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ABSTRACT
Image clustering is a critical and essential component of image analysis to several fields and 
could be considered as an opti-mization problem. Cuckoo Search (CS) algorithm is an 
optimi-zation algorithm that simulates the aggressive reproduction strategy of some 
cuckoo species.
In this paper, a combination of CS and classical algorithms (KM, FCM, and KHM) is proposed 
for unsupervised satellite image classification. Comparisons with classical algorithms and 
also with CS are performed using three cluster validity indices namely DB, XB, and WB 
on synthetic and real data sets. Experimental results confirm the effectiveness of the 
proposed approach.

Introduction

Nowadays, remote-sensing images are acquired more frequently, quickly 
and contained much additional information than last years. Also, these 
images are used in different areas, such as mapping land-use and land-
cover, agriculture, forestry, urban planning, military observation, change 
detection, vegetation health, and water resource investigations (Campbell 
2002). For all these applications it is very important and crucial to 
extract pertinent information automatically by applying different steps: 
data preprocessing, feature reduction, image analysis. This latter includes 
classification step which is considered as a very important task in remote 
sensing, and  aims to partition  pixels in  the 
images into homogeneous  regions, each pixel corresponds to 
some particular landcover type (Bandyopadhyay, Maulik, and 
Mukhopadhyay 2007). In classification image, a distinction is often 
made between supervised and unsupervised 
methods. Labeled training samples are required by supervised algorithms
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to perform the classification: it is frequently the analyst who gives these 
data. By contrast, the unsupervised classification needs fewer data from 
the analyst; the most necessary one is the image regions’ number (Ming-
Der 2007). Classification image can be viewed as a clustering problem in 
the space intensity (Maulik and Bandyopadhyay 2003), and thus several 
clustering algorithms have been used to resolve it (Tong et al. 2009).

The aim of clustering is to find the optimal partition of a specified n 
data points into c subgroups, such that the inter-class distance is as far as 
possible whereas the intra-class distance is as close as possible (Swagatam 
and Amit 2009). The assignment of a data to a group could be done in 
two different manners: The first one allows one piece of data to belong to 
two or more clusters with some probabilities, while the second one 
assumes that each data belongs to only one cluster. These approaches 
are known in literature as Fuzzy (Soft) and Hard (Crisp) clustering, 
respectively. Also, conventional (classical) clustering algorithms can be 
divided into two categories: hierarchical clustering and partitional cluster-
ing (Zhao 2012). A hierarchy of clusters could be constructed in a divisive 
way (a large cluster is split into smaller ones) or agglomerative way 
(smaller clusters are merged to obtain larger ones) by hierarchical algo-
rithms (Gan, Ma, and Wu 2007, Zhao 2012). Partitional algorithms 
relocate iteratively data points between clusters in order to minimize 
certain criteria and have an optimal partition. For remote-sensing image, 
hierarchical methods are not very adopted because of the large used data 
sets which caused a big memory space and CPU time. However, parti-
tional methods are very used, but have two principal drawbacks: initial 
number of clusters and its convergence to local optimal. Isodata, Fuzzy 
C-means (FCM), KMeans (KM), and its variant K-Harmonic Means 
(KHM) are considered as the most popular partitional methods in 
remote-sensing images. On another hand, and in order to avoid disad-
vantages of classical algorithms, scientists used new methods based on 
bio-inspired algorithms (BIAs). These latter are inspired from the beha-
vior observed in biological systems which learn naturally how to adjust to 
changes automatically; they are robust, flexible, and evolving (Khalid et al. 
2011). In remote sensing, BIAs algorithms are generally used as cluster-
ing-based methods (Tong, Man, and Xiang 2009).

Furthermore, different validity criteria have been developed to evaluate 
and compare clustering algorithms results. They can be used, in addition, to 
determine the optimal clusters number in a data set. Usually, three groups 
are distinguished in cluster validity techniques: internal, external, and rela-
tive. For the two first approaches, expensive computational statistical tests are 
needed. For the third approach, the choice of the best clustering result out of 
a set of defined schemes is attributed to a predefined criterion. There are 
some authors in the literature who classify cluster validity techniques into



only two groups: internal and external. Working with cluster validation 
techniques deal to implement numerical measures known as cluster validity 
indices (CVI). There are fuzzy and crisp indices, Xie-Benie (XB) index (Xie 
and Beni 1991) as well as Bezdek’s PE and PC indices (Bezdek 1974) (Bezdek 
1975) which are some examples of the first category. Concerning Davies-
Bouldin (DB) index (Davies and Bouldin 1979), Dunn’s index (Dunn 1974), 
Calinski-Harabasz index (Calinski and Harabasz 1973), and recently Sum-of-
squares-based validity index called WB index (Zhao and Fränti 2014) are 
some of the most popular indices used in the second category. Pakhira, 
Bandyopadhyay, and Maulik 2005, Arbelaitz et al. 2013 and Halkidi, 
Batistakis, and Vazirgiannis 2002 give a very important review of different 
CVIs present in the literature.

There is an intensive research using BIAs algorithms, as Genetic 
Algorithms (GA), Particle Swarm Optimization (PSO), Artificial Immune 
System (AIS), Artificial Bee Colony (ABC), and Neural Networks (NN)
(Khalid et al. 2011, Costa and De Souza 2011). We also find efficient hybrid 
optimization algorithms and multi-objective algorithms (Bong and Rajeswari 
2011). Cuckoo Search Algorithm (CSA) (Yang 2010) is one of the recent 
BIAs which prove their efficiency and have been applied in several optimiza-
tion and computational intelligence. Many other works attempted to improve 
CSA, like Walton et al. (2011), Valion et al. (2011), and Tuba, Subotic, and 
Stanarevic (2012). The reader interested in recent CSA advances and applica-
tions can refer to Yang and Deb (2014) and Azizah, Azlan, and Nor (2014). 
CS has been employed as a clustering algorithm in different works such as 
Saida, Nadjet, and Omar (2014), Senthilnath et al. (2013), Manikandan and 
Selvarajan (2014), Goel, Sharma, and Bedi (2011), and Zhao et al. (2014).

In BIAs, CVI can be used as a fitness function to optimize or as a measure 
to evaluate the quality of the result. In remote-sensing clustering problems, a 
lot of CVIs have been developed and tested (Pakhira, Bandyopadhyay, and 
Maulik 2005), and this makes the choice of the most suitable index for a bio-
inspired method difficult. In this study, the CS algorithm is employed for 
unsupervised satellite image classification. A new approach based on the 
combination of Cuckoo Search (CS) and classical algorithms (KM, FCM, 
and KHM) is proposed for unsupervised satellite image classification. This 
combination, named CSC, uses as initial population a combination between 
random solutions and the best solutions provided by the classical algorithms. 
The motivation is to guide the search of CS toward good solutions, with the 
aim to assure a fast convergence and to avoid local optimal. This approach is 
compared with classical algorithms and also with CS using a random initial 
population. In addition, in both bio-inspired approaches, CS and CSC, three 
CVIs namely XB, DB, and WB are used as fitness functions, in order to study 
the performance of methods for different indices and choose the best one to 
use in conjunction with them. Further, water body extraction is used in this



work as an application of clustering problem. In fact, a great deal of research 
over the last years has been conducted to extract water body from various 
multi-resolution remote-sensing images issue from different satellites (Spot, 
LandSat, etc.). Water body extraction is important for the prediction, mon-
itoring of flood disasters, and water planning with accurate effectiveness (Li et 
al. 2011, Haibo et al. 2011).

This paper is organized as follows. A brief introduction about clus-
tering algorithms used in this work is given in Section “Clustering 
algorithms”. The methodology of CS and its adaptation for clustering 
problem is described in Section “Methodology”. Experimental results on 
both synthetic and real data sets are given in Section “Experimental 
results”. Conclusions and future work are drawn in Section 
“Conclusion”.

Clustering algorithms

This section presents a brief description of the classical clustering algorithm 
KHM employed in this paper for comparison. For a more detailed descrip-
tion about classical clustering algorithms used in this work namely K-Means, 
FCM, interested readers are referred to MacQueen (1967), Bezdeck (1984), 
and Zexuan et al. (2012).

In the next sections, the following notation will be adopted:
N: number of items to be clustered in the data set X, K: number of clusters, 

cj: jth cluster center, xi: ith data set item.

KHM algorithm

The main drawback of K-Means algorithm is the dependence of its 
performance on the initialization of centers. To improve the algorithm, 
Zhang (2000) proposes to use the harmonic mean instead of  
standard mean in the objective function and has named the new algo-
rithm KHM.

KHM ¼
XN
i¼1

KPK
j¼1

1
xi�cjk k2

(1)

New centers clusters are calculated as following (Zhang et al. 2013, Thangavel
and Karthikeyani Visalakshi 2009):



Ck ¼

PN
i¼1

1PK
l¼1

xi�cjk k2

xi�clk k2

� �2 xi

PN
i¼1

1PK
l¼1

xi�cjk k2

xi�clk k2

� �2

(2)

Methodology

This section presents the concepts of CSA and explains how its integration 
and application for solving clustering problem is carried out.

Cuckoo behavior

CSA is a nature-inspired technique for solving nonlinear optimization 
problems. It has been developed by Yang and Deb in 2009, and  the 
preliminary studies show that it is very promising and could outperform 
existing algorithms, such as GA and PSO (Yang 2010). This algorithm is 
based on the aggressive reproduction strategy of some cuckoo species in 
combination with Lèvy flight behavior of some birds and fruit flies (Yang 
and Deb 2009, Reynolds and Frye 2007).

In reality, a lot of species of cuckoo exist; some of them use communal 
nests to lay their eggs. However, cuckoos may remove other birds’ eggs in 
order to increase the hatching probability of their eggs. Some other cuckoo 
species use the nests of other host birds (often other species) to lay their eggs. 
When a host bird discovers that the eggs are not its own, it will either 
abandon its nest and build another new one elsewhere or throw these alien 
eggs away. Also, there are some other cuckoo species which have female 
parasitic cuckoos very specialized in mimicking a few chosen host species in 
color and pattern of host eggs. In this way, the cuckoos diminish the 
possibilities of abandoning their eggs and therefore improve their reproduc-
tivity (Payne, Sorenson, and Klitz 2005).

The random process which takes a series of consecutive random steps is 
called a random walk. In nature, the search of food by animals is operated 
in a random or quasi-random manner and can be considered as a random 
walk. In fact, the next move in an animal foraging path is based on the 
current location/state and the transition probability to the next location. 
The chosen direction implicitly depends on a probability, which can be 
modeled mathematically (Yang 2010). A Lèvy flight is a random walk in 
which step lengths are drawn according to a heavy-tailed probability 
distribution (Gandomi, Yang, and Alavi 2013). Yang and Deb (2009)



have employed this behavior in CSA to assure local search and exploration 
phase.

Cuckoo Search Algorithm

Yang and Deb (2009) have used the following three rules which aim at 
applying CSA, an optimization tool, and simplifying this tool description:

– One egg is, at a time, laid by each cuckoo and dumped (its egg) in a nest
randomly selected.

– The best solutions will carry on over to the next generations by using
the elitist selection.

– The number of host nests is predetermined, and a host bird can discover
an egg laid by a cuckoo with a probability Pa.

In this case, the host bird can either throw the alien egg away or desert the 
nest so as to make a new nest in another location. For simplicity, this last 
assumption can be verified by a fraction Pa of the n nests being replaced by 
new random solutions at new locations.

Yang and Deb (2009) assume that each egg in a nest represents a 
solution, and a cuckoo’s egg represents a new solution. The aim is to 
replace bad solutions (cuckoos) in the nests by new and potentially better 
solutions.

Algorithm 1 summarizes the pseudo code of the basic steps of CS based on 
the above rules.

Algorithm 1 Original Cuckoo Search (Yang 2010)
1: Generate initial population of n host nests xi;
2: Loop
3: Get a cuckoo randomly by Lévy flight and evaluate its quality/fitness Fi;
4: Choose a nest among n (say, j) randomly;
3: If (Fi > Fj), replace j by the new solution;
4: A fraction (Pa) of worse nests are abandoned and new ones are built;
5: Keep the best solutions (or nests with quality solutions);
6: Rank the solutions and find the current best;
7: If a criterion is met (usually a sufficiently good fitness or a

maximum number of iterations), exit loop
8: End loop
9: Post process results and visualization.

For generating new solutions xi(t + 1), a local random walk (Equation 3)
and global random walk by using Lèvy flights (Equation 4) are performed.



Mathematically speaking, the random walk is given by the following
equation:

xðtþ1Þ
i ¼ xðtÞi þ wt (3)

where x is the current solution at t, and wt is a step or a random variable
with a known distribution (Yang 2010). In the real world, the probability of
discovering cuckoos’ eggs depends on its similarity with the hosts’ eggs. It
means that the former which is different from the latter has a big probability
to be discovered. To modelize this situation, Yang (2010) choose a random
walk in biased way with some random step sizes in order to relate the
difference in solutions with fitness. For generating new solutions xi(t + 1),
a Lévy flight is performed as follows: (Yang 2010):

xðtþ1Þ
i ¼ xðtÞi þ α� L�evyðλÞ (4)

where α > 0 is the step size which should be related to the scales of the
problem under consideration. The product Å means entry-wise multiplica-
tions. The Lèvy flights essentially provide a random walk, while their random
steps are drawn from a Lévy distribution for large steps which has an infinite
variance and mean.

Here, the successive jumps of a cuckoo form a random walk process which
obeys a power-law step-length distribution with a heavy tail.

L�evy , u ¼ t�λ; 1< λ � 3ð Þ (5)

Current approach

CSA has been used in this work to determine the centers of clusters for 
unsupervised satellite image classification. The proposed approach is 
described in detail within the following sections, including solutions codifi-
cation and fitness function.

Coding
In a clustering problem, the data set is composed of N objects, each one of 
them is defined by l attributes. In order to resolve clustering problem, the CS 
algorithm is adopted to find K cluster centers from the data set by optimizing 
a fitness function.

In CS mechanism, the nests represent the solutions. Hence, each nest in 
this work is a set of K centers and can be represented by a matrix K × l,  
where l represents the number of attributes of each center.



Fitness function

In this paper, three popular clustering validity indices –DB, XB, and WB –
are used as an objective function (Fitness) which needs to be optimized. 
Next, the equations of CVI are given.

The DB index
It is a very popular and used crisp index in clustering algorithms. It is defined 
by Davies and Bouldin (DB) (Davies and Bouldin 1979) and requires only 
two parameters to be defined by the user – p (distance measure) and q 
(dispersion measure). The DB index is defined as follows:

DB ¼ 1
K

XK
i¼1

max
i;i�j

Si þ Sj
Mij

� �
(6)

with

Si ¼ 1
Ti

XTi

j¼1

xj � ci
�� ��q( )1

q

(7)

Mij ¼
XK
k¼1

cki � ckj
�� ��p( )1

p

(8)

where cki : kth component of the n-dimensional vector ci, ci : the center of 
cluster i, Mij : the Minkowski metric, and Ti : the number of vectors in 
cluster i.

Xie-Beni (XB) index

The XB index (called also function S) is defined as a function of the ratio of 
the total variation to the minimum Separation of clusters (Xie and Beni 
1991):

XB ¼

PK
i¼1

PN
j¼1

ðuijÞm xj � ci
�� ��2

Nmin cl � cik k2 (9)

Sum-of-squares based validity index (WB)

WB index (WB) (Zhao. et al. 2014) is defined as a ration of the measure of 
compactness of the cluster to its measure of separation. It is given by



WB ¼ K

PN
i¼1 xi� cPi2PK
i¼1 nici � �X2 (10)

where
cPi: the center of the cluster Pi to which belongs the element xi, �X ¼ PN

i 1
xi

/N is the mean value of the whole data set and ni is the number of elements
¼ 

in each cluster.

Algorithm
The clustering CS algorithm adopted in this work follows the above steps.

Algorithm 2 Clustering Cuckoo Search
1. Generate initial population of nb_nest host nests;
2. Evaluate the fitness of each solution Fit_old and select the best solution:
best_nest;
Loop

3. Generate nb_nest-1 new solutions by the cuckoo search lèvy flight
except for the best_nest (Exploration phase);

4. Evaluate the fitness of the new solutions Fit_new;
5. For each solution, if Fit_new < Fit_old, replace the old nest by the
new one;

6. Generate a fraction (Pa) of new solutions to replace the worse nests
(Exploitation phase);

7. Compare these solutions with the old solutions. If Fit_new < Fit_old,
replace the old nest by the new one;

8. Find the best solution best_nest;
9: If a criterion is met (usually a sufficiently good fitness or a maximum
number of iterations), exit loop

10. End loop
11. Post process results and visualization.

Experimental results

In this section, the used data sets, experimental results, and discussions about 
findings performance will be given. Three subsections are supplied; the first 
will present different data sets used in this work. The second subsection will 
explain experimental results on synthetic data sets. Results with real data sets 
are given in the third subsection. Three classical methods are used to 
compare with CS namely: FCM, KM, and KHMeans. All results concerning 
CS and CSC are done with two values of the step size α (0.01 and 0.1). In the 
rest of the paper, the CS with α = 0.01 is noted CS1 (respectively CSC1) and 
CS2 (respectively CSC2) for CS with α = 0.1.



All computations have been done using MATLAB programming language 
on an Intel Pentium Dual-Core with 2.13 GHZ CPU and 4 GB of RAM. 
Experiments were conducted to demonstrate the efficiency of the methodol-
ogy using synthetic and real data sets.

Data sets

Synthetic data sets used in this work namely S1 and S2 (Figure 1(a), (b)) have 
been generated using Gaussian distribution and can be found in the SIPU 
web page http://cs.uef.fi/sipu/datasets.

The second set of experimentations is performed on three multispectral 
remotely sensed data which present more complexity than the first set of 
experimentations used earlier. The first real data set consists of three multi-
spectral Spot 5 bands with spatial resolution of 10 m and window size of 
800 × 1500 pixels representing the region of Oran (West of Algeria) as

b
a

Figure 1. Synthetic data S1 (a) and S2 (b) (from left to 

right).

(c)(a) (b) 

Figure 2. Real images used for 

experimentations.

http://cs.uef.fi/sipu/datasets
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Figure 3. Variation of the DB index with respect to the number of clusters for the S1 data set 
with all methods.
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Figure 4. Variation of the XB index with respect to the number of clusters for the S1 data set 
with all methods.

Table 1. The characteristics of images.
Satellite Bands Wavelength Acquisition date

Spot 5 Band1: Green
Band2: Red
Band3: Near-infrared (NIR)

0.50–0.59 µm
0.61–0.68 µm
0.78–0.89 µm

March 3, 2012

Landsat-8 Enhanced
Thematic Mapper
Plus (ETM+)

Band2: Green
Band4: Red
Band5: Near-infrared (NIR)

0.525–0.605 µm
0.63–0.69 µm
0.75–0.90 µm

May 4, 2014

Alsat-2A Band2: Green
Band3: Red
Band4:Near-infrared (NIR)

0.53–0.59 µm
0.62–0.69 µm
0.76–0.89 µm

May 4, 2011
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Figure 5. Variation of the DB index with respect to the number of clusters for the S1 data set 
with all methods.

illustrated in Figure 2(a). Landsat 8 image sub-scene of Arzew, with three 
spectral data channels, size of 800 × 600, and a spatial resolution of 30 m is 
used as second data set and shown in Figure 2(b). The last remote sensed 
data is obtained from Alsat-2A image of a part of the city of Tlemcen 
500 × 500 (West of Algeria) and shown in Figure 2(c). The characteristics 
of each image are given in Table 1.

Synthetic data results

In order to analyze the performance of all methods used in this work (FCM, 
KMeans, KHMeans, CS and CSC) based one, experiments varying the num-
ber of clusters from K = 10 to K = 20 have been carried out. The values of 
validity indices on DB index, XB index, and WB index with all the methods 
for S1 data set are plotted as shown in Figures 3, 4, and 5, respectively.

As shown in Figure 3 and Figure 4, values of indices have higher variance 
with the classical algorithms (FCM, KM, and KHM) than CS and CSC 
algorithms for DB and XB indices. Concerning WB index, all the algorithms

Table 2. Comparison of the optimal number of clusters obtained by the different algorithms in 
conjunction with the DB index, the XB index, and WB index – case of the S1 data set.

DB XB WB

K Value K Value K Value

KM 13 0.4211 13 0.0704 20 0.2823
KHM 15 0.3963 15 0.0419 15 0.2372
FCM 15 0.3918 15 0.0417 15 0.2351
CS1 13 0.4138 16 0.0433 15 0.2336
CS2 15 0.3668 16 0.0581 15 0.2398
CSC1 15 0.3578 15 0.0341 15 0.2322
CSC2 15 0.3586 15 0.0360 15 0.2329



present less variance from K = 15 to K = 20 except for KM algorithm as 
illustrated in Figure 5. Also, CS and CSC algorithms are in general more 
stable with lower values of indices than classical algorithms. Furthermore, 
CSC1 and CSC2 give slightly lower values in comparison with CS1 and CS2 
algorithms.

For the first synthetic data set S1, clusters are well separated (Figure 1) and 
the Optimal Cluster Number (OCN) is 15. Table 2 shows the OCN obtained 
using the different methods and different indices namely DB, XB, and WB, 
for the case of S1 data set.

As can be observed in Table 2, all the indices give the right OCN when 
FCM and KHM methods are applied. However, the KM method fails to give 
the correct value of the OCN, 13 with DB and XB, and 20 with WB. CS

10 11 12 13 14 15 16 17 18 19 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Centers Number

D
B

I F
itn

es
s 

V
al

ue
s

DBI values for S2

CS1
CS2
FCM
KM
KHM
CSC1
CSC2

Figure 6. Variation of the DB index with respect to the number of clusters for the S2 data set 
with all methods.
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Figure 7. Variation of the XB index with respect to the number of clusters for the S2 data set 
with all methods.
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Figure 8. Variation of the WB index with respect to the number of clusters for the S2 data set 
with all methods.

performs well with WB index; all experiments give 15 as OCN unlike XB and 
DB indices which give 16 as OCN (CS 0.1 and CS 0.01) and 13 (CS 0.01) 
consecutively. Also, CSC1 and CSC2 have 15 as OCN for all the indices with 
lower values (marked in bold in Table 2) of these indices compared with the 
other algorithms.

We notice that there is no significant difference in the results for S1 data 
set. For separated data case, there is generally no problem to detect auto-
matically the OCN. KHM and FCM give the OCN, as well as CSC1 and 
CSC2. But, CSC1 and CSC2 are the more stable algorithms with all the 
indices and with the lower values of these indices.

Figures 6, 7, and 8 show, respectively, the plot of the performance of 
validity indices on DB index, XB index, and WB index with all the methods 
for S2 data set when the number of clusters is varied.

In the case of S2 data set, classical methods and CS algorithm have 
higher variance concerning DB and XB indices compared with CSC1 and 
CSC2 as can be observed in Figure 6 and Figure 7. For WB index, CS and CSC 
are stable; just

Table 3. Comparison of the number of clusters obtained by the different algorithms in 
conjunc-tion with the DB index, the XB index, and WB index – case of the S2 data set.

DB XB WB

K Value K Value K Value

KM 15 0.5777 11 0.1061 18 0.4337
KHM 14 0.4903 14 0.0690 16 0.4148
FCM 15 0.4402 15 0.0702 15 0.3955
CS1 19 0.4623 19 0.0494 15 0.3876
CS2 17 0.4599 19 0.0643 15 0.3945
CSC1 15 0.4146 15 0.0474 15 0.3871
CSC2 15 0.4147 15 0.0498 15 0.3883



classical methods present a high variance. Moreover, CSC1 and CSC2 have 
given the smallest values of all indices compared with the other algorithms.

In the case of the S2 data set, data are overlapped and OCN is also equal to 
15.Table 3 shows the OCN obtained using the different indices by all the 
algorithms employed in this paper for the case of S2 data set.

In Table 3 it is observed that all the indices give the right OCN for FCM 
method. With KHM method, the results are near to OCN (14 for XB and DB 
indices and 16 for WB index). The KM method finds the OCN with DB 
index and fails to obtain it with XB (11) and WB (18) indices. CS performs 
well with WB index and found 15 as OCN in all the experiments. CS fails to 
find the OCN with XB (19 for CS1 and CS2) and DB (19 for CS1and 17 for 
CS2) indices. Concerning CSC1 and CSC2, all the indices give the right 
number of OCN. Also, indices values are the smallest (marked in bold in 
Table 3) compared with those found with the other methods. We notice that 
by the use of overlapping data (case of S2), FCM, CSC1, and CSC2 obtain the 
OCN and, also in the case, the less value of indices is obtained with CSC1.

Real data results

Remote-sensing data are very complex and overlapped in nature 
(Bandyopadhyay, Maulik, and Mukhopadhyay 2007); each pixel from the 
numeric image belongs to a landcover type considered as clusters. Some 
important classes are present in these images and can be identified easily. 
In the case of the first image (Figure 2(a)), we notice three sub clusters 
namely water, urban, bar soil, vegetation, fallows, and forest. Other method 
to have an idea about maximum clusters number consists to extract the 
number of peaks present in image histogram (Figure 9). Finally, the OCN 
of the first sub-scene used belongs to the interval. Regarding the second 
image (Figure 2(b)), we observe sea water, clouds, urban, water, forest, 
fallows, shadow, and bar soil. Knowing that the reflectance of the shadow
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Figure 9. The histogram of the first image data set.



is the same that the water in the used channels, we can consider that the 
subclusters sea water, water, and shadow are composing one class. According 
to these findings, we choose the interval. For the last image acquired by 
Alsat-2A (Figure 2(c)), we distinguish three kinds of fallows, urban, black 
rocks, and bar soil. Hence, the final number of clusters is included in the 
interval. The use of an interval by experts is explained by the difficulty of the 
study areas, particularly in the case of the last image due to its high spatial 
resolution.

Table 4, Table 5 and Table 6 summarize indices minimum values and their 
corresponding OCN obtained by all the methods for the case of Oran satellite 
image, Arzew satellite image and Tlemcen satellite image respectively. The 
lower values of indices are marked in bold for tables 4, 5 and 6.

Table 4. Comparison of the number of clusters obtained by the different algorithms in conjunc-
tion with the DB index, the XB index, and WB index – case of the first real image.

DB XB WB

K Value K Value K Value

KM 3 0.4971 3 0.1164 6 0.9133
KHM 3 0.5792 3 0.1429 6 0.9931
FCM 3 0.5128 3 0.1167 6 0.9117
CS1 3 0.3562 5 0.0486 5 0,8441
CS2 3 0.3562 5 0.0465 5 0.8485
CSC1 3 0.3562 5 0.0486 6 0.8321
CSC2 3 0.3562 5 0.0459 6 0.8393

Table 5. Comparison of the number of clusters obtained by the different algorithms in conjunc-
tion with the DB index, the XB index, and WB index – case of the second real image.

DB XB WB

K Value K Value K Value

KM 3 0.3922 3 0.0704 6 0.3536
KHM 3 0.4140 3 0.0810 5 0.3640
FCM 3 0.3874 3 0.0686 5 0.3504
CS1 3 0.3198 5 0.0377 5 0.3376
CS2 3 0.3199 5 0.0373 5 0.3375
CSC1 3 0.3198 4 0.0392 5 0.3342
CSC2 3 0.3198 6 0.0381 5 0.3336

Table 6. Comparison of the number of clusters obtained by the different algorithms in conjunc-
tion with the DB index, the XB index, and WB index – case of the third real image.

DB XB WB

K Value K Value K Value

KM 3 0.3913 3 0.0980 8 0.2966
KHM 3 0.3976 3 0.1006 8 0.3039
FCM 3 0.3818 3 0.0937 8 0.2961
CS1 4 0.3489 7 0.0470 5 0.3406
CS2 3 0.3508 3 0.0485 5 0.3400
CSC1 4 0.3488 3 0.0484 8 0.2960
CSC2 4 0.3508 3 0.0488 8 0.2972



As shown in Table 4, all the methods as for the first image fail to obtain 
OCN with DB index and find K = 3 at DB minimum value. The smallest DB 
value is reached by CS1, CS2, CSC1, and CSC2. Concerning XB index, 
classical methods give K = 3 at XB minimum value and hence fail to have 
OCN. CS1, CS2, CSC1, and CSC2 results are close to OCN and give K = 5 
with the smallest value of XB obtained by CSC2. For WB index, only CS1 and 
CS2 give K = 5 which is close to OCN. The other methods succeed to reach 
OCN with K = 6 and the smallest value of WB is given by CSC1.

From Table 5, it can be observed that OCN is not reached by all the 
methods using DB index and K = 3 for all the algorithms. CS1, CSC1, and 
CSC2 obtain the smallest DB value. OCN is reached by CS1, CS2, and 
CSC2 in the case of XB index. The other methods fail to have OCN and 
give K = 3 for classical methods and  K = 4 for CSC1. Also, CS2 and CSC2 
obtain the smallest XB values. Using WB index, all the methods find OCN 
with the smallest WB value obtained by CSC2.

As observed in Table 6, classical methods and CS2 fail to obtain OCN 
with DB index. However, CS1, CSC1, and CSC2 approximate OCN by 
giving K = 4 with the smallest DB value obtained by CSC1. For XB index, 
only CS1 give OCN with K = 7. Concerning WB index, CS1 and CS2 give  
OCN with K = 5. The other methods provide an approximate of OCN 
value with K = 8. It is noticed that in this case the WB smallest value is 
found by CSC1 although OCN is not reached by this method. This can be 
explained by the high spatial resolution of the image resulting in a big 
number of  spectral classes present in  the image. This number does not  
necessarily correspond to the number of thematic classes represented 
by OCN.

Figure 10 presents the classified images resulted from the clustering using 
different indices and all the methods concerning the first real image. Although 
there are numerical difference for different methods and validity indices, as it 
was shown in the previous paragraph, visually slight distinction is detected in 
classified images, especially for the second and the third images.

Concerning the first image, and as it can be observed in Figure 10, there is a 
minor visual variation between clustered images, notably for water region 
represented in black color for all the images case of the CSC2 algorithm. 
However, the histograms related to these images show that the different 
clusters have not the same number of pixels. As example we give the 
histogram concerning all the methods using WB index on the first image 
illustrated by Figure 11.

From the experimental results, it can be concluded that among the three 
indices; WB index is the best in OCN choice for classical algorithms, and in 
using as fitness function for CS1, CS2, CSC1, and CSC2 algorithms. For the two 
other indices, DB index fails in all experiments to detect OCN with all the 
methods and detects fewer clusters than the other algorithms. Also, it can be



observed that for XB index the number of clusters K is bigger than apparent 
clusters number calculated from clustered images. This can be explained by 
some clusters which contain few data and hence clusters will not be visible 
to naked eye. Figure 10 (b4, b5, b6, and b7) can be cited as examples.

(a1) (b1) (c1)

(a2) (b2) (c2)

(a3) (b3) (c3)

(a4) (b4) (c4)

Figure 10. Clustered images of Oran with DB index (a i), XB index, (b i), and WB index (c i) using 
(i = 1) KM, (i = 2) KHM, (i = 3) FCM, (i = 4) CS1, (i = 5) CS2, (i = 6) CSC1, and (i = 7) CSC2.
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Figure 10. Continued.
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Figure 11. The number of pixels in each cluster obtained by all the methods using WB index.



a b c d

Figure 12. Water body extraction results of the first image with WB index using (a) FCM, (b) 
CSC1, (c) CSC2, and (d) ground truth.

Concerning the performance of the methods used in this paper, classical 
algorithms present more variance compared with CS and CSC algorithms which 
are more stable. Also, it can be observed that, in general, CSC1 and CSC2 
perform better than CS1 and CS2. This can be explained by the fact that CSC 
operates as CS algorithm and exploits at the same time the best solutions of 
classical algorithms. Regarding the choice of the parameter α, CSC1 (α = 0.01) 
performed slightly better than CSC 2 (α = 0.1). This comes from the fact that a 
minor value of α allows a better exploration of neighbors of the solutions.

Finally, Figure 12(a), (b), and (c) shows the best results obtained for water 
body extraction, the application used in this work, by FCM from classical 
algorithms, and CSC1 and CSC2 from BIAs. In order to compare the 
different obtained water body extraction results, the ground truth is obtained 
by an expert in using supervised algorithm SVM and five regions of interest 
as illustrated in Figure 12(d). It is observed that the results of CSC2 are the 
most similar to ground truth.

Conclusion

In this paper, a comparative study of classical clustering methods (KM, FCM, 
and KHM), CS algorithm, and Combined Cuckoo Search (CSC) method is 
carried out. Three validity indices are used each time in conjunction with 
CSC, namely DB index, XB index, and WB index. To evaluate the perfor-
mance of all the employed methods and indices, synthetic and real data sets 
have been used.

In summary, CSC and CS are more stable compared with the other tested 
classical algorithms. Also, CSC in conjunction with WB index performs 
better than the other tested indices although they give in general the same 
OCN. In fact, the accuracy of clustering with WB index increases with BIAs 
(for example, the average accuracy increase with 0.1 for the first image with 
mean = 0.939 for classical methods and mean = 0.8357 for CSC). As an



application of clustering problem, water body extraction is applied in this 
work; CSC2 performed better than the other algorithms concerning water 
identification.

Real images used in this paper have not showed big visual differences 
between classified images by the different algorithms despite the existence 
of numerical results diversity. The test of other remote-sensing images will 
be interesting for future works. Also, the use of multi-objective approach 
of CSC combining different indices is considered as a perspective of this 
research.
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