5,392 research outputs found

    String Matching and 1d Lattice Gases

    Full text link
    We calculate the probability distributions for the number of occurrences nn of a given ll letter word in a random string of kk letters. Analytical expressions for the distribution are known for the asymptotic regimes (i) k≫rl≫1k \gg r^l \gg 1 (Gaussian) and k,l→∞k,l \to \infty such that k/rlk/r^l is finite (Compound Poisson). However, it is known that these distributions do now work well in the intermediate regime k≳rl≳1k \gtrsim r^l \gtrsim 1. We show that the problem of calculating the string matching probability can be cast into a determining the configurational partition function of a 1d lattice gas with interacting particles so that the matching probability becomes the grand-partition sum of the lattice gas, with the number of particles corresponding to the number of matches. We perform a virial expansion of the effective equation of state and obtain the probability distribution. Our result reproduces the behavior of the distribution in all regimes. We are also able to show analytically how the limiting distributions arise. Our analysis builds on the fact that the effective interactions between the particles consist of a relatively strong core of size ll, the word length, followed by a weak, exponentially decaying tail. We find that the asymptotic regimes correspond to the case where the tail of the interactions can be neglected, while in the intermediate regime they need to be kept in the analysis. Our results are readily generalized to the case where the random strings are generated by more complicated stochastic processes such as a non-uniform letter probability distribution or Markov chains. We show that in these cases the tails of the effective interactions can be made even more dominant rendering thus the asymptotic approximations less accurate in such a regime.Comment: 44 pages and 8 figures. Major revision of previous version. The lattice gas analogy has been worked out in full, including virial expansion and equation of state. This constitutes the main part of the paper now. Connections with existing work is made and references should be up to date now. To be submitted for publicatio

    GASP : Geometric Association with Surface Patches

    Full text link
    A fundamental challenge to sensory processing tasks in perception and robotics is the problem of obtaining data associations across views. We present a robust solution for ascertaining potentially dense surface patch (superpixel) associations, requiring just range information. Our approach involves decomposition of a view into regularized surface patches. We represent them as sequences expressing geometry invariantly over their superpixel neighborhoods, as uniquely consistent partial orderings. We match these representations through an optimal sequence comparison metric based on the Damerau-Levenshtein distance - enabling robust association with quadratic complexity (in contrast to hitherto employed joint matching formulations which are NP-complete). The approach is able to perform under wide baselines, heavy rotations, partial overlaps, significant occlusions and sensor noise. The technique does not require any priors -- motion or otherwise, and does not make restrictive assumptions on scene structure and sensor movement. It does not require appearance -- is hence more widely applicable than appearance reliant methods, and invulnerable to related ambiguities such as textureless or aliased content. We present promising qualitative and quantitative results under diverse settings, along with comparatives with popular approaches based on range as well as RGB-D data.Comment: International Conference on 3D Vision, 201

    Online Pattern Matching for String Edit Distance with Moves

    Full text link
    Edit distance with moves (EDM) is a string-to-string distance measure that includes substring moves in addition to ordinal editing operations to turn one string to the other. Although optimizing EDM is intractable, it has many applications especially in error detections. Edit sensitive parsing (ESP) is an efficient parsing algorithm that guarantees an upper bound of parsing discrepancies between different appearances of the same substrings in a string. ESP can be used for computing an approximate EDM as the L1 distance between characteristic vectors built by node labels in parsing trees. However, ESP is not applicable to a streaming text data where a whole text is unknown in advance. We present an online ESP (OESP) that enables an online pattern matching for EDM. OESP builds a parse tree for a streaming text and computes the L1 distance between characteristic vectors in an online manner. For the space-efficient computation of EDM, OESP directly encodes the parse tree into a succinct representation by leveraging the idea behind recent results of a dynamic succinct tree. We experimentally test OESP on the ability to compute EDM in an online manner on benchmark datasets, and we show OESP's efficiency.Comment: This paper has been accepted to the 21st edition of the International Symposium on String Processing and Information Retrieval (SPIRE2014

    Sequence Alignment in Molecular Biology

    Get PDF

    Medical record linkage in health information systems by approximate string matching and clustering

    Get PDF
    BACKGROUND: Multiplication of data sources within heterogeneous healthcare information systems always results in redundant information, split among multiple databases. Our objective is to detect exact and approximate duplicates within identity records, in order to attain a better quality of information and to permit cross-linkage among stand-alone and clustered databases. Furthermore, we need to assist human decision making, by computing a value reflecting identity proximity. METHODS: The proposed method is in three steps. The first step is to standardise and to index elementary identity fields, using blocking variables, in order to speed up information analysis. The second is to match similar pair records, relying on a global similarity value taken from the Porter-Jaro-Winkler algorithm. And the third is to create clusters of coherent related records, using graph drawing, agglomerative clustering methods and partitioning methods. RESULTS: The batch analysis of 300,000 "supposedly" distinct identities isolates 240,000 true unique records, 24,000 duplicates (clusters composed of 2 records) and 3,000 clusters whose size is greater than or equal to 3 records. CONCLUSION: Duplicate-free databases, used in conjunction with relevant indexes and similarity values, allow immediate (i.e.: real-time) proximity detection when inserting a new identity

    Computational Molecular Biology

    No full text
    Computational Biology is a fairly new subject that arose in response to the computational problems posed by the analysis and the processing of biomolecular sequence and structure data. The field was initiated in the late 60's and early 70's largely by pioneers working in the life sciences. Physicists and mathematicians entered the field in the 70's and 80's, while Computer Science became involved with the new biological problems in the late 1980's. Computational problems have gained further importance in molecular biology through the various genome projects which produce enormous amounts of data. For this bibliography we focus on those areas of computational molecular biology that involve discrete algorithms or discrete optimization. We thus neglect several other areas of computational molecular biology, like most of the literature on the protein folding problem, as well as databases for molecular and genetic data, and genetic mapping algorithms. Due to the availability of review papers and a bibliography this bibliography

    5D Black Holes and Strings with Higher Derivatives

    Get PDF
    We find asymptotically flat black hole and string solutions to 5D supergravity in the presence of higher derivative terms. In some cases, including the fundamental heterotic string solution, the higher derivative terms smooth out naked singularities into regular geometries carrying zero entropy. We also compute corrections to the entropy of 5D Calabi-Yau black holes, and discuss the relation to previous results.Comment: 33 pages, 2 figs., harvmac; v2: typos corrected, references added v3: refs correcte
    • …
    corecore