30,754 research outputs found

    Approximate methods for sequential decision making using expert advice

    Full text link

    Experiences in Bayesian Inference in Baltic Salmon Management

    Get PDF
    We review a success story regarding Bayesian inference in fisheries management in the Baltic Sea. The management of salmon fisheries is currently based on the results of a complex Bayesian population dynamic model, and managers and stakeholders use the probabilities in their discussions. We also discuss the technical and human challenges in using Bayesian modeling to give practical advice to the public and to government officials and suggest future areas in which it can be applied. In particular, large databases in fisheries science offer flexible ways to use hierarchical models to learn the population dynamics parameters for those by-catch species that do not have similar large stock-specific data sets like those that exist for many target species. This information is required if we are to understand the future ecosystem risks of fisheries.Comment: Published in at http://dx.doi.org/10.1214/13-STS431 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Online Learning with Low Rank Experts

    Full text link
    We consider the problem of prediction with expert advice when the losses of the experts have low-dimensional structure: they are restricted to an unknown dd-dimensional subspace. We devise algorithms with regret bounds that are independent of the number of experts and depend only on the rank dd. For the stochastic model we show a tight bound of Θ(dT)\Theta(\sqrt{dT}), and extend it to a setting of an approximate dd subspace. For the adversarial model we show an upper bound of O(dT)O(d\sqrt{T}) and a lower bound of Ω(dT)\Omega(\sqrt{dT})

    Active Learning with Expert Advice

    Get PDF
    Conventional learning with expert advice methods assumes a learner is always receiving the outcome (e.g., class labels) of every incoming training instance at the end of each trial. In real applications, acquiring the outcome from oracle can be costly or time consuming. In this paper, we address a new problem of active learning with expert advice, where the outcome of an instance is disclosed only when it is requested by the online learner. Our goal is to learn an accurate prediction model by asking the oracle the number of questions as small as possible. To address this challenge, we propose a framework of active forecasters for online active learning with expert advice, which attempts to extend two regular forecasters, i.e., Exponentially Weighted Average Forecaster and Greedy Forecaster, to tackle the task of active learning with expert advice. We prove that the proposed algorithms satisfy the Hannan consistency under some proper assumptions, and validate the efficacy of our technique by an extensive set of experiments.Comment: Appears in Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI2013

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    An Entropy Search Portfolio for Bayesian Optimization

    Full text link
    Bayesian optimization is a sample-efficient method for black-box global optimization. How- ever, the performance of a Bayesian optimization method very much depends on its exploration strategy, i.e. the choice of acquisition function, and it is not clear a priori which choice will result in superior performance. While portfolio methods provide an effective, principled way of combining a collection of acquisition functions, they are often based on measures of past performance which can be misleading. To address this issue, we introduce the Entropy Search Portfolio (ESP): a novel approach to portfolio construction which is motivated by information theoretic considerations. We show that ESP outperforms existing portfolio methods on several real and synthetic problems, including geostatistical datasets and simulated control tasks. We not only show that ESP is able to offer performance as good as the best, but unknown, acquisition function, but surprisingly it often gives better performance. Finally, over a wide range of conditions we find that ESP is robust to the inclusion of poor acquisition functions.Comment: 10 pages, 5 figure
    • …
    corecore