research

Online Learning with Low Rank Experts

Abstract

We consider the problem of prediction with expert advice when the losses of the experts have low-dimensional structure: they are restricted to an unknown dd-dimensional subspace. We devise algorithms with regret bounds that are independent of the number of experts and depend only on the rank dd. For the stochastic model we show a tight bound of Θ(dT)\Theta(\sqrt{dT}), and extend it to a setting of an approximate dd subspace. For the adversarial model we show an upper bound of O(dT)O(d\sqrt{T}) and a lower bound of Ω(dT)\Omega(\sqrt{dT})

    Similar works