146,739 research outputs found

    Intelligent adaptive testing system

    Get PDF
    Modern learning is impossible without automated knowledge testing systems. At present, the most progressive are adaptive testing models in which the complexity of tasks varies depending on the correctness of the patient’s answers. This article describes the development of an intelligent adaptive testing system using a fuzzy mathematics device. An intelligent adaptive testing system has been developed; the module that implements the expert system uses the production base of the rules. The input parameters of testing are the percentage of correct responses, the degree of correctness of the response, the duration of the response, and the number of attempts. The output is a change in the current level of training of the student on the basis of which test questions of related complexity are selected. As a method of logical inference, the Mamdani method is used which consists of six operational actions: phazification — conversion of exact values of input variables into values of linguistic variables through belonging functions, this served as the basis for designing a fuzzy base of rules of the expert system; aggregation of sub-conditions — determination of the truth of conditions for each linguistic rule of the fuzzy inference system; activating sub-conclusions — finding the degree of truth of each of the sub-conclusions in the linguistic rule; accumulation of conclusions — finding the belonging function for each of the output linguistic variables; defazzification — finding a numerical value for each of the output linguistic variables. A developed intelligent adaptive testing system (ISAT) is presented that allows, based on the analysis of test results, to determine the current level of training of students, to adapt the material to the level of their training. This system allows you to dynamically present questions of appropriate complexity in real time. When using the developed intelligent adaptive testing system, students will be provided with questions of the appropriate level of complexity, this will allow building an individual learning trajectory. The introduction of a predefined system will ensure the implementation of a personalized approach for organizing the learning process; will increase the accuracy of assessing students’ knowledge. The use of the technology of fuzzy expert systems allows for automated, intelligent control of students’ knowledge

    Flight Test of an Adaptive Controller and Simulated Failure/Damage on the NASA NF-15B

    Get PDF
    The method of flight-testing the Intelligent Flight Control System (IFCS) Second Generation (Gen-2) project on the NASA NF-15B is herein described. The Gen-2 project objective includes flight-testing a dynamic inversion controller augmented by a direct adaptive neural network to demonstrate performance improvements in the presence of simulated failure/damage. The Gen-2 objectives as implemented on the NASA NF-15B created challenges for software design, structural loading limitations, and flight test operations. Simulated failure/damage is introduced by modifying control surface commands, therefore requiring structural loads measurements. Flight-testing began with the validation of a structural loads model. Flight-testing of the Gen-2 controller continued, using test maneuvers designed in a sequenced approach. Success would clear the new controller with respect to dynamic response, simulated failure/damage, and with adaptation on and off. A handling qualities evaluation was conducted on the capability of the Gen-2 controller to restore aircraft response in the presence of a simulated failure/damage. Control room monitoring of loads sensors, flight dynamics, and controller adaptation, in addition to postflight data comparison to the simulation, ensured a safe methodology of buildup testing. Flight-testing continued without major incident to accomplish the project objectives, successfully uncovering strengths and weaknesses of the Gen-2 control approach in flight

    Implementation and validation of a holonic manufacturing control system

    Get PDF
    Flexible manufacturing systems are complex, stochastic environments requiring the development of innovative, intelligent control architectures that support agility and re-configurability. ADACOR holonic control system addresses this challenge by introducing an adaptive production control approach supported by the presence of supervisor entities and the self-organization capabilities associated to each ADACOR holon. The validation of the concepts proposed by ADACOR control system requires their implementation and experimental testing, to analyze their correctness, applicability and merits. This paper describes the implementation of ADACOR concepts in a flexible manufacturing system, verifies their correctness and applicability, and evaluates the ADACOR control system performance, considering not only quantitative indicators directly related to production parameters, e.g. manufacturing lead time, but also qualitative indicators, such as the agility
    • …
    corecore