3,207 research outputs found

    Closed-loop Bayesian Semantic Data Fusion for Collaborative Human-Autonomy Target Search

    Full text link
    In search applications, autonomous unmanned vehicles must be able to efficiently reacquire and localize mobile targets that can remain out of view for long periods of time in large spaces. As such, all available information sources must be actively leveraged -- including imprecise but readily available semantic observations provided by humans. To achieve this, this work develops and validates a novel collaborative human-machine sensing solution for dynamic target search. Our approach uses continuous partially observable Markov decision process (CPOMDP) planning to generate vehicle trajectories that optimally exploit imperfect detection data from onboard sensors, as well as semantic natural language observations that can be specifically requested from human sensors. The key innovation is a scalable hierarchical Gaussian mixture model formulation for efficiently solving CPOMDPs with semantic observations in continuous dynamic state spaces. The approach is demonstrated and validated with a real human-robot team engaged in dynamic indoor target search and capture scenarios on a custom testbed.Comment: Final version accepted and submitted to 2018 FUSION Conference (Cambridge, UK, July 2018

    Query2GMM: Learning Representation with Gaussian Mixture Model for Reasoning over Knowledge Graphs

    Full text link
    Logical query answering over Knowledge Graphs (KGs) is a fundamental yet complex task. A promising approach to achieve this is to embed queries and entities jointly into the same embedding space. Research along this line suggests that using multi-modal distribution to represent answer entities is more suitable than uni-modal distribution, as a single query may contain multiple disjoint answer subsets due to the compositional nature of multi-hop queries and the varying latent semantics of relations. However, existing methods based on multi-modal distribution roughly represent each subset without capturing its accurate cardinality, or even degenerate into uni-modal distribution learning during the reasoning process due to the lack of an effective similarity measure. To better model queries with diversified answers, we propose Query2GMM for answering logical queries over knowledge graphs. In Query2GMM, we present the GMM embedding to represent each query using a univariate Gaussian Mixture Model (GMM). Each subset of a query is encoded by its cardinality, semantic center and dispersion degree, allowing for precise representation of multiple subsets. Then we design specific neural networks for each operator to handle the inherent complexity that comes with multi-modal distribution while alleviating the cascading errors. Last, we define a new similarity measure to assess the relationships between an entity and a query's multi-answer subsets, enabling effective multi-modal distribution learning for reasoning. Comprehensive experimental results show that Query2GMM outperforms the best competitor by an absolute average of 5.5%5.5\%. The source code is available at \url{https://anonymous.4open.science/r/Query2GMM-C42F}

    t-Exponential Memory Networks for Question-Answering Machines

    Full text link
    Recent advances in deep learning have brought to the fore models that can make multiple computational steps in the service of completing a task; these are capable of describ- ing long-term dependencies in sequential data. Novel recurrent attention models over possibly large external memory modules constitute the core mechanisms that enable these capabilities. Our work addresses learning subtler and more complex underlying temporal dynamics in language modeling tasks that deal with sparse sequential data. To this end, we improve upon these recent advances, by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network parameters as latent variables with a prior distribution imposed over them. Our statistical assumptions go beyond the standard practice of postulating Gaussian priors. Indeed, to allow for handling outliers, which are prevalent in long observed sequences of multivariate data, multivariate t-exponential distributions are imposed. On this basis, we proceed to infer corresponding posteriors; these can be used for inference and prediction at test time, in a way that accounts for the uncertainty in the available sparse training data. Specifically, to allow for our approach to best exploit the merits of the t-exponential family, our method considers a new t-divergence measure, which generalizes the concept of the Kullback-Leibler divergence. We perform an extensive experimental evaluation of our approach, using challenging language modeling benchmarks, and illustrate its superiority over existing state-of-the-art techniques

    Leveraging Crowdsourcing Data For Deep Active Learning - An Application: Learning Intents in Alexa

    Full text link
    This paper presents a generic Bayesian framework that enables any deep learning model to actively learn from targeted crowds. Our framework inherits from recent advances in Bayesian deep learning, and extends existing work by considering the targeted crowdsourcing approach, where multiple annotators with unknown expertise contribute an uncontrolled amount (often limited) of annotations. Our framework leverages the low-rank structure in annotations to learn individual annotator expertise, which then helps to infer the true labels from noisy and sparse annotations. It provides a unified Bayesian model to simultaneously infer the true labels and train the deep learning model in order to reach an optimal learning efficacy. Finally, our framework exploits the uncertainty of the deep learning model during prediction as well as the annotators' estimated expertise to minimize the number of required annotations and annotators for optimally training the deep learning model. We evaluate the effectiveness of our framework for intent classification in Alexa (Amazon's personal assistant), using both synthetic and real-world datasets. Experiments show that our framework can accurately learn annotator expertise, infer true labels, and effectively reduce the amount of annotations in model training as compared to state-of-the-art approaches. We further discuss the potential of our proposed framework in bridging machine learning and crowdsourcing towards improved human-in-the-loop systems

    Answering queries in hybrid Bayesian networks using importance sampling

    Get PDF
    In this paper we propose an algorithm for answering queries in hybrid Bayesian networks where the underlying probability distribution is of class MTE (mixture of truncated exponentials). The algorithm is based on importance sampling simulation. We show how, like existing importance sampling algorithms for discrete networks, it is able to provide answers to multiple queries simultaneously using a single sample. The behaviour of the new algorithm is experimentally tested and compared with previous methods existing in the literature

    Data Cube Approximation and Mining using Probabilistic Modeling

    Get PDF
    On-line Analytical Processing (OLAP) techniques commonly used in data warehouses allow the exploration of data cubes according to different analysis axes (dimensions) and under different abstraction levels in a dimension hierarchy. However, such techniques are not aimed at mining multidimensional data. Since data cubes are nothing but multi-way tables, we propose to analyze the potential of two probabilistic modeling techniques, namely non-negative multi-way array factorization and log-linear modeling, with the ultimate objective of compressing and mining aggregate and multidimensional values. With the first technique, we compute the set of components that best fit the initial data set and whose superposition coincides with the original data; with the second technique we identify a parsimonious model (i.e., one with a reduced set of parameters), highlight strong associations among dimensions and discover possible outliers in data cells. A real life example will be used to (i) discuss the potential benefits of the modeling output on cube exploration and mining, (ii) show how OLAP queries can be answered in an approximate way, and (iii) illustrate the strengths and limitations of these modeling approaches
    corecore