52 research outputs found

    A hybrid interval type-2 semi-supervised possibilistic fuzzy c-means clustering and particle swarm optimization for satellite image analysis

    Get PDF
    Although satellite images can provide more information about the earth’s surface in a relatively short time and over a large scale, they are affected by observation conditions and the accuracy of the image acquisition equipment. The objects on the images are often not clear and uncertain, especially at their borders. The type-1 fuzzy set based fuzzy clustering technique allows each data pattern to belong to many different clusters through membership function (MF) values, which can handle data patterns with unclear and uncertain boundaries well. However, this technique is quite sensitive to noise, outliers, and limitations in handling uncertainties. To overcome these disadvantages, we propose a hybrid method encompassing interval type-2 semi-supervised possibilistic fuzzy c-means clustering (IT2SPFCM) and Particle Swarm Optimization (PSO) to form the proposed IT2SPFCM-PSO. We experimented on some satellite images to prove the effectiveness of the proposed method. Experimental results show that the IT2SPFCM-PSO algorithm gives accuracy from 98.8% to 99.39% and is higher than that of other matching algorithms including SFCM, SMKFCM, SIIT2FCM, PFCM, SPFCM-W, SPFCM-SS, and IT2SPFCM. Analysis of the results by indicators PC-I, CE-I, D-I, XB-I, t -I, and MSE also showed that the proposed method gives better results in most experiments

    A Comparative Study of Classical Clustering Method and Cuckoo Search Approach for Satellite Image Clustering: Application to Water Body Extraction

    Get PDF
    Image clustering is a critical and essential component of image analysis to several fields and could be considered as an optimization problem. Cuckoo Search (CS) algorithm is an optimization algorithm that simulates the aggressive reproduction strategy of some cuckoo species.In this paper, a combination of CS and classical algorithms (KM, FCM, and KHM) is proposed for unsupervised satellite image classification. Comparisons with classical algorithms and also with CS are performed using three cluster validity indices namely DB, XB, and WB on synthetic and real data sets. Experimental results confirm the effectiveness of the proposed approach

    Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India

    Get PDF
    CRediT authorship contribution statement: Dr. Aman Arora and Dr. Alireza Arabameri have conceptualized the study, prepared the dataset, and optimized the models. Dr. Manish Pandey has helped in writing the manuscript. Prof. Masood A. Siddiqui, Prof. U.K. Shukla, Prof. Dieu Tien Bui, Dr. Varun Narayan Mishra, and Dr. Anshuman Bhardwaj have helped in improving the manuscript at different stages of this work.Peer reviewedPostprin

    Machine Learning with Metaheuristic Algorithms for Sustainable Water Resources Management

    Get PDF
    The main aim of this book is to present various implementations of ML methods and metaheuristic algorithms to improve modelling and prediction hydrological and water resources phenomena having vital importance in water resource management

    Flood Forecasting Using Machine Learning Methods

    Get PDF
    This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Wate

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    Remote-Sensing Image Classification Based on an Improved Probabilistic Neural Network

    Get PDF
    This paper proposes a hybrid classifier for polarimetric SAR images. The feature sets consist of span image, the H/A/α decomposition, and the GLCM-based texture features. Then, a probabilistic neural network (PNN) was adopted for classification, and a novel algorithm proposed to enhance its performance. Principle component analysis (PCA) was chosen to reduce feature dimensions, random division to reduce the number of neurons, and Brent’s search (BS) to find the optimal bias values. The results on San Francisco and Flevoland sites are compared to that using a 3-layer BPNN to demonstrate the validity of our algorithm in terms of confusion matrix and overall accuracy. In addition, the importance of each improvement of the algorithm was proven

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing

    Comparative model for classification of forest degradation

    Get PDF
    The challenges of forest degradation together with its related effects have attracted research from diverse disciplines, resulting in different definitions of the concept. However, according to a number of researchers, the central element of this issue is human intrusion that destroys the state of the environment. Therefore, the focus of this research is to develop a comparative model using a large amount of multi-spectral remote sensing data, such as IKONOS, QUICKBIRD, SPOT, WORLDVIEW-1, Terra-SARX, and fused data to detect forest degradation in Cameron Highlands. The output of this method in line with the performance measurement model. In order to identify the best data, fused data and technique to be employed. Eleven techniques have been used to develop a Comparative technique by applying them on fifteen sets of data. The output of the Comparative technique was used to feed the performance measurement model in order to enhance the accuracy of each classification technique. Moreover, a Performance Measurement Model has been used to verify the results of the Comparative technique; and, these outputs have been validated using the reflectance library. In addition, the conceptual hybrid model proposed in this research will give the opportunity for researchers to establish a fully automatic intelligent model for future work. The results of this research have demonstrated the Neural Network (NN) to be the best Intelligent Technique (IT) with a 0.912 of the Kappa coefficient and 96% of the overall accuracy, Mahalanobis had a 0.795 of the Kappa coefficient and 88% of the overall accuracy and the Maximum likelihood (ML) had a 0.598 of the Kappa coefficient and 72% of the overall accuracy from the best fused image used in this research, which was represented by fusing the IKONOS image with the QUICKBIRD image as finally employed in the Comparative technique for improving the detectability of forest change

    A review of machine learning applications in wildfire science and management

    Full text link
    Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table
    • 

    corecore