333 research outputs found

    Efficient Fraud Detection in Ethereum Blockchain through Machine Learning and Deep Learning Approaches

    Get PDF
    Background: This paper tackles the critical challenge of detecting fraudulent transactions within the Ethereum blockchain using machine learning techniques. With the burgeoning importance of blockchain, ensuring its security against fraudulent activities is crucial to prevent significant monetary losses. We utilized a public dataset comprising 9,841 Ethereum transactions, characterized by attributes such as gas price, transaction fee, and timestamp.Methods: Our approach is bifurcated into two core phases: data preprocessing and predictive modeling. In the data preprocessing phase, we meticulously process the dataset and extract pivotal features from transactions, setting the stage for efficient predictive modeling.Findings: For predictive modeling, we employed several machine learning algorithms to discern between fraudulent and legitimate transactions. Our evaluation encompassed algorithms like decision trees, logistic regression, gradient boosting, XGBoost, and an innovative hybrid model that melds random forests with deep neural networks (DNN).Novelty: Our findings underscore that the proposed model boasts a precision rate of 97.16%, marking a substantial leap in fraudulent transaction detection on the Ethereum blockchain in comparison to prevailing methodologies. This paper augments the current efforts aimed at bolstering the security of blockchain transactions using sophisticated analytical strategies.

    Mechanisms for Outsourcing Computation via a Decentralized Market

    Full text link
    As the number of personal computing and IoT devices grows rapidly, so does the amount of computational power that is available at the edge. Since many of these devices are often idle, there is a vast amount of computational power that is currently untapped, and which could be used for outsourcing computation. Existing solutions for harnessing this power, such as volunteer computing (e.g., BOINC), are centralized platforms in which a single organization or company can control participation and pricing. By contrast, an open market of computational resources, where resource owners and resource users trade directly with each other, could lead to greater participation and more competitive pricing. To provide an open market, we introduce MODiCuM, a decentralized system for outsourcing computation. MODiCuM deters participants from misbehaving-which is a key problem in decentralized systems-by resolving disputes via dedicated mediators and by imposing enforceable fines. However, unlike other decentralized outsourcing solutions, MODiCuM minimizes computational overhead since it does not require global trust in mediation results. We provide analytical results proving that MODiCuM can deter misbehavior, and we evaluate the overhead of MODiCuM using experimental results based on an implementation of our platform

    Concept of Blockchain technology

    Get PDF
    Blockchain, Bitcoin's core technology, and spinal cord have received enthusiastic attention since the last couple of decades. The Blockchain serves as a paradigm for distributed and unchangeable computations for bitcoins and cryptocurrencies. The key features behind this technology are to create a reliable, secure, transparent, decentralized, and reliable autonomous ecosystem. It is useful for a variety of applications, especially for legacy devices, resources, and infrastructure. In this article, we presented a technical overview, its application, and the challenges associated with blockchain technology and cryptocurrencies. This study aims to provide a ground-breaking overview and future research direction and promising importance of Blockchain

    From Reality Keys to Oraclize. A Deep Dive into the History of Bitcoin Oracles

    Get PDF
    Before the advent of alternative blockchains such as Ethereum, the future of decentralization was all in the hands of Bitcoin. Together with Nakamoto itself, early developers were trying to leverage Bitcoin potential to decentralize traditionally centralized applications. However, being Bitcoin a decentralized machine, available non-trustless oracles were considered unsuitable. Therefore, strategies had to be elaborated to solve the so-called oracle problem in the newborn scenario. By interviewing early developers and crawling early forums and repositories, this paper aims to retrace and reconstruct the chain of events and contributions that gave birth to oracles on Bitcoin. The evolution of early trust models and approaches to solving the oracle problem is also outlined. Analyzing technical and social barriers to building oracles on Bitcoin, the transition to Ethereum will also be discussed.Comment: Literature background and methodology are deliberately omitted at this stage (preprint). To improve readability for a broader audience, the content is presented more like a stor

    Enabling the Internet of Mobile Crowdsourcing Health Things: A Mobile Fog Computing, Blockchain and IoT Based Continuous Glucose Monitoring System for Diabetes Mellitus Research and Care

    Get PDF
    [Abstract] Diabetes patients suffer from abnormal blood glucose levels, which can cause diverse health disorders that affect their kidneys, heart and vision. Due to these conditions, diabetes patients have traditionally checked blood glucose levels through Self-Monitoring of Blood Glucose (SMBG) techniques, like pricking their fingers multiple times per day. Such techniques involve a number of drawbacks that can be solved by using a device called Continuous Glucose Monitor (CGM), which can measure blood glucose levels continuously throughout the day without having to prick the patient when carrying out every measurement. This article details the design and implementation of a system that enhances commercial CGMs by adding Internet of Things (IoT) capabilities to them that allow for monitoring patients remotely and, thus, warning them about potentially dangerous situations. The proposed system makes use of smartphones to collect blood glucose values from CGMs and then sends them either to a remote cloud or to distributed fog computing nodes. Moreover, in order to exchange reliable, trustworthy and cybersecure data with medical scientists, doctors and caretakers, the system includes the deployment of a decentralized storage system that receives, processes and stores the collected data. Furthermore, in order to motivate users to add new data to the system, an incentive system based on a digital cryptocurrency named GlucoCoin was devised. Such a system makes use of a blockchain that is able to execute smart contracts in order to automate CGM sensor purchases or to reward the users that contribute to the system by providing their own data. Thanks to all the previously mentioned technologies, the proposed system enables patient data crowdsourcing and the development of novel mobile health (mHealth) applications for diagnosing, monitoring, studying and taking public health actions that can help to advance in the control of the disease and raise global awareness on the increasing prevalence of diabetes.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-045Agencia Estatal de Investigación de España; TEC2016-75067-C4-1-

    Outdoor operations of multiple quadrotors in windy environment

    Get PDF
    Coordinated multiple small unmanned aerial vehicles (sUAVs) offer several advantages over a single sUAV platform. These advantages include improved task efficiency, reduced task completion time, improved fault tolerance, and higher task flexibility. However, their deployment in an outdoor environment is challenging due to the presence of wind gusts. The coordinated motion of a multi-sUAV system in the presence of wind disturbances is a challenging problem when considering collision avoidance (safety), scalability, and communication connectivity. Performing wind-agnostic motion planning for sUAVs may produce a sizeable cross-track error if the wind on the planned route leads to actuator saturation. In a multi-sUAV system, each sUAV has to locally counter the wind disturbance while maintaining the safety of the system. Such continuous manipulation of the control effort for multiple sUAVs under uncertain environmental conditions is computationally taxing and can lead to reduced efficiency and safety concerns. Additionally, modern day sUAV systems are susceptible to cyberattacks due to their use of commercial wireless communication infrastructure. This dissertation aims to address these multi-faceted challenges related to the operation of outdoor rotor-based multi-sUAV systems. A comprehensive review of four representative techniques to measure and estimate wind speed and direction using rotor-based sUAVs is discussed. After developing a clear understanding of the role wind gusts play in quadrotor motion, two decentralized motion planners for a multi-quadrotor system are implemented and experimentally evaluated in the presence of wind disturbances. The first planner is rooted in the reinforcement learning (RL) technique of state-action-reward-state-action (SARSA) to provide generalized path plans in the presence of wind disturbances. While this planner provides feasible trajectories for the quadrotors, it does not provide guarantees of collision avoidance. The second planner implements a receding horizon (RH) mixed-integer nonlinear programming (MINLP) model that is integrated with control barrier functions (CBFs) to guarantee collision-free transit of the multiple quadrotors in the presence of wind disturbances. Finally, a novel communication protocol using Ethereum blockchain-based smart contracts is presented to address the challenge of secure wireless communication. The U.S. sUAV market is expected to be worth $92 Billion by 2030. The Association for Unmanned Vehicle Systems International (AUVSI) noted in its seminal economic report that UAVs would be responsible for creating 100,000 jobs by 2025 in the U.S. The rapid proliferation of drone technology in various applications has led to an increasing need for professionals skilled in sUAV piloting, designing, fabricating, repairing, and programming. Engineering educators have recognized this demand for certified sUAV professionals. This dissertation aims to address this growing sUAV-market need by evaluating two active learning-based instructional approaches designed for undergraduate sUAV education. The two approaches leverages the interactive-constructive-active-passive (ICAP) framework of engagement and explores the use of Competition based Learning (CBL) and Project based Learning (PBL). The CBL approach is implemented through a drone building and piloting competition that featured 97 students from undergraduate and graduate programs at NJIT. The competition focused on 1) drone assembly, testing, and validation using commercial off-the-shelf (COTS) parts, 2) simulation of drone flight missions, and 3) manual and semi-autonomous drone piloting were implemented. The effective student learning experience from this competition served as the basis of a new undergraduate course on drone science fundamentals at NJIT. This undergraduate course focused on the three foundational pillars of drone careers: 1) drone programming using Python, 2) designing and fabricating drones using Computer-Aided Design (CAD) and rapid prototyping, and 3) the US Federal Aviation Administration (FAA) Part 107 Commercial small Unmanned Aerial Vehicles (sUAVs) pilot test. Multiple assessment methods are applied to examine the students’ gains in sUAV skills and knowledge and student attitudes towards an active learning-based approach for sUAV education. The use of active learning techniques to address these challenges lead to meaningful student engagement and positive gains in the learning outcomes as indicated by quantitative and qualitative assessments
    • …
    corecore