalue limited-memory BFGS algorithms on problem Q2D (L-BFGS uses 1505

function evaluations and 1471 iterations on this problem)

Qualitatively speaking, we obtain a conclusion very similar to that reached for
approximate secant equations: there exists a clear algorithmic potential in using the
information specified by the approximate eigenvalue equations, but this potential is
uniform neither across problems nor across algorithmic variants. We only note that
some of the best performances are obtained with these techniques, in particular for
the data assimilation problem DASW.

As for the multiple secant equations, we may complete our picture by an es-
timation of the approximate nature of the considered eigenvalue equations. This
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Eigenvalue LM variant (29) (25) (30) (26)
Pairs upd. order τ nf nit nf nit nf nit nf nit
full coarse-first 1.0 2123 1672 2663 2027 2277 1998 2627 2326
full coarse-first 0.999 2674 2145 2780 2170 2595 2295 2466 2187
full fine-first 1.0 2300 1895 2192 1772 1957 1683 2101 1817
full fine-first 0.999 3097 2561 2610 2117 3042 2588 3259 2792
local coarse-first 1.0 2780 2270 2869 2227 2511 2213 2375 2135
local coarse-first 0.999 2565 2094 2275 2214 2369 2078 2367 2099
local fine-first 1.0 2147 1872 2168 1851 2147 1917 2029 1808
local fine-first 0.999 1698 1470 1637 1379 1848 1654 2316 2080
mless coarse-first 1.0 2840 2107 2246 2246 2356 2043 2180 1931
mless coarse-first 0.999 2429 1889 2753 1997 2346 1997 2546 2182
mless fine-first 1.0 1494 1207 1833 1477 1992 1718 1853 1643
mless fine-first 0.999 2036 1974 1922 1627 3075 2674 3397 3045

Table 5. Performance of eigenvalue limited-memory BFGS algorithms on problem MS (L-BFGS uses 2671 func-

tion evaluations and 2644 iterations on this problem)

Eigenvalue LM variant (29) (25) (30) (26)
Pairs upd. order τ nf nit nf nit nf nit nf nit
full coarse-first 1.0 511 425 532 443 555 484 552 490
full coarse-first 0.999 424 352 580 478 471 405 622 544
full fine-first 1.0 321 251 420 326 469 392 593 494
full fine-first 0.999 377 291 557 460 413 342 573 479
local coarse-first 1.0 383 334 584 486 494 441 390 348
local coarse-first 0.999 427 358 647 522 523 462 363 322
local fine-first 1.0 365 329 548 466 527 465 315 282
local fine-first 0.999 381 339 449 396 419 364 415 359
mless coarse-first 1.0 660 525 518 391 575 473 548 468
mless coarse-first 0.999 405 314 432 320 605 486 490 404
mless fine-first 1.0 432 343 535 407 419 339 547 431
mless fine-first 0.999 301 234 428 330 338 282 665 522

Table 6. Performance of eigenvalue limited-memory BFGS algorithms on problem BR (L-BFGS uses 1074 func-

tion evaluations and 1053 iterations on this problem)

Eigenvalue LM variant (29) (25) (30) (26)
Pairs upd. order τ nf nit nf nit nf nit nf nit
full coarse-first 1.0 330 303 282 274 256 252 248 241
full coarse-first 0.999 367 314 206 199 237 229 233 228
full fine-first 1.0 2007 1015 186 181 610 609 189 187
full fine-first 0.999 1738 881 178 609 610 609 198 196
local coarse-first 1.0 223 220 164 174 166 165 165 164
local coarse-first 0.999 229 226 164 163 169 168 169 168
local fine-first 1.0 680 405 179 178 211 210 184 183
local fine-first 0.999 727 444 184 183 219 218 184 183
mless coarse-first 1.0 285 261 195 189 344 343 191 189
mless coarse-first 0.999 371 314 246 195 344 343 200 197
mless fine-first 1.0 959 484 198 245 3061 3060 236 235
mless fine-first 0.999 1292 695 240 239 3061 3060 233 230

Table 7. Performance of eigenvalue limited-memory BFGS algorithms on problem IP (L-BFGS uses 181 function

evaluations and 176 iterations on this problem)

estimation is again obtained by measuring the size of the Hessian perturbation that
would ensure (27) exactly, relative to the Hessian norm. In this case ,the relative
perturbation size is then given by

‖Ei‖∞
‖G‖∞

≤
‖Gpi,k − ρi,kqi,k‖∞

‖pi,k‖∞ ‖G‖∞
(31)
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Eigenvalue LM variant (29) (25) (30) (26)
Pairs upd. order τ nf nit nf nit nf nit nf nit
full coarse-first 1.0 1219 1060 1363 1099 1219 1072 1292 1140
full coarse-first 0.999 1370 1167 1295 1034 1588 1384 1469 1294
full fine-first 1.0 974 805 935 749 1063 934 1232 1075
full fine-first 0.999 1064 847 1334 1074 1605 1377 1593 1367
local coarse-first 1.0 1544 1299 1221 987 1334 1190 1340 1205
local coarse-first 0.999 1512 1279 1275 1033 1279 1124 1277 1128
local fine-first 1.0 1129 964 977 823 1293 1113 1205 1043
local fine-first 0.999 1262 1079 931 786 1312 1146 1496 1375
mless coarse-first 1.0 1311 1050 1515 1531 1311 1300 1469 1256
mless coarse-first 0.999 1304 1050 1682 1292 1775 1471 1417 1188
mless fine-first 1.0 1106 881 1145 880 1423 1136 1064 866
mless fine-first 0.999 890 703 1349 1094 1981 1649 1540 1270

Table 8. Performance of eigenvalue limited-memory BFGS algorithms on problem MT (L-BFGS uses 1419 func-

tion evaluations and 1386 iterations on this problem)

Eigenvalue LM variant (29) (25) (30) (26)
Pairs upd. order τ nf nit nf nit nf nit nf nit
full coarse-first 1.0 65 62 83 80 47 45 79 71
full coarse-first 0.999 65 62 83 80 47 45 79 71
full fine-first 1.0 61 58 93 92 81 76 59 51
full fine-first 0.999 61 58 93 92 81 76 59 51
local coarse-first 1.0 65 63 83 80 47 45 79 71
local coarse-first 0.999 65 63 83 80 47 45 79 71
local fine-first 1.0 61 58 91 88 91 84 57 51
local fine-first 0.999 61 58 91 88 91 84 57 51
mless coarse-first 1.0 65 63 83 80 47 45 79 71
mless coarse-first 0.999 65 63 83 80 47 45 79 71
mless fine-first 1.0 61 58 91 88 91 84 57 51
mless fine-first 0.999 61 48 91 88 91 84 57 51

Table 9. Performance of eigenvalue limited-memory BFGS algorithms on problem DASW (L-BFGS uses 60

function evaluations and 57 iterations on this problem)

for the appropriate choices of pi,k, qi,k and ρi,k. The results obtained during runs of
the variant [local,coarse-first,1.0] on problems Q2D and MS are illustrated in Fig-
ures 3 to 6. These pictures confirm our analysis that the limited-memory framework
may generate useful approximate eigenvalue information. The quality and relevance
of this information varies according to the precise choice of approximate eigenvalue
equation used and problem considered. Once more, this encourages further inves-
tigation in methods exploiting this information .

7. Conclusions

We have shown that the a priori knowledge of approximate invariant subspaces
associated with the Hessian of an unconstrained optimization problem allows a
more efficient exploitation of the secant information, and thus more efficient mini-
mization algorithms. As an application, we have also described how this knowledge
can often be extracted from the multilevel structure of discretized infinite dimen-
sional problems. Using the asymptotic smoothing properties of the limited-memory
BFGS method, we have also indicated how the steps generated by this algorithm
often generate approximate eigenvalue information, which may in turn be used to
reduce the memory required for an efficient optimization. Preliminary numerical
experience on a small collection of test problems suggests that this approach is
promising and further investigation worthwhile.
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Figure 3. Evolution of the relative Hessian perturbation sizes (13) with k for the variant [local,coarse-
first,1.0] with m = 7 and r = 4 using equation (29) for problems of size n = 632 (Q2D on the left, MS on
the right, logarithmic vertical scale)
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Figure 4. Evolution of the relative Hessian perturbation sizes (13) with k for the variant [local,coarse-
first,1.0] with m = 7 and r = 4 using equation (25) for problems of size n = 632 (Q2D on the left, MS on
the right, logarithmic vertical scale)
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Figure 5. Evolution of the relative Hessian perturbation sizes (13) with k for the variant [local,coarse-
first,1.0] with m = 7 and r = 4 using equation (30) for problems of size n = 632 (Q2D on the left, MS on
the right, logarithmic vertical scale)

The exploitation of invariant subspace information opens, from the authors’ point
of view, a number of immediate possibilities and more long-term perspectives.
The first would be to investigate other frameworks where approximate invariant
subspaces and associated approximate projectors can be obtained, possibly at the
cost of some problem preprocessing. In particular the domain of model-reduction
methods (of which multilevel can be considered a member) seems of interest. In



April 20, 2009 9:37 Optimization Methods and Software gt17˙OMS

REFERENCES 23

0 10 20 30 40 50 60 70 80
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

0 (coarse)
1
2
3 (fine)

0 20 40 60 80 100 120 140 160
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

 

 

1 (coarse)
2
3
4 (fine)
exact

Figure 6. Evolution of the relative Hessian perturbation sizes (13) with k for the variant [local,coarse-
first,1.0] with m = 7 and r = 4 using equation (26) for problems of size n = 632 (Q2D on the left, MS on
the right, logarithmic vertical scale)

this context, the hierarchy of models of different fidelity provides the support of the
approximate invariant subspaces, and the authors believe that the ideas presented
in this paper can then be applied using suitable prolongations and restrictions
between the levels of this hierarchy. More algebraic decompositions may also be
considered for the determination of approximate invariant subspaces, for instance
in cases where nested subsets of variables are known to generate different degrees
of model nonlinearity. One may also consider the use of multi-secant/eigenvalue
approaches in algorithms for bound- and more generally constrained optimization.

In the more specific case of multilevel optimization and, although algorithmic
variants have been outlined in the present paper, much remains to be done for ob-
taining a well-tested, robust and optimized multi-secant/eigenvalue quasi-Newton
code. In particular, approximate techniques for computing the vector P+

i sk as an
alternative to Risk might prove efficient in this context. But other questions also
merit further research. One may wonder, for instance, if the BFGS updates could
be performed at the different grid levels and the resulting matrices prolongated
to the fine grid. One may also consider the effect of using simultaneous updates
or other quasi-Newton updates in the context of multi-secant algorithms, or the
use of the resulting approximations in multilevel optimization algorithms of the
type suggested by Nash [25], Gratton, Mouffe, Toint and Weber-Mendonça [13]
or Wen and Goldfarb [32]. Yet further research questions include the effect of the
particular choice of the restriction and prolongation operators and the impact of
grid refinement strategies.

Acknowledgements

The authors thank Michael and Stefan Ulbrich for their interest in this research at the ICCOPT II con-

ference. They are also indebted to Anthony Weaver for his friendly advice on the numerical aspects of the

shallow-water system.

References

[1] R. A. Asselin. Frequency filter for time integration. Monthly Weather Review, 100:487–490, 1972.
[2] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM, Philadelphia, USA,

2nd edition, 2000.
[3] C. G. Broyden. The convergence of a class of double-rank minimization algorithms. Journal of the

Institute of Mathematics and its Applications, 6:76–90, 1970.
[4] J. R. Bunch, J. W. Demmel, and Ch Van Loan. The strong stability of algorithms for solving

symmetric linear systems. SIAM J. Matrix Anal. Appl., 10(4):494–499, 1989.



April 20, 2009 9:37 Optimization Methods and Software gt17˙OMS

24 REFERENCES

[5] R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained optimization.
Technical Report NAM-08, Department of Electrical Engineering and Computer Science, Northwest-
ern University, Evanston, Illinois, USA, 1993.

[6] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing, 16(5):1190–1208, 1995.

[7] R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representation of quasi-newton matrices and their use
in limited meory methods. Mathematical Programming, 63:129–156, 1994.

[8] W. C. Davidon. Variable metric method for minimization. Report ANL-5990(Rev.), Argonne National
Laboratory, Research and Development, 1959. Republished in the SIAM Journal on Optimization,
vol. 1, pp. 1–17, 1991.

[9] J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlin-
ear Equations. Prentice-Hall, Englewood Cliffs, NJ, USA, 1983. Reprinted as Classics in Applied
Mathematics 16, SIAM, Philadelphia, USA, 1996.

[10] R. Fletcher. A new approach to variable metric algorithms. Computer Journal, 13:317–322, 1970.
[11] R. Fletcher and M. J. D. Powell. A rapidly convergent descent method for minimization. Computer

Journal, 6:163–168, 1963.
[12] D. Goldfarb. A family of variable metric methods derived by variational means. Mathematics of

Computation, 24:23–26, 1970.
[13] S. Gratton, M. Mouffe, Ph. L. Toint, and M. Weber-Mendonça. A recursive trust-region method in

infinity norm for bound-constrained nonlinear optimization. IMA Journal of Numerical Analysis,
28(4):827–861, 2008.

[14] S. Gratton, A. Sartenaer, and Ph. L. Toint. Second-order convergence properties of trust-region meth-
ods using incomplete curvature information, with an application to multigrid optimization. Journal
of Computational and Applied Mathematics, 24(6):676–692, 2006.

[15] S. Gratton, A. Sartenaer, and Ph. L. Toint. Recursive trust-region methods for multiscale nonlinear
optimization. SIAM Journal on Optimization, 19(1):414–444, 2008.

[16] S. Griffies. Fundamentals of Ocean Climate Models. Princeton University Press, Princeteon, USA,
2004.

[17] P. C. Hansen. Regularization tools: A Matlab package for analysis and solution of discrete ill-posed
problems. Numerical Algorithms, 6:1–35, 1994.

[18] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, USA, 1996.
[19] I. Hlavacek, J. Haslinger, J. Necas, and J. Lovisek. Solution of Variational Inequalities in Mechanics.

Springer Verlag, Heidelberg, Berlin, New York, 1998.
[20] M. Lewis and S. G. Nash. Practical aspects of multiscale optimization methods for VLSICAD. In

Jason Cong and Joseph R. Shinnerl, editors, Multiscale Optimization and VLSI/CAD, pages 265–291,
Dordrecht, The Netherlands, 2002. Kluwer Academic Publishers.

[21] M. Lewis and S. G. Nash. Model problems for the multigrid optimization of systems governed by
differential equations. SIAM Journal on Scientific Computing, 26(6):1811–1837, 2005.

[22] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization.
Mathematical Programming, Series B, 45(1):503–528, 1989.
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