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1. Introduction 

This chapter deals with direct visual servoing of robot manipulators under monocular fixed-
camera configuration. Considering the image-based approach, the complete nonlinear 
system dynamics is utilized into the control system design. Multiple coplanar object feature 
points attached to the end-effector are assumed to introduce a family of transpose Jacobian 
based control schemes. Conditions are provided in order to guarantee asymptotic stability 
and achievement of the control objective. This chapter extends previous results in two 
direction: first, instead of only planar robots, it treats robots evolving in the 3D Cartesian 
space, and second, a broad class of controllers arises depending on the free choice of proper 
artificial potential energy functions. Experiments on a nonlinear direct-drive spherical wrist 
are presented to illustrate the effectiveness of the proposed method.  
Robots can be made flexible and adaptable by incorporating sensory information from 
multiple sources in the feedback loop (Hutchinson et al., 1996), (Corke, 1996). In particular, 
the use of vision provides of non-contact measures that are shown to be very useful, if not 
necessary, when operating under uncertain environments. In this context, visual servoing 
can be classified in two configurations: Fixed-camera and camera-in-hand. This chapter 
addresses the fixed-camera configuration to visual servoing of robot manipulators. 
There exists in the literature a variety of visual control strategies that study the robot 
positioning problem. Some of these strategies deal with the control with a single camera of 
planar robots or robots constrained to move on a given plane (Espiau, 1992), (Kelly, 1996), 
(Maruyama & Fujita, 1998), (Shell et al., 2002), (Reyes & Chiang, 2003). Although a number 
of practical applications can be addressed under these conditions, there are also applications 
demanding motions in the 3D Cartesian space. The main limitation to  
Work partially supported by CONACYT grant 45826 
extend these control strategies to the non-planar case is the extraction of the 3D pose of the 
robot end-effector or target from a planar image. To overcome this problem several 
monocular and binocular strategies have been reported mainly for the camera-in-hand 
configuration, (Lamiroy et al., 2000), (Hashimoto & Noritsugu, 1998), (Fang & Lin, 2001), 
(Nakavo et al., 2002). When measuring or estimating 3D positioning from visual information 
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there are several performance criteria that must be considered. An important performance 
criterion that must be considered is the number and configuration of the image features. In 
particular, in (Hashimoto & Noritsugu, 1998), (Yuan, 1989) a minimum point condition to 
guarantee a nonsingular image Jacobian is given. 
Among the existing approaches to solve the 3D regulation problem, it has been recognized 
that image-based schemes posses some degree of robustness against camera miscalibrations. 
It is worth noticing, that most reported 3D control strategies satisfy one of the following 
characteristics: 1) the control law is of the so-called type “kinematic control”, in which the 
control input are the joint velocity instead the joint torques ), (Lamiroy et al., 2000, (Fang & 
S-K. Lin, 2001), (Nakavo et al., 2002);  2) the control law requires the computation of the 
inverse kinematics of the robot (Sim et al., 2002). These approaches have the disadvantage of 
neglecting the dynamics of the manipulator for control design purposes or may have the 
drawback of the lack of an inverse Jacobian matrix of the robot. 
In this chapter we focus on the fixed-camera, monocular configuration for visual servoing of 
robot manipulators. Specifically, we address the regulation problem using direct vision 
feedback into the control loop. Following the classification in (Hager, 1997), the proposed 
control strategy belongs to the class of controllers having the following features: a) direct 
visual servo where the visual feedback is converted to joint torques instead of joint or 
Cartesian velocities; b) endpoint closed-loop system where vision provides the end-effector 
and target positions, and c) image-based control where the definition of the servo errors is 
taken directly from the camera image. 
Specifically, a family of transpose Jacobian control laws is introduced which is able to 
provide asymptotic stability of the controlled robot and the accomplishment of the 
regulation objective. In this way, a contribution of this note is to extend the results in (Kelly, 
1996) to the non-planar case and to establish the conditions for such an extension. The 
performances of two controllers arose from the proposed strategy are illustrated via 
experimental work on a 3 DOF direct-drive robot wrist. 
The chapter is organized in the following way. Section II provides a brief description of the 
robot manipulator dynamics and kinematics. Section III describes the camera-vision system 
and presents the control problem formulation. Section IV introduces a family of control 
systems based in the transpose Jacobian control philosophy. Section V is devoted to 
illustrate the performance of the proposed controllers via experimental work. Finally, 
Section VI presents brief concluding remarks. 
Notations. Throughout this chapter, ⋅  denotes the Euclidean norm, Tx  denotes the 

transpose of vector x , and )(xsx∇  denotes the gradient of the scalar differentiable function 

)(xs . 

2. Robot dynamics and kinematics 

The dynamics of a n -DOF robot manipulator moving in the 3D Cartesian space is given by 

(Sciavicco & Siciliano, 1996) 

 τ=)(),()( qgqqqCqqM ++ $$$$  (1) 

 where nq ℜ∈  is the vector of joint positions, nℜ∈τ  is the vector of applied joint torques, 
nnqM ×ℜ∈)(  is the symmetric and positive definite inertia matrix, nnqqC ×ℜ∈),( $  is the matrix 
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associated to the Coriolis/centrifugal torques, and nqg ℜ∈)( is the vector of gravitational 

torques originated by the gravitational potential function )(qgU
 ( ..ei  )(=)( qqg gqU∇ ). The 

configuration space where the admissible joint coordinates lie is denoted by nℜ⊂C . 

 

Figure 1. General differential imaging model   

On the other hand, consider a fixed robot frame 
RΣ  and a moving frame 

OΣ  attached at the 

robot end-effector grasping an object which is assumed to be a rigid body (see Figure 1). The 
position of the end-effector (object) frame 

OΣ  relative to 
RΣ  is denoted by )(qOO

R
 and the 

corresponding rotation matrix by )(qROR . A local description for the pose (position and 

orientation) of the end-effector frame is considered by using a minimal representation of the 
orientation. In this way, it is possible to describe the  end-effector frame 

OΣ  pose by means 

of a vector ms ℜ∈  with 6≤m :  

)(= qss  

where )(qs  represents the direct kinematics. We regard to the robot, this chapter assumes 

that it is nonredundant in the sense nm = . 

The differential kinematics describes the Cartesian end-effector velocity as a function of the 
joint velocity q$ . Let O

Rϑ  and O

Rω  be the linear and angular velocity, respectively, of the frame 

OΣ  with respect to 
RΣ . They are related to the joint velocity via the robot differential 

kinematics  

qqJGO

R

O

R $)(=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

ω

ϑ  

where n

G RqJ ×∈ 6I)(  is the robot geometric Jacobian. 
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The nonsingular robot configurations are the subset of the configuration space C  where the 

robot Jacobian is full rank, that is  

{ }.=)}({r:= nqJankq GNS CC ∈  

It is convenient to define the set of admissible nonsingular end-effector poses as  

{ }.)(=::= qssqs NS

n
CP ∈∃ℜ∈  

At regular configurations 
NSq C∈  of nonredundant robots, there exists no  self-motion 

around these configurations. Thus, no regular configurations can lie on a continuous path in 
the configuration space that keeps the kinematics function at the same value (Seng et al., 
1997). This yields the following 
Lemma 1. For nonredundant robots and an admissible end-effector pose P∈p , the 

corresponding solutions 
NSq C∈  of the inverse kinematics are isolated. 

3. Fixed-camera imaging model 

Consider a video camera standing in a fixed place with frame 
CΣ  which captures images of a 

subspace of the robot workspace. 
Moreover, Frame 

CΣ  is located relative to 
RΣ  as described by a position vector, C

RO , and a 

rotation matrix, C

RR . In order to get a confident measure of the position and orientation of 

the robot end-effector, the grasping object is provided with p  feature points. Such points 

are referred as object feature points, denoted −with respect to 
OΣ − by 

O

p

OO xxx ,,,21 A . The 

description of the object feature points 
O

i x  for pi ,1,= A  relative to frames 
RΣ  and 

CΣ  are 

denoted by 
R

i x  and 
C

i x  respectively. For each object feature point 
O

i x  there is a 

corresponding  image feature point Tiii vuy ],[= . 

A. Imaging model 
The imaging model gives the image feature vector yi  of the corresponding object features 

O

i x  

(referred to 
OΣ ). This model involves transformations and a perspective projection. The 

whole imaging model is described by (Hutchison, 1996)  

  = ( ) ( )i O i O

R R O Rx R q x O q+  (2) 

 =i CT i C

C R R Rx R x O⎡ ⎤−⎣ ⎦  (3) 

 
01 1

0
23 2

=

i

C I
i

i i
IC C

x O u
y

O vx x

λ α
α

λ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥− + ⎢ ⎥⎢ ⎥− ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦
 (4) 

where α  is a scale factor, λ  is the lens focal length, T

II OO ][
21

 is the image plane offset and 

Tvu ][ 00
 is the image center. 

It is worth noticing that the model requires the robot kinematics )(qs  in terms of )(qROR  and 

)(qOO

R
. Hence, the image feature point yi  is a function of the end-effector pose s  and finally 
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of the joint position vector q . With abuse of notation, when required )(syi  or )(qyi  may be 

written. 
According to the exterior orientation calibration problem addressed in (Yuan, 1989), in 
general the computation of the pose of a rigid object in the 3D Cartesian space relative to a 
camera based in the 2D image of known coplanar feature points located on the object is 
solved by using 4 noncollinear feature points. A consequence of this result is stated in the 
following 
Lemma 2. Consider the  extended imaging model corresponding to p  points 

.

)(

)(

=

11

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

sy

sy

y

y

pp

BB
 

At least 4=p  coplanar but noncollinear points are required generically to have isolated 

end-effector pose s  solutions of the inverse extended imaging model. 

Due to this result, the following assumption is in order  A1 Attached to the object are 4=p  

coplanar but noncollinear feature points.  
B. Differential imaging model 
The differential imaging model describes how the image feature yi  changes as a function of the 

joint velocity q$ . This is obtained by differentiating the imaging model which after tedious 

by straightforward manipulations can be written as  

 qxqxyAy O

i

C

ii

i

i $$ ),,,(=
3

 (5) 

where matrix n

iA
×ℜ∈⋅ 2)(  is given in (6) at the top of next page. 62)( ×ℜ∈⋅imageJ  in (7) denotes 

the image Jacobian (Hutchinson et al., 1996) where the focal length λ  was neglected (i.e. 

33
= C

i

C

i xx λ− ) and the misalignment vector 
IO  was absorbed by the computer image center 

vector Tvu ][ 00
. The matrix 33)( ×ℜ∈⋅S  is a skew-symmetric matrix defined as  

.

0

0

0

=)(

12

13

23

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

xx

xx

xx

xS
 

C. Control objective 
For the sake of notation, define the extended image feature vector 8ℜ∈y  and the  desired 

image feature vector 8ℜ∈dy  as  

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

d

d

d

d

y

y

y

y

ynd

y

y

y

y

y

4

3

2

1

4

3

2

1

=a=

 

where 
d

i y  for 1,2,3,4=i  are the desired image feature points. For convenience we define the 

set of admissible desired image features as 
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 { }.)(=::= 8 syysy ddd PY ∈∃ℜ∈  

In words, the admissible desired image features are those obtained from the projection of 
the object feature points for any admissible nonsingular end-effector pose. 
One way to get such a 

dy  is the “teach-by-showing” strategy (Weis et al., 1987). This 

approach utilizes manual positioning of the end-effector at a desired pose  −neither joint 
position nor end-effector pose measurement is needed− and the vision system extracts the 
corresponding image feature points. 
Let yyy d −=~  be the image feature error. The image-based control objective considered in 

this chapter is to achieve asymptotic matching between the actual and desired image feature 
points, that is 

 [ ] [ ][ ] )())((0),(0),(=),,,( 3x33
3

3x33
33

qJxqRSRIxyJRIxyJxqxyA GO

iO

R

TC

RC

ii

image

TC

RC

ii

imageO

i

C

ii

i −  (6) 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−

−−
−

−
−−

−
+

−−

−

−

−

−

][

][

]][[

][

][

]][[
0

0

=),(

0

0

00

2

0

2

0

00

3

0

3

0

3

3

3

uu

vv

vvuu

uu

vv

vvuu

x

vv

x

uu

x

x

xyJ
i

i

ii

i

i

ii

C

i

i

C

i

i

C

i

C

i

C

ii

image

αλ

αλ
αλ

αλ
αλ

αλ

αλ

αλ

 (7) 

 0.=)(~lim ty
t ∞→

 (8) 

It is worth noticing that in virtue of assumption A1 about the selection of 4 coplanar but 
noncollinear object feature points and Lemma 2, the end-effector poses s  that yield 0=~y  

are isolated and they are nonsingular. On the other hand, this conclusion and Lemma 1 
allow to affirm that the corresponding joint configurations q  achieving such poses is also 

isolated and nonsingular. This is summarized in the following 
Lemma 3 The joint configuration solutions 

NSq C∈  of  

 0=))((~ qsy  (9) 

are isolated. 
For convenience, define the nonempty set Q   as the collection   of such points −isolated 

solutions−, that is,  

{ }.0=))((~:= qsyq NSCQ ∈  

Therefore, the following equivalence arises straightforwardly  

 .0=))((~ Q∈⇔ qqsy  (10) 

4. Transpose Jacobian Control 

In order to solve the control problem stated above, we have focus our selves on the so-called 
Transpose Jacobian (TJ) control schemes originally introduced by (Takegaki & Arimoto, 
1981). Such controllers have the advantage of non-requiring the robot’s inverse kinematics 
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nor the inverse Jacobian matrix. Motivated by (Kelly, 1996), the objective of this section is to 
propose a family of TJ controllers which be able to attain the control objective (8). 
For the sake of notation, define the  extended Jacobian )(qJ  as  

n

qA

qA

qA

qA

qJ ×ℜ∈

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

8

4

3

2

1

)(

)(

)(

)(

=)(
 

where with abuse of notation ),,,(=)(
3

O

i

C

ii

ii xqxyAqA . 

On the other hand, notice that the  extended differential imaging model can be written as  

 .)(= qqJy $$  (11) 

Inspired from (Kelly, 1996), (Takegaki & Arimoto, 1981), (Miyazaki & Arimoto, 1985), (Kelly, 
1999), we propose the following class of transpose Jacobian-based control laws  

 ),()~()(= ~ qgqKyqJ vy

T +−∇ $Uτ  (12) 

 where )~(yU  is a continuously differentiable positive definite function called  artificial 

potential energy, and nn

vK
×ℜ∈  is a symmetric positive definite matrix. 

We digress momentarily to establish the following result whose proof is in the appendix. 
Lemma 4. Consider the equation  

0.=))(~()( ~ qyqJ y

T
U∇  

Then, each Q∈∗q  is an isolated solution, that is there exists 0>δ  such that in δ<qq −∗   

.=0=))(~()( ~
∗⇔∇ qqqyqJ y

T
U  

The main result of this  chapter is stated in the following 
Proposition 1. Consider the robot camera-system (1)-(5) and the family of transpose 
Jacobian control schemes (12). Then, the closed-loop control system satisfies the control 
objective (8) locally. 
Proof: The closed-loop system analysis is carried out by invoking the Krasovskii−LaSalle’s 
theorem. The theorem statement is presented in (Vidyasagar, 1993) ; this allows to study 
asymptotic stability of autonomous systems. 
The closed-loop system dynamics is obtained by substituting the control law (12) into the 
robot dynamics (1). This leads to the autonomous system  

 qKyqJqqqCqqM vy

T $$$$$ −∇+ )~()(=),()( ~U  (13) 

which can be written as  

[ ]⎥⎦
⎤

⎢
⎣

⎡
−−∇⎥

⎦

⎤
⎢
⎣

⎡
− qqqCqKqyqJqM

q

q

q

dt

d

vy

T $$$
$

$ ),())(~()()(
=

~
1

U

. 
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Since the artificial potential energy )~(yU  was assumed to be positive definite, then it has an 

isolated minimum point at 0=~y , so its gradient )~(~ yyU∇  has an isolated critical point at 

0=~y . This implies that it vanishes at the isolated point 0=~y . 

Therefore, in virtue of  (10) we have that [ ]TTTTTT qqq 0=][ $  with Q∈q  are equilibria of the 

closed-loop system. Furthermore, because the elements of Q  are isolated, then the 

corresponding equilibria are isolated too. However, other equilibria may be possible for 

Q∈/q  whether 0=))(~()( ~ qyqJ y

T
U∇ . 

Let ∗q be any point in Q  and define a region D  around the isolated equilibrium 

TTTTTT qqq ]0[=][ ∗$  as 

 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧ −

ℜ×∈⎥
⎦

⎤
⎢
⎣

⎡ ∗

ε<:=
q

qq

q

q
D n

$$
C

 

where 0>ε  is sufficiently small constant such that a unique equilibrium lie in D , and in the 

region D  the artifical potential energy ))(~( qyU  be positive definite with respect to qq −∗ . 

As a consequence, in the set { }ε<: qqq −∗ , the unique solution of 0=))(~()( ~ qyqJ y

T
U∇  is 

∗qq = . 

To carry out the stability analysis of the equilibria TTTTTT qqq ]0[=][ ∗$ , consider the 

following Lyapunov function candidate  

))(~()(
2

1
=),( qyqqMqqqqV T

U+−∗ $$$  

which is a positive definite function in D . 
The time-derivative of ),( qqV $  along the trajectories of the system (13), is 

qKqqqV v

T $$$$ −=),(  

where qJy $$ −=~  and the property 0=),()(
2

1
qqqCqMqT $$$$ ⎥⎦
⎤

⎢⎣
⎡

−  have been used. 

Since by design matrix 
vK  is negative definite, hence ),( qqV $$  is negative semidefinite 

function in D . In agreement with the Lyapunov's direct method, this is sufficient to 

guarantee that the equilibria TTTTTT qqq ]0[=][ ∗$  with Q∈∗q  are stable. 

Furthermore, the autonomous nature of the closed-loop system (13) allows the use of the 
Krasovskii−LaSalle’s theorem (Vidyasagar, 1993)  to study asymptotic stability. 
Accordingly, define the set  

{ }.0=;<:=

,0=),(:=

qqqq

qqVD
q

q

$

$$
$

ε−∈

⎭
⎬
⎫

⎩
⎨
⎧

∈⎥
⎦

⎤
⎢
⎣

⎡
Ω

∗
C

 

The next step is to find the largest invariant set in Ω . Since in Ω  we have 0=q$ , therefore 

from the closed-loop system (13) it remains to determine the constant solutions q  satisfying 
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ε<qq −∗  and 0=))(~()( ~ qyqJ y

T
U∇ . As already shown in Lemma 4, if the region D  is enough 

small, then the unique solution is ∗qq = . 

Since ε  was selected such that no equilibria exists in D  other than 

Following arguments in (Kelly, 1999), we utilize the fact that )~(yU  is a nonnegative function 

with respect to y~ . As a consequence of (9) we have the important conclusion that ))(~( qyU  

has minimum points if and only if Q∈q . 

This proves that the equilibria TTTTTT qqq ]0[=][ ∗$  with Q∈∗q  are locally asymptotically 

stable, so they are attractive. As a consequence, ∗
∞→ qtqt =)(lim , thus invoking (10) the control 

objective (8) is achieved. This concludes the proof. 
Remark 1. So far, one objective of this chapter has been to make an extension of the existing 
results on transpose Jacobian controllers to the case of a 3D position and orientation. It is 
well known that a drawback of such control strategies is that they induce a steady-state 
error under uncertain gravitational torques. We propose the following control law  

 )(ĝ )(~~=
0

qqKdyKyKJ v

t

IP

T +−⎥⎦
⎤

⎢⎣
⎡ + ∫ $σστ  (14) 

where 
IK  is a diagonal positive definite matrix of suitable dimensions and )(ˆ qg  is the 

available estimate of the gravitational torques. It can be shown that the use of low integral 
gains in control law (14) guarantees the asymptotic stability of closed-loop system and the 
accomplishment of the control objective (8) in spite of uncertain gravitational torques. 
Furthermore, notice that if in the control law (14), 0=)(ˆ qg  is chosen, the controller becomes 

a class of PID controller with a PI visual action and joint-coordinate damping. It can be 
shown also that the region of attraction of the controller (12) increases as the integral gain 

II KK ε=  decreases, being the main limitation to enlarge this region, the singularities of the 

Jacobian matrix .J  

Remark 2. In practice, the Jacobian matrix J  can be uncertain due to uncertain manipulator 

kinematics, camera position and orientation, and camera intrinsic parameters. In such a 
case, only an estimate Ĵ  is available. It can be shown that by following the analysis 

methodology due to (Deng et al., 2002), (Cheah et al., 2003), (Cheah & Zhao, 2004) one can 
conclude that the feedback control law (12) (alternately (14)) can tolerate small deviation of 
the Jacobian matrix in the sense that  

ρ≤− JJ ˆ  

with ρ  sufficiently small and ⋅  the induced matrix norm, in a neighborhood of the 

operating point. In the following section, we will show experimental runs to illustrate the 
performance of the controller for this case. 
Remark 3. In the case of redundant robots 6>n , it may not exist a unique equilibrium point 

in joint space even if the control objective (8) is attained. In such case a space of dimension 

6−n  may be arbitrarily assigned. In that case, asymptotic stability to a invariant set (instead 

to a point) can only be concluded. This means that phenomena such as self-motion may be 
present. 

www.intechopen.com



Robot Manipulators 

 

252 

 

Figure 2. Direct--drive spherical wrist   

5. Experiments 

This section is devoted to show the experimental evaluation of the proposed control scheme. 
The experimental setup is composed by a vision system and a direct-drive nonlinear 
mechanism. 
Image acquisition and processing was performed using a Pentium based computer working 
at 450 MHz under Linux. The image acquisition was performed using a Panasonic GP-
MF502 camera model coupled to a TV acquisition board. Image processing consisted of 
image thresholding and detection of an object position through the determination of its 
centroid. As shown in Figure 3, the four object feature points are on a plane attached at the 
end-effector. Their position with respect to the end-effector frame is  
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Figure 3 also shows four marks `+’ corresponding to the desired image features obtained 
following the “teach-by-showing” strategy; they are given by 

].p[171][394=

],p[208][403=
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The capture of the image and the extracted information are updated at the standard rate of 
30 frames per second. The centroid data is transmitted to the mechanism control computer 
via the standard serial port. 
The camera intrinsic parameters are the following: 0.008=λ  [m], 72000=α  [pixels/m], 

320=0u  [pixels], 240=0v  [pixels] y 0=IO . The camera pose during the experimental tests 

was  

],m[1.32]0[0= TC

RO  

for its position and the following rotation matrix for the orientation  
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Figure 3. Initial configuration ` • ’ and desired image feature points ` + ’ 

[ ].110001000= −−C

RR  

The robot manipulators is a direct-drive 3 degrees of freedom spherical wrist shown in 
Figure 2. This direct-drive wrist was built at CICESE Research Center and it is equipped 
with joint position sensors, motor drivers, a host computer and software environment which 
generates a user-friendly interface. Further information regarding the robot wrist can be 
found in Error! Reference source not found.. The geometric Jacobian is given by  
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which has singular configurations at πnq =2
. 

A. PD transpose Jacobian control 
Consider the following global positive definite artificial potential energy function  

yKyy p

T ~~
2

1
=)~(U  

where 88 ×ℜ∈pK  is a symmetric positive definite matrix. Since its gradient is yKy py
~=)~(~U∇ , 

so the control law (12) becomes the PD transpose Jacobian control  

 )(~)(= qgqKqKqJ vp

T +− $τ  (15) 

 where nn

vK
×ℜ∈  is a symmetric positive definite matrix. 

The controller parameters were chosen by a tedious trail and error procedure in such a way 
to obtain the smaller steady state imaging error by keeping two practical constraints: 
maintaining the control actions within the actuator torque capabilities and avoiding large 
velocities to allow the vision system compute the centroids at the specified rate. The 
experiments were conducted with 410,3,5,5}{5,5,5,1,1d= −×iagK p

 and .17}{0.9,0.7,0d= iagKv . 
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Figure 4. Trace of the image feature points: PD transpose Jacobian control   
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Figure 5.  Norm of the image feature error: PD transpose Jacobian control  

B. Tanh-D transpose Jacobian control 
To deal with friction at the robot joint, let us consider the following artificial potential 
energy function (Kelly, 1999),  (Kelly et al., 1996) 

)}~(c{l=)~(
8

1=

ii

i

pi

i

yoshn
k

y λ
λ

∑U
 

where 
pik

 and 
iλ  are positive constants. It can be shown that this is a globally positive 

definite function whose gradient is ( )yanhKy py
~t=)~(~ Λ∇ U  where 

1 8= { , , },dp p pK iag k kA  

8 8

1 8= { , , }diag λ λ ×Λ ∈ℜA  are diagonal positive definite matrices. For a given vector 8ℜ∈x , 

function )(t xanh  is defined as  
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⎥
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⎡

)(t

)(t

=)(t
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1

xanh

xanh
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where )(t ⋅anh  is the hyperbolic tangent function. 

With the above choice of the artificial potential energy, the control law (12) produces the 
Tanh-D transpose Jacobian control  

 ( ) )(~t= qgqKyanhKJ vp

T +−Λ $τ  (16) 

 where nn

vK
×ℜ∈  is a symmetric positive definite matrix. 

The first term on the right hand side of control law (16) offers more flexibility than the 
simpler yKJ p

T ~  in (15) to deal with practical aspects such as friction at the robot joints and 

torque limit in the robot actuators (Kelly, 1999). 
The experiments were carried out with the following controller parameters IK p 0.015= , 

.3}{1.0,0.7,0d= iagKv  and I0.2=Λ . 
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Figure 6. Norm of image feature error: Tanh-D transpose Jacobian control   

Figure 6 depicts the norm of the image feature error y~ . Notice that the norm of the error has 

a smooth evolution with no overshoot reaching a steady state value of 4.0 pixels in about 1.5 
seconds. Although it is expected to have asymptotically a zero error, in practice a small 
remaining error is present. This behavior is mainly due to uncertainties in the camera pose 
measurement. 
C. Tanh-D approximate transpose Jacobian control 
The experiment conducted with control laws (15) and (16) used complete knowledge of the 
experimental setup, then all the information was available to compute the extended Jacobian 

J . More specifically, the evolution of the deep associated at each object feature point was 
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computed on-line from (3) thanks to the use of the robot kinematics and measurement of 
joint positions q  for 

R

i x . 

In the more realistic case where uncertainties are present in the camera calibration, then it is 
no anymore possible to invoke (3) for computing the deep 

3C

i x  of the object feature points. 

This implies that the extended Jacobian J  cannot be computed exactly. Notwithstanding, as 

pointed out previously, it is still possible to preserve asymptotic stability in case of an 
approximate Jacobian Ĵ  be utilized in lieu of the exact one. 

The experiment was carried out by utilizing a constant deep 0.828=3C

i x  [m] for the four 

object feature points 1,2,3,4=i . This yields an approximated Jacobian Ĵ  to be plugged into 

the control law (16)  

( ) ).(~tˆ= qgqKyanhKJ vp

T +−Λ $τ  
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 Figure 7. Norm of image feature error: Approximate Jacobian   

The time evolution of the norm of the image error vector is depicted in Figure 7. It can be 
observed that although the response has a small oscillatory transient, it reaches an steady 
state error of 2.5 pixels around 2 seconds. This error is smaller than the obtained during 
experiments utilizing the exact Jacobian. 

6. Conclusions 

In this chapter we have provided some insights on the stability of robotic systems with 
visual information for the case of a monocular fixed-eye configuration on n  DOF robot 

manipulators. General equations describing the fixed-camera imaging model are given and 
a family of transpose Jacobian control schemes is introduced to solve the regulation 
problem. Conditions are provided to show that such controllers guarantee asymptotic 
stability of the closed-loop system. 
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In order to illustrate the effectiveness of the proposed control schemes, experiments were 
conducted on a nonlinear direct-drive mechanical wrist. Both, the case of exact Jacobian as well 
as approximate Jacobian were evaluated. Basically they present similar performance, although 
the steady state image error was smaller when the approximate Jacobian was tested. 

7. Appendix 

Proof of Lemma 4.  According to (10) we have that Q∈q  are isolated solutions of 0=)(~ qy . 

Denote by ∗q  any element of Q . Since by design the artificial potential energy )~(yU  is 

definite positive, then ))(~( qyU  is definite positive with respect to qq −∗ . This implies that 

))(~( qyU  has an isolated minimum point at ∗qq = . Hence, its gradient with respect to q  has 

an isolated critical point at ∗qq = , i.e. there is 0>δ  such that in δ<qq −∗   

.=0=))(~( ∗⇔∇ qqqyqU
 

Finally, the desired result follows from  

)).(~()(=))(~( ~ qyqJqy y

T

q UU ∇−∇  
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