1,126 research outputs found

    Automatic Differentiation of Rigid Body Dynamics for Optimal Control and Estimation

    Full text link
    Many algorithms for control, optimization and estimation in robotics depend on derivatives of the underlying system dynamics, e.g. to compute linearizations, sensitivities or gradient directions. However, we show that when dealing with Rigid Body Dynamics, these derivatives are difficult to derive analytically and to implement efficiently. To overcome this issue, we extend the modelling tool `RobCoGen' to be compatible with Automatic Differentiation. Additionally, we propose how to automatically obtain the derivatives and generate highly efficient source code. We highlight the flexibility and performance of the approach in two application examples. First, we show a Trajectory Optimization example for the quadrupedal robot HyQ, which employs auto-differentiation on the dynamics including a contact model. Second, we present a hardware experiment in which a 6 DoF robotic arm avoids a randomly moving obstacle in a go-to task by fast, dynamic replanning

    Control of Redundant Robotic Manipulators with State Constraints

    Get PDF

    Distributed formation control for manipulator end-effectors

    Get PDF
    We present three classes of distributed formation controllers for achieving and maintaining the 2D/3D formation shape of manipulator end-effectors to cope with different scenarios due to availability of modeling parameters. We firstly present a distributed formation controller for manipulators whose system parameters are perfectly known. The formation control objective is achieved by assigning virtual springs between end-effectors and by adding damping terms at joints, which provides a clear physical interpretation of the proposed solution. Subsequently, we extend it to the case where manipulator kinematic and system parameters are not exactly known. An extra integrator and an adaptive estimator are introduced for gravitational compensation and stabilization, respectively. Simulation results with planar manipulators and with seven degree-of-freedom humanoid manipulator arms are presented to illustrate the effectiveness of the proposed approach.Comment: arXiv admin note: text overlap with arXiv:2103.1459

    Adaptive Fuzzy Control of Puma Robot Manipulator in Task Space with Unknown Dynamic and Uncertain Kinematic

    Get PDF
    A In this paper, an adaptive direct fuzzy control system is presented to control the robot manipulator in task space. It is assumed that robot system has unknown dynamic and uncertain kinematic. The control system and adaption mechanism are firstly designed for joint space tracking. Then by using inverse Jacobian strategy, it is generalized for task space. After that, to overcome the problem of Jacobian matrix uncertainty, an improved adaptive control system is designed. All the design steps are illustrated by simulations
    • …
    corecore