98 research outputs found

    Approximability of the Subset Sum Reconfiguration Problem

    Get PDF
    The subset sum problem is a well-known NP-complete problem in which we wish to find a packing (subset) of items (integers) into a knapsack with capacity so that the sum of the integers in the packing is at most the capacity of the knapsack and at least a given integer threshold. In this paper, we study the problem of reconfiguring one packing into another packing by moving only one item at a time, while at all times maintaining the feasibility of packings. First we show that this decision problem is strongly NP-hard, and is PSPACE-complete if we are given a conflict graph for the set of items in which each vertex corresponds to an item and each edge represents a pair of items that are not allowed to be packed together into the knapsack. We then study an optimization version of the problem: we wish to maximize the minimum sum among all packings in the reconfiguration. We show that this maximization problem admits a polynomial-time approximation scheme (PTAS), while the problem is APX-hard if we are given a conflict graph

    Reconfiguration of Dominating Sets

    Full text link
    We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph GG is a set SS of vertices such that each vertex is either in SS or has a neighbour in SS. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions ss and tt such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of kk, we consider properties of Dk(G)D_k(G), the graph consisting of a vertex for each dominating set of size at most kk and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that DΓ(G)+1(G)D_{\Gamma(G)+1}(G) is not necessarily connected, for Γ(G)\Gamma(G) the maximum cardinality of a minimal dominating set in GG. The result holds even when graphs are constrained to be planar, of bounded tree-width, or bb-partite for b≥3b \ge 3. Moreover, we construct an infinite family of graphs such that Dγ(G)+1(G)D_{\gamma(G)+1}(G) has exponential diameter, for γ(G)\gamma(G) the minimum size of a dominating set. On the positive side, we show that Dn−m(G)D_{n-m}(G) is connected and of linear diameter for any graph GG on nn vertices having at least m+1m+1 independent edges.Comment: 12 pages, 4 figure

    A reconfigurations analogue of Brooks’ theorem.

    Get PDF
    Let G be a simple undirected graph on n vertices with maximum degree Δ. Brooks’ Theorem states that G has a Δ-colouring unless G is a complete graph, or a cycle with an odd number of vertices. To recolour G is to obtain a new proper colouring by changing the colour of one vertex. We show that from a k-colouring, k > Δ, a Δ-colouring of G can be obtained by a sequence of O(n 2) recolourings using only the original k colours unless G is a complete graph or a cycle with an odd number of vertices, or k = Δ + 1, G is Δ-regular and, for each vertex v in G, no two neighbours of v are coloured alike. We use this result to study the reconfiguration graph R k (G) of the k-colourings of G. The vertex set of R k (G) is the set of all possible k-colourings of G and two colourings are adjacent if they differ on exactly one vertex. It is known that if k ≤ Δ(G), then R k (G) might not be connected and it is possible that its connected components have superpolynomial diameter, if k ≥ Δ(G) + 2, then R k (G) is connected and has diameter O(n 2). We complete this structural classification by settling the missing case: if k = Δ(G) + 1, then R k (G) consists of isolated vertices and at most one further component which has diameter O(n 2). We also describe completely the computational complexity classification of the problem of deciding whether two k-colourings of a graph G of maximum degree Δ belong to the same component of R k (G) by settling the case k = Δ(G) + 1. The problem is O(n 2) time solvable for k = 3, PSPACE-complete for 4 ≤ k ≤ Δ(G), O(n) time solvable for k = Δ(G) + 1, O(1) time solvable for k ≥ Δ(G) + 2 (the answer is always yes)

    Gap Preserving Reductions Between Reconfiguration Problems

    Get PDF
    Combinatorial reconfiguration is a growing research field studying problems on the transformability between a pair of solutions for a search problem. For example, in SAT Reconfiguration, for a Boolean formula ? and two satisfying truth assignments ?_? and ?_? for ?, we are asked to determine whether there is a sequence of satisfying truth assignments for ? starting from ?_? and ending with ?_?, each resulting from the previous one by flipping a single variable assignment. We consider the approximability of optimization variants of reconfiguration problems; e.g., Maxmin SAT Reconfiguration requires to maximize the minimum fraction of satisfied clauses of ? during transformation from ?_? to ?_?. Solving such optimization variants approximately, we may be able to obtain a reasonable reconfiguration sequence comprising almost-satisfying truth assignments. In this study, we prove a series of gap-preserving reductions to give evidence that a host of reconfiguration problems are PSPACE-hard to approximate, under some plausible assumption. Our starting point is a new working hypothesis called the Reconfiguration Inapproximability Hypothesis (RIH), which asserts that a gap version of Maxmin CSP Reconfiguration is PSPACE-hard. This hypothesis may be thought of as a reconfiguration analogue of the PCP theorem. Our main result is PSPACE-hardness of approximating Maxmin 3-SAT Reconfiguration of bounded occurrence under RIH. The crux of its proof is a gap-preserving reduction from Maxmin Binary CSP Reconfiguration to itself of bounded degree. Because a simple application of the degree reduction technique using expander graphs due to Papadimitriou and Yannakakis (J. Comput. Syst. Sci., 1991) does not preserve the perfect completeness, we modify the alphabet as if each vertex could take a pair of values simultaneously. To accomplish the soundness requirement, we further apply an explicit family of near-Ramanujan graphs and the expander mixing lemma. As an application of the main result, we demonstrate that under RIH, optimization variants of popular reconfiguration problems are PSPACE-hard to approximate, including Nondeterministic Constraint Logic due to Hearn and Demaine (Theor. Comput. Sci., 2005), Independent Set Reconfiguration, Clique Reconfiguration, and Vertex Cover Reconfiguration

    Gap Amplification for Reconfiguration Problems

    Full text link
    In this paper, we demonstrate gap amplification for reconfiguration problems. In particular, we prove an explicit factor of PSPACE-hardness of approximation for three popular reconfiguration problems only assuming the Reconfiguration Inapproximability Hypothesis (RIH) due to Ohsaka (STACS 2023). Our main result is that under RIH, Maxmin Binary CSP Reconfiguration is PSPACE-hard to approximate within a factor of 0.99420.9942. Moreover, the same result holds even if the constraint graph is restricted to (d,λ)(d,\lambda)-expander for arbitrarily small λd\frac{\lambda}{d}. The crux of its proof is an alteration of the gap amplification technique due to Dinur (J. ACM, 2007), which amplifies the 11 vs. 1−ϵ1-\epsilon gap for arbitrarily small ϵ>0\epsilon > 0 up to the 11 vs. 1−0.00581-0.0058 gap. As an application of the main result, we demonstrate that Minmax Set Cover Reconfiguration and Minmax Dominating Set Reconfiguratio} are PSPACE-hard to approximate within a factor of 1.00291.0029 under RIH. Our proof is based on a gap-preserving reduction from Label Cover to Set Cover due to Lund and Yannakakis (J. ACM, 1994). However, unlike Lund--Yannakakis' reduction, the expander mixing lemma is essential to use. We highlight that all results hold unconditionally as long as "PSPACE-hard" is replaced by "NP-hard," and are the first explicit inapproximability results for reconfiguration problems without resorting to the parallel repetition theorem. We finally complement the main result by showing that it is NP-hard to approximate Maxmin Binary CSP Reconfiguration within a factor better than 34\frac{3}{4}.Comment: 41 pages, to appear in Proc. 35th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), 202

    Using contracted solution graphs for solving reconfiguration problems.

    Get PDF
    We introduce a dynamic programming method for solving reconfiguration problems, based on contracted solution graphs, which are obtained from solution graphs by performing an appropriate series of edge contractions that decrease the graph size without losing any critical information needed to solve the reconfiguration problem under consideration. As an example, we consider a well-studied problem: given two k-colorings alpha and beta of a graph G, can alpha be modified into beta by recoloring one vertex of G at a time, while maintaining a k-coloring throughout? By applying our method in combination with a thorough exploitation of the graph structure we obtain a polynomial-time algorithm for (k-2)-connected chordal graphs
    • …
    corecore